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Single-cell full-length total RNA sequencing
uncovers dynamics of recursive splicing and
enhancer RNAs
Tetsutaro Hayashi 1, Haruka Ozaki 1, Yohei Sasagawa 1, Mana Umeda1, Hiroki Danno 1

& Itoshi Nikaido 1,2

Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression,

RNA processing and enhancer activity. To date, no method for full-length total RNA

sequencing of single cells has been developed despite the potential of this technology for

single-cell biology. Here we describe random displacement amplification sequencing

(RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared

with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and

near-complete full-length transcript coverage. Using RamDA-seq with differentiation time

course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated

non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1.

Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also

detects enhancer RNAs and their cell type-specific activity in single cells. Taken together,

we demonstrate that RamDA-seq could help investigate the dynamics of gene expression,

RNA-processing events and transcriptional regulation in single cells.
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Total RNA sequencing (total RNA-seq) provides rich
information on biological systems in addition to the
abundance of mRNAs. First, total RNA-seq can measure

not only poly(A) but also non-poly(A) RNAs, including nascent
RNAs, histone mRNAs, long noncoding RNAs (lncRNAs),
circular RNAs (circRNAs), and enhancer RNAs (eRNAs)1–7.
Non-poly(A) RNAs are dynamically regulated and involved in
important biological processes3,4,8,9. For example, measurement
of eRNAs, which are mostly non-poly(A)7,10, using total RNA-
seq has provide insights into transcriptional regulation6,7,8,10.
Second, total RNA-seq also has contributed to the detection of
important RNA-processing events, including alternative and
aberrant RNA splicing, and intron retention in cell differentiation
and diseases11. Recently, multistep splicing (recursive splicing
(RS), nested splicing, and re-splicing) has been discovered in
vertebrates12–14. Based on the achievements made by total
RNA-seq, development of a single-cell total RNA-seq method
would be expected to help us fully investigate these molecular
events in single cells.

Ideal single-cell total RNA-seq would have high sensitivity,
especially to non-poly(A) RNAs, to fully capture transcriptome in
single cells because the expression of lncRNAs and eRNAs, which
are mainly non-poly(A)15,16, is generally low17. Likewise, since
pre-mRNAs generally contain intronic regions that are longer
than exonic regions1, unbiased amplification of full-length cov-
erage along transcripts is essential to detect RNA-processing
events such as co-transcriptional splicing and RS.

Thus far, much effort has been made to develop single-cell
RNA-seq (scRNA-seq) methods with full-length coverage or
sensitivity to non-poly(A) RNAs. Several scRNA-seq methods
combining oligo-dT priming and template switching have been
reported to provide full-length coverage of transcripts18,19.
However, these methods are targeted at only poly(A) RNAs due
to oligo-dT priming. Recently, SUPeR-seq, which employs spe-
cialized random primers conjugated to poly(T), was reported to
detect non-poly(A) RNAs, including circRNAs20. Nonetheless,
SUPeR-seq shows relatively low sensitivity with non-poly(A)
RNAs (20–30%)20, which leaves room for developing scRNA-seq
methods with higher sensitivity to non-poly(A) RNAs. In addi-
tion, how to reduce the sequence derived from ribosomal RNAs
(rRNAs) that accounts for most of the total RNA is a major task
for establishing single-cell total RNA-seq. This issue is encoun-
tered because scRNA-seq uses a trace amount of total RNA as a
template, and it is difficult to apply general rRNA-depletion
methods that cause loss of RNA. Altogether, a single-cell total
RNA-seq method with both full-length transcript coverage and
high sensitivity for non-poly(A) RNAs remains to be developed.

scRNA-seq methods consist of various steps (Supplementary
Fig. 1). The sensitivity of the method is the product of the
efficiency of each step. Therefore, the number of steps and the
sensitivity are inversely proportional. According to the conven-
tional method, molecules that have not been captured in the
reverse transcription (RT) step or have not been converted to the
amplifiable form after the second-strand synthesis cannot become
sequencing library DNA no matter how much the amplification
method is improved. Therefore, it is necessary to simplify an
experimental procedure, to use RT with high capture efficiency
and to amplify the cDNA as early step as possible. To satisfy these
conditions, we decided to use a novel RT technology: RT with
random displacement amplification (RT-RamDA).

Herein, we developed the first, to our knowledge, full-length
single-cell total RNA-seq method, which we named random
displacement amplification sequencing (RamDA-seq), by com-
bining RT-RamDA and not-so-random primers (NSRs). RT-
RamDA provides global cDNA amplification directly from RNA
during RT, which benefits RT efficiency, simplifies the procedure,

and decontaminates genomic DNA. NSRs enables random
priming while preventing cDNA synthesis from rRNAs21,22.
Using diluted total RNA, we confirm that RamDA-seq is single-
cell total RNA-seq, which has high sensitivity to non-poly(A) and
full-length coverage for extremely long transcripts exceeding 10
kb. We applied RamDA-seq to mouse embryonic stem cells
(mESCs) undergoing differentiation and find cell state-dependent
expression of known and novel non-poly(A) RNAs, including the
extremely long non-poly(A) isoform of Neat1, a mammalian-
specific lncRNA. Furthermore, we discover RS within >300-kb
introns in single cells. Finally, RamDA-seq enables genome-wide
analysis of eRNAs in single cells, which reveals the cell type-
specific activity and potential regulators of the detected eRNAs.
Our results suggest that RamDA-seq will provide insight into the
dynamics of gene expression, transcriptional regulation, and RNA
processing at the single-cell level.

Results
The principle and approach of RamDA-seq. RamDA-seq con-
sists of two fundamental techniques: a novel RT technology, RT-
RamDA; and NSRs. First, RT-RamDA is a whole-transcriptome
amplification (WTA) method that amplifies cDNAs directly from
an RNA template (Hayashi et al., submitted). This method uses
the nuclease activity of DNase I to introduce nicks in the cDNA
and randomly displaced strands to amplify the cDNA during RT
by RNase H minus reverse transcriptase. The use of the T4 gene
32 protein, a single-stranded DNA-binding protein, promoted
strand displacement and protected the amplified cDNA against
degradation by DNase I (Fig. 1a, Supplementary Fig. 1, and
Supplementary Note 1 and 2). These events occurred
continuously and consequently increased cDNA yields globally
more than 10-fold (Fig. 1b) (Hayashi et al., submitted). Second,
we used NSRs rather than N6 random primers to reduce the
rRNA sequence21,22. NSRs are designed to avoid synthesizing
cDNA from the rRNAs by removing 6-mers that exactly match
the rRNA sequences from N6 random primers. Therefore, the use
of NSRs enables the application of RT-RamDA for scRNA-seq.

We established the proper cell lysis conditions needed to
expose nuclear-enriched non-poly(A) RNAs and remove genomic
DNA before performing random priming-based RT (Methods
section, Supplementary Fig. 2, and Supplementary Note 3). We
also confirmed that the RamDA-seq protocol did not produce a
library of DNA derived from genomic DNA or environmental
DNAs (Supplementary Fig. 3).

We successfully established RamDA-seq on cell sorter-based
microplate and Fluidigm C1 platforms, the latter of which is an
automatic sample preparation system for single cells (RamDA-
seq and C1-RamDA-seq, respectively; Fig. 1c).

RamDA-seq shows high sensitivity and reproducibility. To
critically assess the performance of our method, we prepared a
sequencing library from 10 pg of diluted mESC total RNA using
RamDA-seq and C1-RamDA-seq. We then compared the
performance of these methods with that of SUPeR-seq20 and the
following oligo-dT primer-based methods: SMART-Seq v4, a
commercially available kit based on Smart-seq218,19; and Quartz-
Seq23 (Supplementary Fig. 1). To provide upper limits for the
analyses, we also prepared bulk rRNA-depleted total RNA-seq
(rdRNA-seq) and poly(A)-selected RNA-seq (paRNA-seq)
libraries using 1 µg of total RNA.

We calculated the number of detected transcripts that exhibited
expression changes of less than twofold against rdRNA-seq.
RamDA-seq and C1-RamDA-seq detected the largest number
(~17 000 and 14 000, respectively) of transcripts among the
scRNA-seq methods (Fig. 1d and Supplementary Fig. 4d). We
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also plotted the squared coefficient of variation (CV2) against
expression levels to examine reproducibility. Compared with the
other single-cell methods, RamDA-seq exhibited a lower degree
of variation at all expression levels and more closely resembled
the bulk RNA-seq methods (rdRNA-seq and paRNA-seq; Fig. 1e
and Supplementary Fig. 4f). Furthermore, RamDA-seq and
C1-RamDA-seq showed higher correlation in expression level

with rdRNA-seq than did the other scRNA-seq methods
(Supplementary Fig. 4h), indicating that RamDA-seq is highly
similar to rdRNA-seq. Read distributions, especially high
proportions of intronic, 5′ untranslated region and intergenic
regions, showed that RamDA-seq resembled rdRNA-seq, whereas
SUPeR-seq was more similar to paRNA-seq and the oligo-dT
primer-based methods (Supplementary Fig. 4i). We also
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compared large-volume-inputted RamDA-seq with rdRNA-seq
using 1 ng of RNA. When we compared RamDA-seq and
rdRNA-seq with the same input amount, there was hardly any
difference in sensitivity and reproducibility except for the
contamination rate of rRNA (Supplementary Fig. 5). Finally, we
carried out a spike-in RNA experiment; the results clearly
indicated that RamDA-seq was highly reproducible and sensitive
(Supplementary Note 4 and Supplementary Fig. 6). Altogether,
based on the substantial resemblance of RamDA-seq to bulk total
RNAs-seq, we conclude that RamDA-seq is a robust, single-cell
total RNA-seq method.

RamDA-seq shows full-length coverage of extremely long RNA.
To evaluate the transcript coverage of the sequence reads in
detail, we compared the percentage coverage with the absolute
length of the transcripts by using 10 pg of RNA (Fig. 2a and
Supplementary Fig. 7). Remarkably, RamDA-seq, similar to bulk
RNA-seq methods, showed full-length coverage, whereas other
scRNA-seq methods did not. Consistently, we also confirmed that
the read coverage of RamDA-seq against relative transcript length
was most similar to that of rdRNA-seq (Supplementary Fig. 8d).
Specifically, the coverage of SMART-Seq v4 markedly decreased
in the 10- to 20-kb range (Fig. 2a), even though this method
employs template switching, which has been reported to provide
full-length transcript coverage18,19. This result was consistent
with previously reported results24,25. For example, mapping data
to Mdn1 (17 970 bp) revealed missing exons in the middle range
of the transcript when using SMART-Seq v4, whereas complete
mapping to Mdn1 was achieved when using RamDA-seq, similar
to rdRNA-seq (Fig. 2b). Similar differences in mapping data were
also observed for other long (>10 kb) transcripts in both 10 pg of
RNA and single cells (Supplementary Fig. 9 and 10). In addition,
the fraction of exonic regions covered by the reads indicated that
RamDA-seq covered a higher fraction of exonic regions than did
the other methods in all length bins (Fig. 2c and Supplementary
Fig. 8a–c). These results indicate that RamDA-seq can provide
full-length coverage even for extremely long (>10 kb) transcripts.

RamDA-seq shows high sensitivity with non-poly(A) RNA. We
next asked whether RamDA-seq could detect non-poly(A) RNAs.
First, we evaluated whether RamDA-seq could detect the
expression of histone-coding genes, well-known non-poly(A)
RNAs, using 10 pg of RNA data from mESCs. RamDA-seq
detected more histone-coding genes than did the other scRNA-
seq methods, including SUPeR-seq, which is reported to detect
non-poly(A) RNA20 (Fig. 2d). We further confirmed that
RamDA-seq could quantitatively detect oscillation in expression

levels of histone mRNAs through the cell cycle in mESCs at the
single-cell level (Supplementary Fig. 11; see Supplementary
Note 5 for further discussion).

To systematically evaluate the detection performance of
RamDA-seq for non-poly(A) RNAs, we first identified non-poly
(A) RNA candidates expressed in mESCs using bulk total and
poly(A) RNA-seq data (811 and 7935 for strict and loose criteria,
respectively; Methods section). RT-quantitative PCR (RT-qPCR)
analyses confirmed that these candidates were indeed non-poly
(A) RNAs (Supplementary Fig. 12). We then compared the
performance of scRNA-seq methods for detecting these sets of
non-poly(A) RNAs. RamDA-seq detected the highest number of
non-poly(A) transcripts among the scRNA-seq methods (Sup-
plementary Fig. 13a), which was true even for lowly expressed
non-poly(A) transcripts (Fig. 2e). In addition, the correlation of
the expression levels with bulk total RNA-seq was higher for
RamDA-seq than for the other scRNA-seq methods (Supple-
mentary Fig. 13b,c). These results confirm that RamDA-seq has
high sensitivity with non-poly(A) RNAs.

Cell state-dependent non-poly(A) RNA in single cells. To test
whether RamDA-seq could be used to measure the expression
profiles of non-poly(A) RNAs in biological samples, we per-
formed RamDA-seq with mESCs collected 0, 12, 24, 48, and 72 h
after the induction of cell differentiation into primitive endoderm
(PrE) cells (Supplementary Fig. 14b, c). We first confirmed that
RamDA-seq could specifically detect the expression of differen-
tially expressed non-poly(A) transcripts, which were identified by
bulk RNA-seq, at the single-cell level (Supplementary Note 6 and
Supplementary Fig. 13d).

Diffusion map analysis revealed variability within cells even at
the same time points (Fig. 3a), and we searched for transcripts
whose expression levels changed with pseudotime (using the first
diffusion component (DC1) as pseudotime; see Methods section).
We identified 7580 such transcripts, including 458 non-poly(A)
transcripts (Fig. 3b), and divided the 7580 transcripts into seven
clusters based on expression patterns (Fig. 3c). The clustering
results were supported by the expression patterns of ES and PrE
marker genes (Fig. 3c and Supplementary Note 7). The
dynamically regulated non-poly(A) transcripts were spread in
all clusters with various expression patterns, suggesting that non-
poly(A) transcripts are involved in various cell functions. Using
single-cell preamplification RT-qPCR (scRT-qPCR), we validated
the observed expression changes in several of the non-poly(A)
transcripts, including two unannotated intergenic non-poly(A)
transcripts (clusters 1 and 2) and Hist1h1a (cluster 5; Fig. 3d and
Supplementary Fig. 15g). Furthermore, reasoning that transcripts

Fig. 1 Overview of RT-RamDA and single-cell RamDA-seq. a Schematic diagram of RT-RamDA. 1. RT primers (oligo-dT and not-so-random primers) anneal
to a RNA template. 2. Complementary DNA (cDNA) is synthesized by the RNA-dependent DNA polymerase activity of RNase H minus reverse
transcriptase (RTase). 3. Endonuclease (DNase I) selectively nicks the cDNA of the RNA:cDNA hybrid strand. 4. The 3′ cDNA strand is displaced by the
strand displacement activity of RTase mediated by the T4 gene 32 protein (gp32), starting from the nick randomly introduced by DNase I. cDNA is
amplified as a displaced strand and protected by gp32 from DNase I. b Relative yield of cDNA molecules using RT-qPCR (n= 4). Mouse ESC total RNA (10
pg) was used as a template, and 1/10 the amount of cDNA was used for qPCR. The relative yield was calculated by averaging the amplification efficiency of
four mESC (Nanog, Pou5f1, Zfp42, and Sox2) and three housekeeping (Gnb2l1, Atp5a1, and Tubb5) genes using a conventional method (−) as a standard. c
Schematic diagram of RamDA-seq and C1-RamDA-seq. For details, please refer to the Methods section. d Number of detected transcripts with twofold or
lower expression changes against rdRNA-seq (count≥ 10). For the boxplots in b and d, the center line, and lower and upper bounds of each box represent
the median, and first and third quartiles, respectively. The lower (upper) whisker extends to smallest (largest) values no further than 1.5 × interquartile
range (IQR) from the first (third) quartile. e Squared coefficient of variation of the read count. All conditions were adjusted, and 10 million reads were used
in d and e. Transcripts were annotated by GENCODE gene annotation (vM9)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02866-0

4 NATURE COMMUNICATIONS |  (2018) 9:619 |DOI: 10.1038/s41467-018-02866-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


with similar expression patterns should share biological functions,
we attempted to infer the potential functions of these dynamically
regulated non-poly(A) transcripts by performing functional
enrichment analysis of each cluster (Supplementary Data 1; see
Supplementary Note 8 for further discussion). Future studies of
these non-poly(A) RNAs will enhance our understanding of ESC
differentiation.

We next focused on the long isoform Neat1-001 (Neat1_2),
which is required for the formation of paraspeckles26. The
expression level of Neat1-001 specifically decreased at 12 h in

RamDA-seq and scRT-qPCR (Fig. 3e). Since Neat1-001 is a
super-long (>20 kb) non-poly(A) lncRNA, we thought it would
be an optimal indicator of sensitivity for non-poly(A) RNAs and
full-length coverage. Consistently, mapping data of single cells
using RamDA-seq showed full-length transcript coverage for
Neat1-001 (Fig. 3e). Neat1 also has a polyadenylated short
isoform (Neat1-002; Neat1_1) that is transcribed from the same
promoter as Neat1-00127. To assess whether the observed
decrease was specific to the long isoform or common to the
two isoforms, we compared the read coverage of the region
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common to both isoforms and the region specific to the long
isoform. The expression of the long isoform was significantly
lower than that of the short isoform at 12 h only (Fig. 3f;
Wilcoxon signed-rank test, p-value< 0.001 after the Bonferroni
correction). Further studies are necessary to elucidate the
potential biological significance of the observed dynamics of
Neat1 isoforms.

Collectively, these results indicate that many non-poly(A)
transcripts are dynamically regulated and highlight the utility of
full-length single-cell total RNA-seq for studying the dynamic
regulation and potential functions of non-poly(A) RNAs.

Recursive splicing in single cells. Total RNA-seq can detect pre-
mRNAs and thereby confers the ability to investigate the
dynamics of RNA-processing events1, including RS13. RS is a
multistep process of intron removal using cryptic splice sites
within long introns14 and was recently observed in vertebrates13.
Due to the large number of intronic reads (Supplementary Fig. 4i)
and high sensitivity of RamDA-seq, we hypothesized that
RamDA-seq could detect RS. If RS occurred, read coverage pat-
terns similar to a sawtooth wave would be observed, with a gra-
dual decrease from the 5′ to the 3′ end of the long intron13

(Fig. 4a). We searched for transcripts with a sawtooth pattern
within long introns by fitting linear regression models against
RamDA-seq read coverage averaged across all cells in the dif-
ferentiation time-series data (p< 1e-5, Methods section). We
found clear patterns of RS in Cadm1, Robo2, and Magi1, which
were all previously reported to show RS13 but were first reported
in mESCs. For example, Cadm1 and Robo2 showed clear saw-
tooth patterns as well as novel splicing junctions in RamDA-seq
and bulk total RNA-seq data (Fig. 4b, c). The averaged RamDA-
seq read coverage for each time point showed that the sawtooth
wave patterns persisted at all time points for Cadm1 and Magi1,
whereas the pattern was observed at only 48 and 72 h for Robo2
(Fig. 4d, e and Supplementary Fig. 16). The height of the saw-
tooth wave pattern was associated with the expression level of
host genes at all time points (Supplementary Fig. 16), while the
pattern was not observed when gene expression was hardly
detected (Supplementary Fig. 16). A simulation-based estimation
of the sensitivity of RS detection showed that RS was robustly
detected when host genes were sufficiently expressed (transcript
per million (TPM) >1), corroborating the above observations
(Methods section; Supplementary Fig. 16, right panels).

Next, we attempted to address whether RamDA-seq can detect
RS even in each single cell. Based on the RS detection sensitivity
estimated above, we selected cells with sufficient intronic reads
(RS detection probability >0.95; Supplementary Fig. 17, Methods
section). We fitted linear regression models against the RamDA-
seq read coverages of each single cell in Cadm1, Robo2, and
Magi1. RS was detected in a subpopulation of cells (71 of 149 cells

for Cadm1, 12 of 54 cells for Magi1, and 1 of 1 cell for Robo2)
although many cells in which RS was not detected also appeared
to show the sawtooth pattern (Supplementary Fig. 17). However,
interestingly, some other cells showed monotonically decreasing
patterns, which correspond to “normal” splicing (Fig. 4a). The
monotonically decreasing pattern was also observed even when
we filtered cells with a more stringent threshold of intronic reads
(Supplementary Fig. 17). These observations raise the possibility
of cell-to-cell heterogeneity in RS. Therefore, further investigation
is needed to reveal the mechanisms and significance of the
observed heterogeneity in RS. Collectively, these results demon-
strate that RamDA-seq can detect RS in single cells.

Enhancer RNAs in single cells. Most eRNAs represent one major
class of non-poly(A) transcript7,10, and previous studies have
often used bulk total RNA-seq methods to detect the expression
of eRNAs28,29. Although compared with mRNAs, eRNAs are
expressed at quite low levels16, we hypothesized that the high
sensitivity of RamDA-seq to non-poly(A) RNAs could allow the
detection of eRNAs in single cells. To address this possibility, we
first assessed the performance of RamDA-seq and other scRNA-
seq methods for detecting eRNAs using two sets of eRNAs: (1)
the transcribed enhancer annotation in mESCs identified using
CAGE (cap analysis of gene expression) by the FANTOM5
project10; and (2) the non-poly(A) RNAs with their transcription
start site (TSS) displaying enhancer-like histone modifications
(Methods section). Analysis of the 10 pg of RNA data confirmed
that RamDA-seq could detect eRNAs with higher sensitivity than
could the other scRNA-seq methods (Supplementary Note 9 and
Supplementary Fig. 18).

Next, we examined whether RamDA-seq could be used to
detect eRNAs in single cells with differentiation time-series data.
The detection rates for ES-active CAGE enhancers were highest at
0 h and decreased as differentiation progressed (Fig. 5a), whereas
the detection rates for ES-inactive enhancers were consistently
low. Similar trends were observed when we used non-poly(A)
eRNAs with enhancer-like histone modifications (Supplementary
Fig. 19a). In addition, we checked the distribution of read
coverage around ES-active CAGE enhancers. Bimodal peaks were
observed in regions 200–400 bp away from the enhancers in cells
at 0 h (Fig. 5b and Supplementary Fig. 19b,c), as observed in the
10 pg of RNA data (Supplementary Fig. 18b,c), and these peaks
weakened with the progression of cell differentiation. Consis-
tently, bimodal peaks are observed around enhancers in the read
coverage of total RNA-seq7. On the other hand, the distribution
of the read coverage around random genomic regions was steadily
low across all time points (Fig. 5b). Collectively, these results
indicated that RamDA-seq could detect eRNAs in a cell type-
specific manner.

Fig. 2 Read coverage across transcripts and non-poly(A) RNA detection using scRNA-seq methods. a Percentage of sequence read coverage throughout
the transcript length. The x-axis shows the absolute distance (bp) from the 3′ end of the transcripts (xi). The y-axis shows the fraction of transcripts with
read coverage (ni/Ni). ni: the number of transcripts of which at least one read was mapped within the range of (xi, xi+1). Ni: the number of transcripts with
≥xi transcript length. Only transcripts in the GENCODE (vM9) annotations with transcript per million (TPM)≥ 1 in rdRNA-seq results and with ≥200-bp
transcript length were considered. PE: data from paired-end reads. b Visualization and comparison of mapped reads of a long transcript, Mdn1 (17 970 bp).
We selected Mdn1 as the gene with the highest number of exons (102 exons) in the 25 genes with length ≥10 kb and TPM≥ 5 in rdRNA-seq results. c
Distribution of the fraction of exonic regions covered by sequenced reads with 10 pg of RNA data for all transcripts with >200-bp transcript length in the
GENCODE (vM9) annotations. The transcripts were sorted into bins (represented by the number at the top of each panel) according to transcript length. d
The sensitivity for detecting histone transcripts using 10-pg RNA samples. Each row represents a histone transcript. Each column represents a sample
using the indicated scRNA-seq method. The expression levels in log10 (TPM + 1) quantified by sailfish are indicated according to the color key. e Detection
rates of non-poly(A) transcripts (strict criterion) expressed in ESCs for different expression level thresholds in rdRNA-seq. The points and error bars
represent means and SDs, respectively. Each line represents a scRNA-seq method. The numbers in parentheses represent the number of transcripts
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Previous studies have demonstrated an enrichment for cell
type- and condition-specific transcription factor DNA-binding
motifs at active eRNA loci10,30, which prompted us to search for
enrichment of motifs of cell type-specific transcription factors.
We defined CAGE enhancer subsets that were active in ESCs
using RamDA-seq and performed a motif enrichment analysis

(Methods section). In parallel, the same analysis was performed
using rdRNA-seq. RamDA-seq identified 1515 ES-active
enhancers, 75% of which were also considered active using bulk
total RNA-seq (Fig. 5c). One hundred motifs were enriched
(q-value< 0.05). Of these, 97 (97%) were also enriched based on
the bulk total RNA-seq analysis. Interestingly, these enriched
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motifs contained motifs of transcription factors involved in
self-renewal and ESC pluripotency31,32, including motifs for
KLF4, KLF5, SOX2, and n-MYC and a composite motif for
“OCT4-SOX2-TCF-NANOG” (Fig. 5c).

Having validated our genome-wide eRNA analysis with
RamDA-seq, we searched for eRNAs showing variations accord-
ing to pseudotime of the cells and performed hierarchical
clustering (Methods section). We found 1338 dynamically
regulated eRNAs (false discovery rate (FDR)< 0.01) in five
clusters: two downregulated clusters; two transiently upregulated
clusters; and one late upregulated cluster (Fig. 5d, e). Fewer
eRNAs were found in the late upregulated clusters, possibly due
to hyperactive global transcription in ESCs33 or the lack of PrE
data in the FANTOM annotation. Notably, GATA4, a late PrE
marker34, was enriched in one transiently upregulated cluster
(cluster 3) and in the late upregulated cluster (cluster 5), which
suggests that these clusters represent enhancers that function in
the differentiation into PrE. Altogether, we conclude that
RamDA-seq can detect eRNA activity associated with cell type-
specific regulation as well as the potential regulator of eRNAs
within a subpopulation of single cells.

Discussion
In this study, we developed RamDA-seq, a full-length total RNA
sequencing of single cells, and showed that RamDA-seq was the
most effective at detecting full-length and non-poly(A) transcripts
among the scRNA-seq methods tested here (Fig. 2). RamDA-seq
revealed many known and unannotated non-poly(A) transcripts
that were dynamically regulated as differentiation progressed,
including Neat1-001 (Fig. 3). In addition, RamDA-seq detected
RS (Fig. 4) and eRNAs (Fig. 5); this is, to our knowledge, the first
report of genome-wide analysis in single cells. Our results
demonstrate that RamDA-seq provides a comprehensive view of
total RNA, including non-poly(A) RNAs, pre-mRNA, and eRNA,
at the single-cell level.

The sensitivity and full-length transcript coverage of RamDA-
seq were achieved using RT-RamDA and NSRs. RT-RamDA
contributes to robustness to template loss via manipulation by
cDNA amplification during RT, which leads to high sensitivity.
Moreover, RT-RamDA improves sensitivity and reproducibility
by eliminating the necessity for PCR amplification, which often
results in amplification bias. NSRs contributes to the full-length
transcript coverage and high efficiency of capturing poly(A) and
non-poly(A) RNAs by multiple priming. RT-RamDA is suited for
the use of NSRs because RT-RamDA can amplify cDNA without
the adapter sequences for WTA, unlike other conventional

methods (Supplementary Fig. 1). These characteristics contribute
to RT efficiency and the cost reduction of oligo primer synthesis.

There are some limitations to this method. Since RT-RamDA
generates cDNA by strand displacement amplification, which
depends on the random nicking of cDNA, cell barcodes and
unique molecular identifiers (UMIs) could not be added to the
sequencing library. Therefore, it is difficult to perform pre-
indexing high-throughput sequencing and molecule counting
using UMIs. Moreover, because RamDA-seq is a total RNA-seq
method, it requires more sequencing reads than do other scRNA-
seq methods (described below). Even though RamDA-seq uses
NSRs, the RamDA-seq library still contains a relatively high
proportion (10–35%) of rRNA sequences (Supplementary Fig. 4b,
c and Supplementary Fig. 15c). To address this issue, modifying
the NSRs is necessary, for example, by adjusting the annealing
temperature of NSRs to prevent misannealing or removing the
complementary sequences annotated as rRNAs in RepeatMasker.
It is also important to achieve strand-specific sequencing in
RamDA-seq to distinguish overlapping transcripts.

Based on a subsampling simulation, with >1M reads per cell,
RamDA-seq detects more transcripts than the other scRNA-seq
methods (Supplementary Fig. 4e). Moreover, with ~4M reads per
cell, RamDA-seq yields reads from non-poly(A) transcripts,
introns and intergenic regions and provides beneficial informa-
tion regarding unannotated intergenic transcripts, RS, and
enhancer RNA (Figs. 3–5). Given that ~4M reads per cell are
typical for plate-based scRNA-seq (for example, 96 cells in 1 run
on NextSeq yields ~4M reads per cell), these results demonstrate
that RamDA-seq needs just normal sequencing runs to provide
useful information regarding gene expression, transcriptional
regulation, and RNA processing.

Full-length total RNA-seq from single cells will be valuable to
many studies using rare cells. Many biologically and clinically
important cell types are rare and are often found in hetero-
geneous cell populations. Thus, these cell types require single-cell
approaches, and accumulating evidence suggests the importance
of full-length total RNA-seq in single cells. Non-poly(A)
lncRNAs35 and circRNAs36, non-canonical splicing11, fusion
genes36, mutations36, and RNA editing37 are associated with
many diseases, such as cancers, and their detection will benefit
from full-length coverage of mRNA and pre-mRNAs. Enhancers
account for cell type-specific expression28,29 and diseases, and
their activity and potential regulators can be inferred by
eRNAs10,30. Based on our results, single-cell analyses using
RamDA-seq could be useful for identifying novel biomarkers and
drug targets, non-canonical and aberrant RNA-processing events,
and active enhancers and their potential regulators in rare cells.

Fig. 3 RamDA-seq analyses of cell differentiation. a A diffusion map of the cells collected over time and colored by the sampling time points. DC, diffusion
component. The numbers in parentheses represent the number of cells. b Heat maps of the expression levels of non-poly(A) (left) and the other (right)
transcripts. Rows are ordered and colored by clusters. Columns are ordered by pseudotime and colored by sampling time points. Smoothed values are
transformed to Z-scores for each row. Raw values are scaled from 0 to 1 for each row. c (Left) Averaged expression profile for each cluster. The x-axis
represents pseudotime. Thin, colored areas represent SDs. The numbers before and after the slash in the parenthesis represent the numbers of non-poly
(A) transcripts and all transcripts included in each cluster, respectively. (Right) Expression profile of the representative transcript for each cluster. Each
black curve represents a fitted generalized additive model. d Expression profiles of two unannotated intergenic non-poly(A) transcripts measured by
RamDA-seq (left) and single-cell preamplification RT-qPCR (scRT-qPCR) (right). e (Top) Expression profiles of Neat1-001 measured by RamDA-seq (left)
and scRT-qPCR (right). The x-axes represent pseudotime. (Bottom) Coverage plot of RamDA-seq at the Neat1 locus. The upper heat map represents the
read coverage at the single-cell level. The middle plots represent the coverage averaged for cells at each time point as well as those of rdRNA-seq and
paRNA-seq. Gene models are shown at the bottom. The arrowhead indicates the position of the qPCR primer. f The read coverage of the region common to
both Neat1-001 and Neat1-002 (common) and the region specific to Neat1-001. The read coverage was normalized to the average of all cells. The asterisk
indicates significant difference between two regions (Wilcoxon signed-rank test, p-value< 0.001 after Bonferroni correction). The center line, and lower
and upper bounds of each box represent the median, and first and third quartiles, respectively. The lower (upper) whisker extends to smallest (largest)
values no further than 1.5 × IQR from the first (third) quartile
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Fig. 4 Single-cell analysis of recursive splicing. a Illustration of the expected read coverage for recursive-splicing sites. b, c Recursive-splicing exons
observed by RamDA-seq in Cadm1 (b) and Robo2 (c). The upper heat maps represent the RamDA-seq read coverage for each cell. The middle tracks
represent the averaged RamDA-seq coverage for each sampling time point. The lower tracks represent the read coverage of rdRNA-seq (rd) and paRNA-
seq (pa) on forward (f) and reverse (r) strands at 0 and 72 h. Novel splice junctions observed by rdRNA-seq (rd) on forward (f) and reverse (r) strands and
RamDA-seq are also shown. Gene models and nucleotide sequences around recursive-splicing sites are shown at the bottom. The region upstream (blue)
of the 5′ splice motif (red) has been excised to reconstitute the 5′ splice site. d, e The summed normalized read coverage of RamDA-seq for each time
point in the 5-kb bin (bars) and the fitted linear regression models (black lines) in Cadm1 (d) and Robo2 (e). The p-values of F-tests are indicated
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Neat1 is an architectural component of paraspeckle nuclear
bodies38, which regulate gene expression via capture of A-to-I
edited mRNAs39 and transcription factors40, and is required for
corpus luteum formation and establishment of pregnancy in
mice41. The long non-poly(A) isoform Neat1-001, not the short
poly(A) isoform Neat1-002, is essential for the formation of
paraspeckles42. Although the two isoforms are transcribed from
the same promoter, they show different expression patterns, and
Neat1-001 is expressed only in a small subpopulation of cells in
adult mouse tissues26. Therefore, distinguishing the expression of

the two isoforms of Neat1 at the single-cell level is critical for
studying their functions. In this study, RamDA-seq’s sensitivity to
non-poly(A) transcripts and full-length transcript coverage dis-
tinguished the expression of the two isoforms and revealed
dynamic and differential regulation of the long non-poly(A)
isoform (Fig. 3). These results suggest that RamDA-seq could be
beneficial for investigation of temporal and spatial expression
patterns of long non-poly(A) RNAs in single cells.

Unexpectedly, we observed cell-to-cell heterogeneity in read
coverage patterns around RS sites, suggesting that some cells
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showed RS, and other cells showed normal splicing (Supple-
mentary Fig. 17). These results indicate that RamDA-seq can
detect cell-to-cell heterogeneity in RS and could help to address
the mechanisms and relationship between transcription and
splicing. Toward these goals, several important challenges remain.
Given that some cells in which RS was not detected showed weak
sawtooth patterns, RamDA-seq highlights the limitation of the
current linear regression model used to detect RS in this study
and the need for further improvement in computational methods
to robustly detect RS using single-cell data. Another challenge is
to experimentally and computationally distinguish biological and
technical variabilities in RS at the single-cell level. We will address
these challenges in the future.

Recently, droplet-based scRNA-seq methods, which can
sequence a very high number of cells at once, have been pro-
posed43,44. Although a large number of sequenced cells benefits
the discovery of rare cell populations45, these methods, in con-
trast to RamDA-seq, target only the 3′ ends of poly(A) tran-
scripts. Due to this difference, RamDA-seq will complement these
methods for studying single cells in complex biological systems.

We confirmed that RamDA-seq works with living single cells
on the Fluidigm C1 platform (Supplementary Fig. 14d and Sup-
plementary Fig. 15a–e), which suggests that RamDA-seq can be
easily applied in diverse studies. We also evaluated plate-to-plate
variability (batch effect) of RamDA-seq (Supplementary Fig. 20a).
The variabilities between plates were similar to the variabilities
within plates, suggesting that the plate effects are modest at worst.
Plate-to-plate variability was much smaller than the variability
between cell types, and the proportion of variance explained in
principal component analysis (PCA) was 0.6% (Supplementary
Fig. 20b–h). In conclusion, we propose that RamDA-seq will
expand our scope of single-cell measurement and will be useful
for investigating cellular and transcriptional dynamics at the
single-cell level in heterogeneous cell populations, such as cancers
and complex tissues.

Methods
Cell culture. 5G6GR mouse ES cells were used for total RNA extraction and
scRNA-seq. 5G6GR mouse ES cells were provided by Hitoshi Niwa (Laboratory for
Stem Cell Biology, Institute of Molecular Embryology and Genetics at Kumamoto
University). This cell line was constructed by randomly incorporating the linear-
ized Gata6-GR-IRES-Puro vector into EB5 ES cells46. The cells were cultured in a
feeder-free gelatin-coated dish in 10% fetal calf serum containing Glasgow minimal
essential medium (Sigma-Aldrich), 1000 U/mL leukemia inhibitory factor (ESGRO;
Millipore), 100 µmol/L 2-mercaptoethanol (Thermo Fisher), 1× non-essential
amino acids (Thermo Fisher), 1 mmol/L sodium pyruvate (Thermo Fisher), 2
mmol/L L-glutamine (Sigma-Aldrich), 0.5× penicillin/streptomycin (Thermo
Fisher), 0.5 µg/mL puromycin (Sigma-Aldrich), and 10 µg/mL blasticidin (Thermo
Fisher). To assess PrE differentiation, 5G6GR ES cells were cultured in differ-
entiation medium containing 100 mmol/L dexamethasone rather than blasticidin.
The cells were cultured for 72 h.

Cell dissociation and single-cell sorting. The cultured cells were dissociated with
1/5× TrypLE Express (Thermo Fisher) at 37 °C for 3 min. The dissociated cells
were adjusted to 1 × 106 cells/mL and stained with 10 µg/mL Hoechst 33342 dye
(Sigma-Aldrich) in phosphate-buffered saline (PBS) at 37 °C for 15 min to identify
the cell cycle. After Hoechst 33342 staining, the cells were washed once with PBS
and stained with 1 µg/mL propidium iodide (PI, Sigma-Aldrich) to remove dead
cells. Single-cell sorting was performed as previously reported23 using MoFlo
Astrios (Beckman Coulter). Single cells were collected in 1 µL of cell lysis buffer in a
96-well PCR plate (BIOplastics). The data were analyzed using FlowJo 8.1 software
(FlowJo).

RNA extraction. Total RNA was extracted using an RNeasy Mini Kit (Qiagen).
RNA quantification and quality checks were performed with a Quantus
fluorometer (Promega) and the Bioanalyzer RNA 6000 Nano Kit (Agilent
Technologies). We confirmed that the sample RNA integrity number
was >9.5.

Bulk RNA-seq. For paRNA-seq, we purified poly(A) RNA from 1 µg of ES total
RNA using a NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). For

rdRNA-seq, we depleted rRNA from 1 µg of ES total RNA using a GeneRead rRNA
Depletion Kit (Qiagen). We prepared conventional RNA-seq library DNA with the
resulting RNA using a commercial kit (NEBNext Ultra Directional RNA
Library Prep Kit for Illumina; NEB) in accordance with the manufacturer’s
protocol, with slight modifications during RT and PCR steps. We used SuperScript
III (Thermo Fisher) for RT. We used KAPA HiFi DNA polymerase (Kapa
Biosystems) in the PCR step. When we performed rdRNA-seq using 10 or 1 ng of
ES total RNA, we utilized a KAPA RNA HyperPrep Kit with RiboErase
(Kapa Biosystems) for the preparation of sequencing library DNA according to the
manual instructions.

Cell lysis buffer conditions. Total RNAs or sorted single cells were diluted or
lysed in 1 μL of cell lysis buffer containing 1 U RNasein plus (Promega), 10%
RealTime ready Cell Lysis Buffer (Roche), 0.3% NP40 (Thermo Fisher), and
RNase-free water (TaKaRa). The lysate solution was immediately centrifuged and
mixed using a ThermoMixer C (Eppendorf) at 2000 rpm for 1 min at 4 °C. The cell
lysate solution was stored at −80 °C until use.

RT-RamDA. Template RNA was diluted in 1 μL of lysis buffer, denatured for 1.5
min at 70 °C, and stored on ice. The reaction buffer for RT was modified using the
PrimeScript RT reagent Kit (TaKaRa). A mixture containing 2 μL of conventional
RT mix (1.5× PrimeScript buffer, 0.6 pmol oligo(dT)18 (Thermo Fisher), 8 pmol
random hexamers (TaKaRa), and 1.5× PrimeScript enzyme mix in RNase-free
water) or 2 μL of RT-RamDA mix (1.5× PrimeScript buffer, 0.6 pmol oligo(dT)18,
8 pmol random hexamers or NSRs, 0.2 U of DNase I Amplification Grade (Thermo
Fisher), 100 ng of T4 gene 32 protein (Roche), and 1.5× PrimeScript enzyme mix in
RNase-free water) was added to 1 μL of diluted, denatured template RNA. The
mixture was agitated for 30 s at 2000 rpm using MixMate (Eppendorf) and incu-
bated in a C1000 thermal cycler (Bio-Rad) at 25 °C for 10 min, 30 °C for 10 min, 37
°C for 30 min, 50 °C for 5 min, and 85 °C for 5 min. The RT product was diluted 1:9
in nuclease-free water and used for qPCR analysis.

Preparation of poly(A) RNA-depleted RNA and poly(A) RNA. To evaluate
triplicate samples, template RNAs were extracted from three different culture
dishes for each ES and PrE condition. We prepared both poly(A)-depleted RNA
and poly(A)-selected RNA from each 1 µg of total RNA using the NEBNext Poly
(A) mRNA Magnetic Isolation Module (NEB) as follows. First, poly(A) RNA was
bound to magnetic oligo-dT beads. We collected magnetic beads and supernatant
for subsequent purification. Magnetic beads, which bound to the poly(A) RNA,
were processed in accordance with the manufacturer’s protocol. Finally, we
obtained purified poly(A)-selected RNA. Purified poly(A)-depleted RNA was also
obtained from the supernatant using RNA Clean & Concentrator-5 (Zymo
Research).

RT-qPCR for classifying non-poly(A) and poly(A) RNA. We performed RT-
qPCR using the abovementioned total RNA, poly(A)-depleted RNA, and poly(A)-
selected RNA. The input amount was adjusted for the total RNA derived from 20
ng. One microliter of diluted RNA was added to 2 μL of RT mix (1.5× VILO
Reaction Mix (Thermo Fisher) and 1.5× SuperScript Enzyme Mix (Thermo Fisher)
in RNase-free water). RT was conducted at 25 °C for 10 min, 42 °C for 60 min, and
85 °C for 5 min. The RT product was diluted 1:25 for qPCR analysis.

Single-cell RT-qPCR. The single-cell lysate was thawed at 4 °C and centrifuged.
Next, 0.5 μL of genomic DNA digestion mix (0.1 U of DNase I Amplification Grade
(Thermo Fisher) and 2× DNase I Reaction Buffer (Thermo Fisher) in RNase-free
water) was added to 1 μL of the single-cell lysate in a 96-well PCR plate and
incubated at 25 °C for 5 min. After genomic DNA digestion, we added 0.5 µL of
denaturing mix (8 mM EDTA and 0.02% NP40 in RNase-free water) to the
digested sample, followed by incubation at 70 °C for 5 min to inactivate DNase I
and desaturate the RNAs. The sample plate was immediately placed on ice. One
microliter of the RT mix (3× VILO Reaction Mix (Thermo Fisher) and 3×
SuperScript Enzyme Mix (Thermo Fisher) in RNase-free water) was added to the
sample plate and incubated at 25 °C for 10 min, 42 °C for 60 min, and 85 °C for 5
min. For single-cell RT-qPCR in Supplementary Fig. 2d, the RT product was
diluted 1:5 in RNase-free water for qPCR analysis. For scRT-qPCR in Fig. 3d, e,
Supplementary Fig. 11f, and Supplementary Fig. 15g, we prepared 10× pooled
primer mix containing 500 nM each of the gene-specific primers listed in Sup-
plementary Data 2. Seventeen microliters of the preamplification mix (10 µL of 2×
Platinum Multiplex PCR Master Mix (Thermo Fisher), and 2 µL of 10× pooled
primer mix in nuclease-free water) was added to 3 µL of the RT products. The PCR
conditions were as follows: activation at 95 °C for 2 min; 14 cycles of denaturation
at 95 °C for 30 s; annealing at 60 °C for 90 s; and extension at 72 °C for 60 s. After
PCR preamplification, the PCR products were added 8 µL of primer digestion mix
(32 U of Exonuclease I (NEB) and 1× Exonuclease I Reaction Buffer (NEB) in
nuclease-free water) and incubated at 37 °C for 30 min and 80 °C for 15 min. The
final products were diluted 1:87.6 and 1.5 µL of the diluted products were used for
qPCR analysis. The copy number of gene expression was adjusted and estimated
using the input copy number of the spike RNAs (Lys: 1000 copies; Thr: 5 copies).
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Quantitative PCR. qPCR was performed using a LightCycler 480 (Roche) under
the following conditions: 3.5 µL of qPCR reaction mix (2.5 µL of 2× QuantiTect
SYBR Green Master Mix; 0.03 μL of 100 μM forward primer; 0.03 μL of 100 μM
reverse primer; and 0.94 μL of 0.0015% NP40) was added to 1.5 μL of diluted
cDNA using a 384-well transfer plate (Watoson). The PCR conditions were as
follows: activation at 95 °C for 15 min; 40 cycles of denaturation at 95 °C for 15 s;
and extension at 60 °C for 1 min. A melting curve analysis was performed by
cycling at 95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s. The standard curve for
absolute values was generated using a fivefold dilution series of Lys and Thr DNA
mix as the standard (15 625, 3125, 626, 125, 25, 5, and 0 copies) as well as a fivefold
dilution series of mouse genomic DNA (Clontech). Because cDNA is single-
stranded, quantitative values were calculated by doubling the measured amount
(dsDNA copies). Supplementary Data 2 show the primer sequences. Data analysis
was performed using LightCycler 480 software, version 1.5 (Roche).

Not-so-random primers. Mouse first-strand NSRs consisting of 408 hexamers
were synthesized individually by Sigma-Aldrich as previously reported22. In con-
trast, second-strand NSRs were designed and synthesized as a sequence com-
plementary to the first-strand NSRs according to a previous study21. For details
regarding the NSR sequences, please refer to Supplementary Data 3.

Sequencing library preparation for RamDA-seq. For the 10 pg of total RNA
sample, 10 pg of total RNA was diluted in cell lysis buffer from 100 ng/μL frozen
stock of total RNA. For the single-cell lysate sample, −80 °C stocks of the single-cell
lysates in 96-well PCR plates were thawed at 4 °C and centrifuged. The cell lysates
or 10 pg of total RNA was denatured at 70 °C for 90 s and held at 4 °C until the next
step. To eliminate genomic DNA contamination, 1 μL of genomic DNA digestion
mix (0.5× PrimeScript Buffer, 0.2 U of DNase I Amplification Grade, 1: 5 000 000
ERCC RNA Spike-In Mix I (Thermo Fisher) in RNase-free water) was added to 1
μL of the denatured sample. The mixtures were agitated for 30 s at 2000 rpm using
an ThermoMixer C at 4 °C, incubated in a C1000 thermal cycler at 30 °C for 5 min
and held at 4 °C until the next step. One microliter of RT-RamDA mix (2.5×
PrimeScript Buffer, 0.6 pmol oligo(dT)18, 8 pmol 1st-NSRs, 100 ng of T4 gene 32
protein, and 3× PrimeScript enzyme mix in RNase-free water) was added to 2 µL of
the digested lysates. The mixtures were agitated for 30 s at 2000 rpm and 4 °C, and
incubated at 25 °C for 10 min, 30 °C for 10 min, 37 °C for 60 min, 50 °C for 5 min,
and 94 °C for 5 min. Then, the mixtures were held at 4 °C until the next step. After
RT, the samples were added to 2 μL of second-strand synthesis mix (2.25× NEB
buffer 2 (NEB), 0.625 mM each dNTP Mixture (TaKaRa), 40 pmol 2nd-NSRs, and
0.75 U of Klenow Fragment (3′→ 5′ exo-) (NEB) in RNase-free water). The mix-
tures were agitated for 30 s at 2000 rpm and 4 °C, and incubated at temperatures
increasing from 4 to 37 °C at a rate of 1 °C/min. Subsequently, the mixtures were
maintained at 37 °C for 30 min and then at 4 °C until the next step. Sequencing
library DNA preparation was performed using the Tn5 tagmentation-based
method with 2/5 volumes of the Nextera XT DNA Library Preparation Kit (Illu-
mina) according to the manufacturer’s protocol. The above-described double-
stranded cDNAs were purified by using 15 μL of AMPure XP SPRI beads (Beck-
man Coulter) and a handmade 96-well magnetic stand for low volumes. Washed
AMPure XP beads attached to double-stranded cDNAs were directly eluted using
6 μL of 1× Tagment DNA Buffer (Illumina) and mixed well using a vortex mixer
and pipetting. Thirteen cycles of PCR were applied for the library DNA. After PCR,
sequencing library DNA was purified using 1.2× the volume of AMPure XP beads
and eluted into 24 μL of TE buffer.

Advanced method for sequencing library DNA preparation for RamDA-seq:
The RT-RamDA cDNA amplification performance was influenced by the quality of
T4 gene 32 protein. We confirmed that T4 gene 32 protein manufactured by Roche
(presently supplied by Sigma-Aldrich) was not stable, depending on its lot, for
amplification performance. Therefore, we used the T4 gene 32 protein
manufactured by NEB, which was more stable, and changed the incubation time at
37 °C from 60 to 30 min. During second-strand synthesis, we also confirmed that
byproducts derived from the oligo-dT primers inhibited library preparation. To
overcome this issue, we modified the method as follows: the concentration of NEB
buffer 2 was changed from 2.25× to 2.5×, and the reaction conditions were changed
to 16 °C for 60 min, 70 °C for 10 min, and maintenance at 4 °C until the next step.
Sequencing library preparation using the Nextera XT DNA Library Preparation Kit
was performed in a 1/4 volume using 14 PCR cycles. For analyses of batch effect to
evaluate plate-to-plate variability, we prepared RamDA-seq library DNA by using
this advanced method.

Sequencing library preparation for C1-RamDA-seq. The ES and PrE cell sus-
pensions were adjusted to 1 × 106 cells/mL and stained with 1 µg/mL Calcein AM
and Calcein Blue AM (Thermo Fisher) in PBS at 37 °C for 5 min, respectively. After
the cell suspensions were stained, they were combined at a ratio of 1:1 and diluted
in PBS to 3 × 105 cells/mL. Sixty microliters of the diluted cell suspension was
mixed with 40 μL of C1 Suspension Reagent (Fluidigm). Six microliters of this Cell
Mix was loaded into the new designed C1 Single-Cell Open App IFC 1862× (cells
10–17 μm in diameter). The captured cells were stained with 2 μg/mL PI solution
using IFC to identify dead cells. Bright-field and fluorescence imaging of every
capture site was performed using an Olympus IX83 microscope system with

MetaMorph software (Molecular Devices). In addition, we carefully defined ES-
single, PrE-single, doublet, dead-cell, and not-captured sites. The C1-RamDA-seq
script was created using Script Builder software 2.1.1. (Fluidigm). Each reaction
component for C1-RamDA-seq was as follows: Lysis Final Mix (1.12 μL of 10%
NP40, 4.05 μL RealTime ready Cell Lysis Buffer, 0.84 μL of 40 U/μL RNasin Plus
RNase Inhibitor, 3 μL of 1:5000 ERCC RNA Spikes, 1.35 μL of C1 Loading Reagent,
and 16.55 μL of RNase-free water), gDNA Digestion Final Mix (2.5 μL of 5× Pri-
meScript Buffer, 5 μL of 1 U/μL DNase I Amplification Grade, 1 μL of 20× C1
Loading Reagent, and 11.5 μL of RNase-free water), Priming Final Mix (17.23 μL of
5× PrimeScript Buffer, 5.24 μL of PrimeScript RT Enzyme Mix, 0.7 μL of 30 μM
oligo(dT)12, 2.8 μL of 100 μM 1st-NSRs, 1.75 μL of 2 mg/mL T4 gene 32 protein
(NEB), 1.13 μL of C1 Loading Reagent, and 1.15 μL of RNase-free water), RT Final
Mix (12 μL of 5× PrimeScript Buffer, 3 μL of PrimeScript RT Enzyme Mix, Real-
Time ready Cell Lysis Buffer, 0.4 μL of 30 μM oligo(dT)12, 1.6 μL of 100 μM 1st-
NSRs, 1 μL of 2 mg/ml T4 gene 32 protein (NEB), 3.96 μL of 1 U/μL DNase I
Amplification Grade, 2.25 μL of C1 Loading Reagent, and 33.92 μL of RNase-free
water), Second-strand Final Mix (6.7 μL of 10× NEB buffer 2, 6.7 μL of 2.5 mM
each dNTP Mixture, 5.36 μL of 100 μM 2nd-NSRs, 2.01 μL of 5 U/μL Klenow
Fragment (3′→ 5′ exo-), 1.5 μL of C1 Loading Reagent, and 7.73 μL of RNase-free
water), and Harvest Reagent (500 μL of Tagment DNA Buffer, 237.5 μL of C1
Harvest Reagent, and 12.5 μL of 20× C1 Loading Reagent).

For the 10-pg total RNA sample, 30 ng of total RNA was added to the Lysis
Final Mix, and the Cell Wash Buffer (Fluidigm) was loaded for IFC rather than Cell
Mix. The thermal conditions were as follows: lysis step (chamber 1: 4 °C for 1 s, 70 °
C for 90 s, and 4 °C for 300 s); gDNA digestion step (chambers 1–2: 130 °C for 300
s and 4 °C for 1 s); priming step (chambers 1–3: 25 °C for 600 s and 30 °C for 600 s);
RT-RamDA step (chambers 1–4: 37 °C for 900 s, 50 °C for 300 s, 94 °C for 300 s
and 4 °C for 1 s); and second-strand synthesis step (chambers 1–5: 16 °C for 3600 s
and 75 °C for 1200 s). We recovered 3 μL of C1 products from IFC and directly
added 1 μL of Amplicon Tagment Mix to a 1/5 volume of the Nextera XT
DNA Library Preparation. We performed 14 cycles of PCR to evaluate the library
DNA in this kit. After PCR enrichment, sequencing library DNA was purified in
1.2× the volume of AMPure XP beads and eluted into 24 μL of TE buffer. The
typical yield of the library DNA was ~25 ng. The average length of library DNA
was ~300 bp.

Sequencing library preparation for SMART-Seq v4. Amplified cDNA from 10
pg of total RNA was prepared using the SMART-Seq v4 Ultra Low Input RNA Kit
for Sequencing (Clontech) according to the manual instructions. One microliter of
10 pg/μL total RNA with 1:5 000 000 ERCC RNA Spike-In Mix I in RNase-free
water was added to 10.5 μL of the reaction buffer (1 μL of 10× reaction buffer in
RNase-free water). Sequentially, we added 1 μL of 3′ SMART-Seq CDS Primer II A
(12 μM) to the sample before the denaturation step. We performed 17 cycles of
PCR for cDNA amplification. The amplified cDNA was purified using AMPure XP
beads and eluted with 17 μL of TE buffer. The cDNA yield and average length of
amplified cDNA were calculated using the Bioanalyzer Agilent High-Sensitivity
DNA Kit (Agilent Technologies) in the range of 400–10 000 bp. Library DNA was
prepared using 62.5 pg of amplified cDNA for a 1/4 volume of the Nextera XT
DNA Library Preparation Kit according to the manufacturer’s protocol. Using this
kit, we performed 12 cycles of PCR for the library DNA. For evaluation of
reproducibility in Supplementary Fig. 4f, we carried out SMART-Seq v4 library
preparation using Fluidigm C1. The script “Full-length mRNA Sequencing” was
downloaded from Script Hub (https://jp.fluidigm.com/c1openapp/scripthub), and
we prepared C1-SMART-Seq v4 library DNA according to the manual instructions.
To adjust loading amount of total RNA as 10 pg per IFC chamber, we prepared the
20 μL of Lysis Mix (2.4 μL of 3′ SMART-Seq CDS Primer II A (12 μM), 2 μL ES
total RNA (11.11 ng/μL), 2 μL of 1:4500 ERCC RNA Spikes, 2.6 μL of 10× Reaction
Buffer, 1 μL of C1 Loading Reagent, and 10 μL of RNase-free water).

Sequencing library information of RamDA-seq. When we performed quality
control of RamDA-seq library DNA using the Bioanalyzer Agilent High-Sensitivity
DNA Kit, the typical yield of the sequencing library DNA obtained from one mESC
or 10 pg of total RNA was 120–150 ng. The length was ~300 bp. To investigate the
possibility of generating library DNAs derived from genomic DNA or environ-
mental DNAs, we prepared transcriptase-minus and non-template control samples.
Thus, we confirmed that the RamDA-seq protocol accompanied by DNase I
digestion did not produce library DNA from genomic DNA and environmental
DNAs (Supplementary Fig. 3).

Quality control and sequencing of library DNA. All of the samples prepared with
Nextera XT DNA Library Preparation (including RamDA-seq, C1-RamDA-seq,
SMART-Seq v4, and C1-SMART-Seq v4) were quantified and evaluated using a
MultiNA DNA-12000 kit (Shimadzu) with a modified sample mixing ratio (1:1:1;
sample, marker, and nuclease-free water) in a total of 6 μL. The length and yield of
the library DNA were calculated in the range of 150–3000 bp. The library DNA
yield in particular was estimated as 0.5 times the value quantified from the mod-
ified MultiNA condition. Subsequently, we pooled each 200 fmol of library DNA in
each well of a 96-well plate. The pooled library DNA was evaluated based on the
averaged length and concentration using a Bioanalyzer Agilent High-Sensitivity
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DNA Kit in the range of 150–3000 bp and a KAPA library quantification kit (Kapa
Biosystems). Finally, 1.5 pM pooled library DNA was sequenced using Illumina
NextSeq 500 (single-read 76 cycle sequencing).

For rdRNA-seq and paRNA-seq using 1 μg total RNA, library DNAs were
quality controlled by a Bioanalyzer Agilent High-Sensitivity DNA Kit and a KAPA
library quantification kit and sequenced using Illumina HiSeq 2500 (paired-end
read 101 cycle sequencing). For rdRNA-seq using 10 and 1 ng total RNA, library
DNA was sequenced using Illumina NextSeq 500 (single-read 76 cycle sequencing).

Analyses of single-cell preamplified RT-qPCR data. Copy numbers were log10-
transformed using a pseudocount of 1. For subsequent analyses, we removed cells
with a copy number of one for the housekeeping genes (Gnb2l1 and Eef1b2) lower
than Q1 − 1.5 interquartile range (IQR). To compare scRT-qPCR data with
RamDA-seq data with ES cells sorted by cell cycle phases, we classified ES cells at 0
h for scRT-qPCR data into G1, S, and G2M according to the DNA abundance
quantified using Hoechst 33342 (355−448/59−Area) as follows: G1 if x< 24 000,
G2M if x> 38 000; otherwise S. To compare scRT-qPCR data with RamDA-seq
data with cells sampled across the ES-PrE time series, we constructed a diffusion
map of scRT-qPCR data using the “destiny” R package and used DC1 as the
pseudotime.

Analysis of exonic regions covered by the sequenced reads. For each scRNA-
seq method, the FASTQ files of sequencing data with 10 pg of RNA were com-
bined. Fastq-mcf (version 1.04.807)47 was used to trim adapter sequences and
generate read lengths of 42 nucleotides (nt) with the parameters “-L 42 -l 42 -k 4 -q
30 -S.” Seqtk (version 1.1-r93-dirty; https://github.com/lh3/seqtk) was used to
downsample the reads to the smallest number of reads among all methods (46 600
826). For comparison, we also prepared R1 reads of rdRNA-seq and paRNA-seq
data. The reads were mapped to the mouse genome (mm10) using HISAT2
(version 2.0.1)48 with parameters “--dta-cufflinks -p 4 -k 5 --sp 1000,1000.”
Uniquely mapped reads were selected using the BAMtools (version 2.0.1)49 “filter”
command with the parameters “-isMapped true -tag NH:1” and the SAMTools
(version 2.0.1)50 “view” command with the parameter “-q 40.” BEDTools (version
2.22.1)51 and R were used to calculate the fraction of exonic regions covered by the
sequenced reads. A base was defined as covered if at least one read overlapped the
base.

Histone-coding gene analysis. GENCODE transcripts with gene names starting
with “Hist” and transcript types of “protein_coding” were selected as histone-coding
genes. Heat maps were generated using “aheatmap” function in the “NMF” R
package52. TPM values for each transcript were quantified using the sailfish (ver-
sion 0.9.2)53 “quant” command with the parameter “-l U.”

Quantification of expression levels of transcripts and ERCC. Transcript-level
expression levels were quantified in the unit of count or TPM using the sailfish
“quant” command with the parameter “-l U.” A FASTA file consists of sequences of
ERCC RNAs and transcripts of the GENCODE vM9 annotation used as reference
for sailfish.

Transcriptome assembly and non-poly(A) RNA identification. Fastq-mcf was
used to trim adapter sequences with the parameters “-l 50 --lowcomplex-pct 36
--homopolymer-pct 36 -k 4 -S.” The reads were mapped to the mouse genome
(mm10) using HISAT2 with the parameters “--dta-cufflinks --rna-strandness RF -k
5 --no-mixed --no-discordant --sp 1000,1000.” Properly (i.e., convergent read
pairs) and uniquely mapped reads were selected using the BAMtools “filter”
command and SAMTools “view” command with the parameter “-q 40.” For
genome-guided transcriptome assembly, Cufflinks was used with the parameters
“--multi-read-correct --frag-bias-correct -M $mask --library-type fr-unstranded.” A
GTF file of tRNA and rRNA annotations in GENCODE (vM9) was provided to
mask the genome. Cuffcompare was used to annotate transcripts with transfrag
class codes with respect to the GENCODE (vM9) annotation (Cufflinks website).
According to the Cuffcompare class codes, we selected (1) unannotated transcripts
with class codes of “i”, “o”, “u”, “x”, or “s” and (2) unannotated splicing variant
transcripts (“j” class (potentially novel isoform)) with at least one unannotated
splice junction. We then removed (1) unannotated transcripts with exons located
within 100 bp of the tRNA or rRNA annotations in GECODE or RepeatMasker or
pseudogene annotations in GENCODE (2wayconspseudos) and (2) unannotated
transcripts with lengths that were not longer than 200 bp. These filtered unan-
notated gene models were further merged with gene models in GENCODE vM9.

Using the merged gene models, the expression levels of bulk total and poly(A)
RNA-seq data were quantified using the sailfish “quant” command with the
parameter “-l ISR.” The resulting “NumReads” data were used for differential
expression analyses between total and poly(A) RNA-seq in ES or PrE using the
EdgeR (version 3.12.1)54 “glmTreat” function with the parameter “lfc = 0.5.” Non-
poly(A) transcripts were called when, for either ES or PrE samples, the following
criteria (loose criteria) were obtained: FDR< 0.05 and averaged fitted values in the
total RNA-seq of at least 10. For non-poly(A) transcripts with strict criteria, an
averaged fitted value in the poly(A) RNA-seq <1 was also required. Poly(A)
transcripts were called similarly as were loose criteria. We further removed

unannotated transcripts with a class code of “i” from the non-poly(A) transcript
definition because they were difficult to distinguish from pre-mRNA or spliced
intronic fragments. Note that Neat1-001 was not included in the above non-poly
(A) transcript definition potentially because of its polyadenylated isoform
(Neat1-002), which was completely included in the gene body of Neat-001. This
exclusion resulted in the inaccurate expression quantification of the two transcripts
for total and poly(A) RNA-seq data. ES-expressed non-poly(A) RNAs were defined
as transcripts with averaged fitted values in the total RNA-seq of at least 10 for the
ES samples. The ES-enriched, PrE-enriched, and unchanged subsets of non-poly
(A) RNAs were defined according to the differential expression pattern between ES
and PrE. Lists of non-poly(A) and poly(A) transcripts are shown in Supplementary
Data 4 and 5, respectively.

Evaluation of performance for detecting non-poly(A) RNAs. To evaluate the
performance for detecting non-poly(A) transcripts for each scRNA-seq method,
sequenced reads with 10 pg of RNA for each scRNA-seq method were trimmed as
described above and downsampled to the lowest number of reads in the data set
(7 489 702) using seqtk. The expression level was quantified using the sailfish
“quant” command with the parameter “-l U” on the above merged gene models. We
selected non-poly(A) transcripts with averaged fitted values of at least 10 in ES as
ES-expressed non-poly(A) transcripts. A non-poly(A) transcript was identified if
the TPM was at least 0.1. The TPM values were transformed to logarithm of base
10 with a pseudocount of 1. For ES-expressed non-poly(A) transcripts with aver-
aged TPM values of at least 0.1, a Pearson correlation coefficient was calculated
between the TPM of the total RNA-seq and each scRNA-seq method. Analyses
using RamDA-seq with cells were performed as described for data with 10 pg of
RNA.

Quality assessment of RamDA-seq and C1-RamDA-seq with cells. Pre-
processing: The ‘no Mix’ samples, which showed no amplification, were removed
from the following analyses. Fastq-mcf was used for adapter trimming with the
parameters “-l 36 --lowcomplex-pct 74 --homopolymer- pct 74 -k 4 -S all_se-
quencing_WTA_adopters.fa” for RamDA-seq and “-L 75 -l 46 -k 4 -q 30 -S” for C1-
RamDA-seq.

Quantification of a proportion of rRNA reads in FASTQ: The trimmed reads
were mapped to (mouse) rRNA sequences (Supplementary Data 6) using HISAT2
with the parameters “--dta-cufflinks -p 4 -k 5 -X 800 --sp 1000,1000.” The
proportion of rRNA reads in FASTQ was calculated by dividing the sum of reads
“aligned exactly 1 time” and “aligned >1 times” reported by HISTAT2 by the total
number of reads.

Genome mapping: The reads were mapped to the mouse genome (mm10) using
HISAT2 with the parameters “--dta-cufflinks -p 4 -k 5 -X 800 --sp 1000,1000.”
Uniquely mapped reads were selected using the BAMtools “filter” command with
the parameters “-isMapped true -tag NH:1” and the SAMTools “view” command
with the parameter “-q 40.”

Expression level quantification: Transcript-level expression levels were
quantified in the unit TPM using the sailfish (version 0.9.2)53 “quant” command
with the parameter “-l U.” The GENCODE vM9 annotation and merged gene
models (described above) were used.

Number of detected transcripts: Transcript-level expression levels quantified
using the GENCODE vM9 annotation were used to calculate the number of
detected transcripts.

PCA: For C1-RamDA-seq, PCA was performed with log-transformed TPM
data quantified by sailfish using “prcomp” in R.

Defining “outlier cells”: We defined “outlier cells” as follows. The numbers of
reads mapped to rRNA annotations in GENCODE vM9 were counted using the
featureCounts program in Subread. Next, we defined outlier cells as cells for which
(1) the number of uniquely mapped reads was lower than Q1 − 1.5 × IQR or (2) the
ratio of rRNA reads was greater than Q3 + 1.5 × IQR (Supplementary Fig. 15e). We
removed these outlier cells from subsequent analyses.

Analyses of cell cycle data. The transcript-level expression levels of the merged
gene models (described above) were used. After removing five samples (2 for G1, 2
for S, and 1 for G2M) as outliers in the primary diffusion map analysis, we
performed a diffusion map analysis as follows. First, we selected expressed tran-
scripts with a TPM of at least 1 in at least 10% of cells. For each transcript among
the expressed genes, we first calculated averaged TPM across cells in each cell cycle
phase and then calculated the CV using the averaged TPM values for G1, S, and
G2M. For each cell cycle phase, we selected the top 5000 high-CV transcripts with
an averaged TPM that was higher than those for the other phases. Using the
selected transcripts, we performed diffusion map analysis using the “destiny” R
package (version 1.0.0)55. We used the DC1 as the pseudotime, i.e., we treated the
expression levels as a function of DC1. We fitted the sine function to the
pseudotime-series data for each transcript using the “lm” function in R. The FDRs
were calculated from the p-values for multiple testing corrections using the Ben-
jamini and Hochberg procedure. The transcripts with an FDR< 0.01 were called
oscillating transcripts. For visualization, the raw values were smoothed by fitting
the sine function. Heat maps were generated using “aheatmap” function in the
“NMF” R package (version 0.20.6).
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We also conducted an “unsupervised” selection of highly variable genes. For
each of the expressed transcript with a TPM of at least 10 in at least 10% of cells, we
calculated the mean and CV across G1, S, and G2M cells (FDR< 0.01). We then
fitted the mean-CV2 relationship and searched for genes with significant deviation
from the fit (as described in http://pklab.med.harvard.edu/scw2014/
subpop_tutorial.html) (p-value adjusted using the Benjamini–Hochberg procedure
<0.01). Using the selected transcripts, we performed diffusion map analysis using
the “destiny” R package.

Analyses of time-series data. The transcript-level expression levels of the merged
gene models (described above) were used. We conducted a diffusion map analysis
as follows: (1) we selected expressed transcripts with a TPM of at least 10 in at least
10% of cells. (2) We calculated the CV of TPM for each of the expressed transcripts
and then selected the top 5000 high-CV transcripts. (3) We performed diffusion
map analysis on the expression data of the selected transcripts using the “destiny” R
package. (4) We used DC1 as the pseudotime, i.e., we treated the expression levels
as a function of DC1. We fitted a generalized additive model (GAM) to the log-
transformed pseudotime-series data for each transcript using the “mgcv” R package
(version 1.8–16) with the parameter “family =Gaussian(link = identity).” The FDRs
were calculated using the p-values for multiple testing corrections according to the
Benjamini and Hochberg procedure. The Akaike information criterion (AIC) was
calculated for GAM and an intercept model. The transcripts with an FDR < 0.01
and an AIC that was greater for GAM than for the intercept model were called
dynamically regulated transcripts. Hierarchical clustering was performed using the
“flashClust” R package (version 1.01–2) according to Ward’s method and 1 −
Pearson correlation coefficient as the distance. For interpretability, we clustered
dynamically regulated transcripts into seven clusters. Heat maps were generated
using “aheatmap” function in the “NMF” R package (version 0.20.6). For visuali-
zation, the raw values were smoothed by fitting the GAM. Functional enrichment
analyses were performed for each cluster using Metascape (http://metascape.org)56.
Heat map representations of the genomic coverage of the RamDA-seq data were
generated using Millefy (https://github.com/yuifu/millefy).

Analysis of recursive splicing. For the analysis of RS, we used the genome
mapping data (as described above). We first selected RS-site candidates using novel
splice junctions detected by RamDA-seq with similar criteria as in a previous
study13: (1) long (>150 kb) introns not overlapped with exons of any other tran-
scripts; (2) novel junctions with one anchor sequence corresponding to a known
splicing boundary (“partially novel” by RSeQC); (3) anchor sequences corre-
sponding to intronic regions have pentamers found at 1% of all 5′ splice sites
(GTAAG, GTGAG, GTAGG, GTATG, GTAAA, GTAAT, GTGGG, GTAAC,
GTCAG, GTACG, GTACA, GTATT, GTACT, GTGTG, GTGCG, and GTACC)
for 5′ splice sites or 3′ splice motif (polypyrimidine tract consisting of >11 pyr-
imidines present in the region of −22 to −1, including YAG as last three positions)
for 3′ splice sites; (4) split alignment reads have >10-nt overhang; and (5) >5-kb
junction regions. These criteria yielded 207 RS-site candidates in 77 genes.

Next, we searched for sawtooth wave patterns in the >150-kb introns, similar to
a previous study13. We normalized the read coverage for each cell in the
differentiation time course data by the number of mapped reads and then summed
the normalized read coverage across all cells. The summed read coverage was
partitioned into 5-kb bins. We coded the position of the RS-site candidates using a
binary dummy variable indicating whether the positions were between the
upstream exons or the RS-site candidates. We then fitted two linear regression
models to the read coverage: one with genomic position as an explanatory variable
(the baseline model) and the other with genomic position and the dummy variable
as explanatory variables (the augmented model). We used an F-test p-value (p< 1e-
5) to quantify the improvement of the goodness of fit provided by each RS-site
candidate. We further asked whether the fitted augmented model showed a
sawtooth wave pattern using the intercept, slope coefficient, RS-site coefficient, and
augmented/baseline slope ratio of the fitted models. The above filtering steps
retained three genes: Cadm1, Robo2, and Magi1.

Based on a simulation, we estimated the sensitivity of RS detection as a function
of the number of reads mapped to the intronic regions with RS-site candidates. For
Cadm1, Robo2, and Magi1, intronic read coverage was aggregated across cells at a
time point when host gene expression was highest (00 h for Cadm1 and Magi1; and
72 h for Robo2). Then, the aggregated intronic read coverage data were repeatedly
subsampled (100 times for each subsampling fraction: 1/103.0; 1/102.5; 1/102.0;
1/101.5; 1/101.0; 1/100.5; and 1/100.0). For each subsampling fraction, linear
regression models were fitted against the read coverage replicates to detect RS (p<
1e-5). Note that the proportion of trials where RS was detected can be interpreted
as RS detection probability. Finally, RS detection probability as a function of the
number of intronic reads was estimated by logistic regression. For interpretability,
we converted the number of intronic reads into gene-level TPM of host genes
calculated from the aggregated gene-level TPM across cells from the corresponding
time point.

We searched for RS in each single cell as follows. Using the estimated sensitivity
of RS detection above, we selected cells with sufficient intronic reads (RS detection
probability >0.95 or >0.99). Additionally, only cells with reads within intronic
regions both upstream and downstream of candidate RS sites were selected. For the

selected cells, the linear regression models were fitted against the intronic read
coverage as described above.

The above analysis was performed using custom R and Julia scripts and the Bio.
jl (https://github.com/BioJulia/Bio.jl) package.

Enhancer RNA analysis. For the analysis of enhancer RNA, we used genome
mapping data (as described above).

The permissive set of mouse enhancers identified using FANTOM5 CAGE data
was downloaded from the FANTOM website (http://fantom.gsc.riken.jp/5/
datafiles/latest/extra/Enhancers/). The genomic coordinates of the enhancer
annotation were converted from mm9 to mm10 using liftover (Kent et al., 2002).
Enhancers located within 2 kb of the GENCODE (vM9) annotation were removed.
We also removed enhancers wider than 400 bp to avoid complications while
merging the enhancer regions. The number of reads overlapping the ±400-bp
region in the center of each enhancer (801 bp) was counted using the
featureCounts program in Subread (version 1.5.1)57 with parameter “-O” and
normalized to the total number of mapped reads. Using the filtered enhancer set,
we defined positive and negative control sets of enhancers using CAGE TPM in
mESC samples (ES-OS25 embryonic stem cells, untreated control). A positive
control set of enhancers was defined as enhancers with an averaged CAGE TPM
above the 90% quantile among the filtered enhancer set. The negative control set of
enhancers was defined as enhancers with averaged normalized total and poly(A)
counts of 0 and an averaged CAGE TPM of 0. The normalized read counts for the
10 pg of RNA data for each scRNA-seq method were calculated as described above.
An eRNA was defined as detected if the normalized read counts exceeded 0.1. The
read coverage matrices around enhancers were computed using deepTools (version
2.2.4)58. Aggregation plots and heat maps were generated using custom R scripts.

Motif enrichment analyses were performed using the “findMotifsGenome”
function in HOMER59 with the parameters “-size 200 -mask.” For motif
enrichment analyses of eRNAs expressed in ESCs, eRNAs whose expression levels
were above 0.1 in >10% of cells at 0 h were selected using RamDA-seq, and eRNAs
whose expression levels were above 0.1 in at least one ESC sample were selected
using bulk total RNA-seq. Only the results regarding enrichment of known motifs
were used.

We defined another set of enhancers using non-poly(A) transcripts and
enhancer-like histone modifications as previously described60. H3K4me1 and
H3K4me3 ChIP-Seq data for mouse (129/Ola) ES-E14 stem cells were downloaded
from the ENCODE project61 in BAM format. The genomic coordinates of ChIP-
Seq were converted from mm9 to mm10 using liftover. The number of reads
mapped within ±500 bp of the TSS of each transcript was counted and normalized
to the total number of mapped reads. The normalized counts were used to calculate
log2(H3K4me1/H3K4me3) values. We defined non-poly(A) transcripts with log2
(H3K4me1/H3K4me3) values >0.58 as eRNAs. The eRNAs were detected as
described above for the non-poly(A) transcripts. The cells were analyzed using
RamDA-seq as described for the 10-pg RNA samples.

Code availability. All custom computer codes in the generation or processing of
the described data are available at https://github.com/yuifu/Hayashi2018.

Data availability. Data generated in the study can be accessed at the Gene
Espression Omnibus under accession code GSE98664. Previously published data
sets used in this study can be accessed from the Gene Expression Ombinus as
follows:

Quartz-Seq: GSE42268, SUPeR-seq: GSE53386.
All other data are available from the authors upon reasonable request.
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