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Abstract
1H NMR spectra from urine can yield information-rich data sets that offer important insights into many biological and 
biochemical phenomena. However, the quality and utility of these insights can be profoundly affected by how the NMR 
spectra are processed and interpreted. For instance, if the NMR spectra are incorrectly referenced or inconsistently aligned, 
the identification of many compounds will be incorrect. If the NMR spectra are mis-phased or if the baseline correction is 
flawed, the estimated concentrations of many compounds will be systematically biased. Furthermore, because NMR permits 
the measurement of concentrations spanning up to five orders of magnitude, several problems can arise with data analysis. 
For instance, signals originating from the most abundant metabolites may prove to be the least biologically relevant while 
signals arising from the least abundant metabolites may prove to be the most important but hardest to accurately and precisely 
measure. As a result, a number of data processing techniques such as scaling, transformation and normalization are often 
required to address these issues. Therefore, proper processing of NMR data is a critical step to correctly extract useful infor-
mation in any NMR-based metabolomic study. In this review we highlight the significance, advantages and disadvantages of 
different NMR spectral processing steps that are common to most NMR-based metabolomic studies of urine. These include: 
chemical shift referencing, phase and baseline correction, spectral alignment, spectral binning, scaling and normalization. We 
also provide a set of recommendations for best practices regarding spectral and data processing for NMR-based metabolomic 
studies of biofluids, with a particular focus on urine.
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1  Introduction

NMR has played an important role in the development 
and the continuing advances in metabolomics over the 
past two decades. Indeed, the very first metabolomics 
papers were based on NMR spectral analysis of biofluids, 
such as urine (Serkova et al. 2005; Bertram et al. 2006; 
Gibney et al. 2005; Beckonert et al. 2007b; Bales et al. 
1986). Even today there are more than 600 papers pub-
lished each year that describe the use of NMR in metabo-
lomics studies. Continuing improvements in NMR tech-
nology, such as increased magnet field strength (> 1 GHz) 
(Cousin et al. 2016; Tkac et al. 2009; Abdul-Hamid M.; 
Emwas et al. 2013), cryogenically cooled probe technol-
ogy (Keun et al. 2002), microprobe design advances (Miao 
et al. 2015; Nagato et al. 2015; Grimes and O’Connell 
2011) and dynamic nuclear polarization (Emwas et al. 
2008; Ludwig et al. 2010) have significantly improved 
the sensitivity of NMR for metabolomics applications. 
Now samples as small as 50 µL are being handled and 
nanomolar concentrations are now detectable. Despite 
not being quite as sensitive as MS-based metabolomics 
(Grison et al. 2016; Zhao et al. 2016; Emwas and Khar-
batia 2015; Emwas 2015), NMR spectroscopy has several 
advantages. In particular, NMR requires: (1) little sample 
preparation; (2) no prior chromatographic separation and 
(3) no chemical derivatization. Furthermore, as an analyti-
cal technique NMR is robust and highly reproducible, it 
can be absolutely quantitative, it can be used in the precise 
structural determination of unknown metabolites, and it 
can be almost fully automated (Emwas 2015; Gonzalez-Gil 
et al. 2015; Li et al. 2016).

On the other hand, NMR spectroscopy itself and the 
analysis of complex biological mixtures by NMR is not 
trivial (Tiziani et al. 2008; Hajjar et al. 2017). In particu-
lar, the 1H NMR spectra of samples such as urine are very 
complex, typically consisting of > 1000 detectable and 
often overlapping peaks. The position, intensity and spec-
tral width of these peaks is highly dependent on the num-
ber and types of chemicals in the mixture, the correspond-
ing spin-coupling patterns of those chemicals and a wide 
variety of sample parameters. These parameters include: 
sample pH, sample salt type and salt concentrations, dis-
solved oxygen content, the presence of paramagnetic 
ions, the choice of solvent(s), temperature, temperature 
gradients, spectrometer field homogeneity, and primary 
magnetic field strength (to name just a few). In addition 
to the sample characteristics, NMR setup and processing 
parameters can also have a significant impact on the qual-
ity of NMR spectra and their subsequent interpretation. 
The choice of the pulse sequence for data acquisition, the 
selection of an appropriate solvent suppression technique, 

the level of decoupling power, the type of chemical shift 
reference(s), the length of the 90° pulse, the number of 
data points collected, the repetition time, receiver gain, 
the quality of shimming, the quality of tuning, and the 
number of acquisitions will all have a significant impact 
on the quality of NMR spectra and the presence of peak 
distortions or anomalies. Similarly, spectral processing 
choices concerning the extent of zero filling, choice of 
digital filters, selection of apodization functions, precision 
of the chemical shift referencing protocol, accuracy of the 
phasing, and the quality of baseline correction will also 
affect the results. Detailed suggestions and recommenda-
tions for handling many of these parameters, especially for 
NMR-based studies of urine, have been given in several 
recent reviews (Emwas 2015; Emwas et al. 2016).

Using these consensus recommendations, it should now 
be possible for almost anyone with a high-field NMR instru-
ment to collect and generate (automatically or semi-auto-
matically) high quality 1D 1H spectral data from complex 
biofluids. However, there is still relatively little consensus in 
the community regarding what to do after the NMR spectra 
are collected—i.e. the post-processing steps. Two “camps” 
have emerged in the field of NMR-based metabolomics. One 
camp tends to use spectral deconvolution software to iden-
tify and quantify compounds in individual NMR spectra. In 
this approach, each NMR spectrum is analysed individu-
ally and the resulting compound IDs and concentrations 
from multiple spectra are compiled to create a data matrix 
for multivariate statistical analysis. A variety of software 
tools for NMR spectral deconvolution have been developed 
including the Chenomx NMR Suite (Mercier et al. 2011), 
Bruker’s AMIX (Czaplicki and Ponthus 1998), Bruker’s 
JuiceScreener (Monakhova et al. 2014) and WineScreener 
(Spraul et al. 2015), Batman (Hao et al. 2014), and Bayesil 
(Ravanbakhsh et al. 2015).

The second camp uses statistical approaches to initially 
align multiple NMR spectra, to scale or normalize the 
aligned spectra, and then to identify interesting spectral 
regions (e.g. binning) or peaks that differentiate cases from 
controls (Smith et al. 2009; Barton et al. 2008; Lindon et al. 
2007; Beckonert et al. 2007a). This approach, which is often 
called statistical spectroscopy, performs compound identifi-
cation or quantification only after the most interesting peaks 
have been identified. This final identification step may use 
spectral deconvolution, compound spike-in methods or peak 
look-up tables (Martinez-Arranz et al. 2015). A variety of 
software packages for NMR statistical spectroscopy have 
been developed including, MetAssimulo (Muncey et al. 
2010), Automics (Wang et al. 2009), Statistical total correla-
tion spectroscopy (Cloarec et al. 2005a, b), and MVAPACK 
(Worley and Powers 2014).

For relatively simple biofluids such as serum, plasma, cer-
ebrospinal fluid (CSF), fecal water, juice, wine or beer, NMR 



Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of…

1 3

Page 3 of 23  31

spectral deconvolution approaches appear to work very well 
(Ravanbakhsh et al. 2015). Extensive spectral libraries now 
exist for many of these biofluids and a number of the decon-
volution software tools are becoming almost fully auto-
mated. Indeed, some software packages can be extremely 
fast and robust with compound coverage easily exceeding 
90% and compound quantification errors often below 10% 
(Worley and Powers 2014; Zheng et al. 2011; Hao et al. 
2014; Mercier et al. 2011; Ravanbakhsh et al. 2015). On the 
other hand, for very complex biofluids such as cell growth 
media, cell lysates and urine, the corresponding NMR spec-
tra are often too complex for spectral deconvolution (manual 
or automated). The compound coverage rarely exceeds 50% 
and the level/quality is highly dependent on the skill and/
or experience of the operator. There are also several reports 
showing considerable discrepancies between different lab-
oratories (Sokolenko et al. 2013) or different users when 
spectral deconvolution is applied to very complex biofluids. 
As a general rule, for the routine analysis of urine 1D 1H 
NMR spectra, statistical spectroscopy techniques presently 
appear to be the best option. These approaches are robust 
and they allow useful results to be obtained with relatively 
little manual effort. They also facilitate the identification and 
quantification of key compounds or features in NMR-based 
urine metabolomic studies.

The purpose of this review is to assess and provide con-
sensus recommendations for the processing of NMR data of 
biofluids with a particular focus on urine. NMR data pro-
cessing refers to both spectral processing and data process-
ing, as summarized in Fig. 1. In particular, we will review 
and discuss consensus recommendations for spectral pro-
cessing, namely chemical shift referencing, phasing and 
baseline correction. These steps are critical for generating 
high quality NMR data. The remainder of this review will 
focus on providing recommendations for “post processing” 
of NMR data, including the determination of interesting 
spectral regions (alignment and binning) as well as spectral 
normalization, scaling and transformation. These are critical 
steps to statistical spectroscopy and their correct implemen-
tation is essential to the successful NMR analysis of urine 
(and other biofluid) samples.

2 � Spectral processing

2.1 � Chemical shift referencing

As any good NMR spectroscopist knows, NMR spectra must 
always be properly referenced using an internal chemical 
shift standard (Emwas 2015; Emwas et al. 2016; Harris 
et al. 2008a, b; Nowick et al. 2003). Chemical shift refer-
encing is important for compound identification, for peak 
alignment and any multivariate statistical analyses that 

may follow Fig. 2. Within the metabolomics community 
both 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) and 
3-(trimethylsilyl)-2,2′,3,3′-tetradeuteropropionic acid (TSP) 
are widely used as chemical shift reference standards (Donaa 
et al. 2016). However, it is important to note that TSP is 
actually quite pH sensitive (Wishart et al. 1995).

This pH sensitivity can wreak havoc with spectral 
alignment, especially if samples have not been well 
buffered and/or carefully pH corrected. Therefore, we 
strongly recommend the use of DSS (especially deuter-
ated DSS) as the chemical shift reference standard for 
biofluid (esp. urinary) NMR spectroscopy. We note that 
DSS is the chemical shift standard recommended by the 
IUPAC, IUPAB and IUBMB for biomolecular NMR 
(Markley et al. 1998). Chemical shift standards, such 
as DSS, can also be used for quantification, especially 
if the reference compound concentration is known pre-
cisely (Mercier et al. 2011). However, in biofluids such as 
plasma or serum, where DSS or TSP may become bound 
to macromolecules (proteins or lipoproteins), random 
variations in the reference intensity may occur, lead-
ing to inaccurate concentration estimates (Pearce et al. 
2008). In these cases, an alternative internal standard for 
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Fig. 1   Summary of spectral processing and post-processing steps on 
urinary NMR-data
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quantification (such as sodium acetate or sodium formate) 
is recommended. The use of the solvent water peak (i.e. 
H2O, and HDO in rapid exchange with non-observed 
D2O) for chemical shift referencing is very strongly dis-
couraged since the signal position is sensitive to a wide 

variety of sample parameters, including temperature, pH, 
exchangeable moieties, salts and demagnetization field 
effects (Edzes 1990; Levitt 1996).

Fig. 2   A simple visualization of the effects of a phasing, b referencing and c baseline correction and on an NMR spectrum
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2.2 � Phasing

Phasing is a NMR spectral adjustment process that is 
intended to maximize the absorptive character and the 
symmetry of all NMR peaks over all regions of an NMR 
spectrum. Phasing is one of the most important steps in 
spectral processing as even small phasing errors can lead 
to significant problems that will ripple down through all 
remaining spectral processing and post-processing steps 
Fig. 2. In particular, phasing errors can affect spectral 
alignment, spectral binning and the measured peak areas 
(Wishart 2008). Even though automatic phasing is avail-
able in most modern NMR spectrometers, manual phasing 
is often required in metabolomics studies since many auto-
phasing routines will distort low-intensity peaks. Phas-
ing is particularly important for handling the residual (but 
often still prominent) water signal. A phase distortion in 
the solvent signal can substantially perturb the surround-
ing regions (~ 4.7  ppm). Auto-phasing programs may 
sometimes distort the entire NMR spectrum while attempt-
ing to correct for the residual solvent signal. Exclusion of 
the solvent region from auto-phasing procedures may help 
reduce this problem, however, manual phasing generally 
gives better results. Despite these caveats, auto-phasing 
is still widely used in the metabolomics community. This 
is because it is fast (allowing greater throughput) and it 
avoids operator bias.

We recommend that auto-phasing should be used as an 
initial phasing step. Subsequently, all NMR spectra should 
be manually inspected for phase distortions and, if nec-
essary, those spectra exhibiting phase distortions should 
be phased manually. During manual phasing, the vertical 
scale should be increased as much as possible to allow 
for proper adjustment of the smaller signals. Even when 
manual phasing is performed by an experienced operator 
there are still some cases where it fails to improve spectral 
quality. Errors in executing or optimizing pulse sequence 
parameters can be manifested in some “phase-recalci-
trant” spectra. The only way to correct for these problems 
is to re-acquire the spectrum using a standardized pulse 
sequence and using correct instrument parameters. Careful 
testing of a new pulse sequence’s performance on known, 
standardized samples (e.g. DSS with 90% H2O/10% D2O 
with several known small molecules in various spectral 
regions) is often necessary to ensure that any undetected 
or phase-distorting pulse-sequence errors will not propa-
gate into the NMR spectra collected for “real” biofluids. 
In many cases, timing errors in the pulse sequence and/or 
instrument delays not properly taken into account are the 
main culprits leading to phase-recalcitrant spectra. These 
can be difficult to track down, but it is essential that they 
be detected and dealt with prior to acquiring a large num-
ber of spectra.

2.3 � Baseline correction

Baseline correction is another spectral processing technique 
that is critical for removing spectral artefacts that can arise 
from electronic distortions, inadequate digital filtering or 
incomplete digital sampling. When properly done, baseline 
correction yields a more pleasant looking spectrum where 
signal-free regions are completely flat, horizontal lines with 
zero intensity Fig. 2. While baseline correction is trivial for 
simple spectra with just a few peaks, it is somewhat more 
difficult for NMR spectra containing thousands of peaks 
with large differences in intensities (as is seen in urine). 
Correct baselines are critical for proper spectral alignment 
and proper peak integration (i.e. relative and absolute quan-
tification). Small errors in the baseline structure can easily 
lead to errors (by orders of magnitude) in the quantification 
of low abundance metabolites. We recommend that all NMR 
spectra should be manually inspected for baseline distortions 
and, if necessary, those spectra exhibiting baseline distor-
tions should be corrected using high quality baseline cor-
rection software.

Baseline correction in NMR is normally done via semi-
automatic approaches that involve manual identification of 
reliable baseline regions followed by a computer-generated 
spline fit. Just as with phasing, baseline correction requires 
that the vertical scale should be increased as much as pos-
sible to allow for proper detection of those baseline regions 
needing correction. Software from all the major NMR ven-
dors along with many third party software packages, such 
as NMRPipe (Delaglio et al. 1995), Chenomx NMR Suite 
(Mercier et al. 2011), or MestreLab Inc.’s MNova (to name 
just a few), can perform high quality baseline correction. 
All of these packages work in a semi-automated fashion, 
meaning that the baseline regions are first identified manu-
ally and then the programs complete the remaining baseline 
correction process. This correction process may use either 
time domain methods or frequency domain methods (Xi and 
Rocke 2008; Marion and Bax 1988; Halamek et al. 1994; 
Bao et al. 2012; Golotvin and Williams 2000; Wang et al. 
2013; Bartels et al. 1995). We recommend the frequency 
domain correction methods as they are more widely used. 
Frequency domain methods attempt to construct a new 
baseline curve within the processed spectra directly using 
techniques such as asymmetric least squares (Peng et al. 
2010; Eilers 2003), regular polynomial fitting or spline 
curve fitting and iterative polynomial fitting with automatic 
thresholding (Feng et al. 2006). More recently, a paramet-
ric approach that employs weighted scatter plot smoothing 
(LOWESS) has been used to estimate noise levels and gen-
erate more accurate baselines for metabolomic studies (Xi 
and Rocke 2008).

Fully automated baseline correction has been imple-
mented in certain packages such as Bayesil (Ravanbakhsh 
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et al. 2015) and MestreLab’s MNova suite, but these meth-
ods are currently limited to simpler biofluid spectra of 
serum, plasma, fecal water or cerebrospinal fluid. If and 
when fully automated methods appear for urine analysis, 
we would recommend them over manual methods as these 
automated methods would remove any user bias in baseline 
correction.

3 � Data post‑processing

Data post-processing refers to the steps involved in assessing 
processed NMR spectra prior to the identification and com-
parison of important peaks and peak intensities. As men-
tioned in the introduction, NMR spectra of urine (or other 
very complex biofluids with > 75 detectable metabolites) 
require some degree of spectral simplification. This simplifi-
cation can be achieved through several data post-processing 
steps: (1) sub-spectral selection; (2) spectral alignment; (3) 
spectral binning to extract peak intensities; (4) scaling and 
normalization, and finally (5) important peak identifica-
tion (via multivariate statistics). Together, these approaches 
allow users to identify and quantify the most informative 
peaks in a given biofluid or urine NMR spectrum.

3.1 � Sub‑spectral selection and filtering

Sub-spectral selection is a filtering technique involving the 
selection of only the interesting regions and discarding the 
uninformative areas of a given NMR spectrum. In general, 
not all parts of a recorded NMR spectrum are important 
for identifying and quantifying metabolites. For instance, in 
urine, the region between 0.00 and 0.60 ppm can be safely 
removed before alignment and/or binning since no metabo-
lite signals (except possibly those from vacuum grease and 
other contaminants) exist in this portion of the spectrum. 
The water signal region from 4.50 to 4.90 ppm is also com-
monly excluded, as the residual solvent signal after suppres-
sion is not of interest and often interferes with the analysis 
of other metabolites signals. In urine samples, urea is one of 
the most highly concentrated metabolites and its peak is rela-
tively close to the water resonance (near 6.00 ppm). Urea’s 
exchangeable protons are significantly affected by most 
water suppression techniques and so urea’s signal intensity 
changes significantly with the degree or quality of water 
suppression. Therefore, the urea peak (and the surrounding 
region, if affected) is normally excluded from further analy-
sis. To summarize, we recommend the removal of the upfield 
region (0.00–0.60 ppm), the residual water region (~ 4.50 to 
4.9 ppm) and the urea region (5.5–6.1 ppm) when analysing 
urine NMR spectra.

3.2 � Spectral alignment

Spectral alignment is a process that iteratively shifts peak 
positions in multiple spectra so that the peaks corresponding 
to the same compounds can be directly overlaid or aligned. 
Spectral alignment is needed to ensure that the same peaks, 
from the same compounds, can be compared and quanti-
fied across multiple NMR spectra. Signals or peaks that are 
inconsistently shifted across different NMR spectra, will not 
be properly matched and subsequent binning steps, scaling 
steps and multivariate analysis of the binned/scaled inten-
sities will be compromised. While spectral alignment is 
widely used in NMR spectral analysis, it is also important 
to remember that alignment can hide important information 
encoded in chemical shift data, including sample pH, metal 
ion concentrations, ionic strengths and temperature.

Spectral alignment is trivial for NMR spectra with a small 
number (< 20) of peaks. However, it is not trivial for NMR 
spectra with thousands of peaks as is frequently seen for 
NMR spectra of biofluids such as urine. Even when properly 
referenced, the chemical shifts of many compounds in urine 
are often subject to a phenomenon known as chemical shift 
drift (Giskeodegard et al. 2010; Wu et al. 2006a), which is 
shown in Fig. 3. Chemical shift drift is an environmental 
effect that can be due to several factors such as sample pH, 
ionic strength, changes of temperature, instrumental factors, 
level of compound dilution and relative concentration of 
specific ions (Defernez and Colquhoun 2003; Cloarec et al. 
2005b). The net result of chemical shift drift is that it is often 
quite difficult to determine which peaks match to which 
compounds when comparing one urine spectrum to another. 
One experimental approach to address chemical shift drift 
is to precisely control the pH and salt concentration of the 
sample by adding a strong buffer solution to the sample (pH 
7.0, 400 mM phosphate, 20–30% by volume). However, this 
is often not practical for large numbers of samples and it may 
not always correct other ionic contributions to chemical shift 
drift. As a result, several computational methods have been 
developed to correct the movement of NMR peaks. These 
are called peak alignment or spectral alignment methods and 
they include such processes as correlation optimized warp-
ing (COW) (Nielsen et al. 1998), fuzzy warping (Wu et al. 
2006b), peak alignment by beam search (Forshed et al. 2003; 
Lee and Woodruff 2004), and interval correlation shifting 
(icoshift) (Savorani et al. 2010). These methods are known 
as pairwise alignment techniques because they align each 
NMR spectrum to a chosen reference NMR spectrum, one 
by one. The reference spectrum can either be real or virtual 
and should always be representative for the whole dataset. 
More details about these spectral alignment algorithms are 
given below.

COW is an older alignment approach developed in the 
late 1990s that uses a technique called segment warping 
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(Tomasi et al. 2004). More specifically, COW is a piecewise 
or segmented data preprocessing method (where the spec-
trum is divided into equal sized segments) aimed at aligning 
a sample spectrum towards a reference spectrum by allowing 
limited changes in segments lengths on the sample spec-
trum. This method was originally designed to be used for 
the alignment of chromatographic data, but it has proven to 
be useful for the alignment of NMR spectra as well (Tomasi 
et al. 2004; Smolinska et al. 2012b).

The Beam search method for peak alignment of NMR 
signals was developed in the early 2000’s based on genetic 
algorithms for optimization (Lee and Woodruff 2004; For-
shed et al. 2003). In this method each spectrum is divided 
into a number of segments then each segment is aligned 
to a corresponding region in a reference spectrum using 
a genetic algorithm (Forshed et al. 2002). A smaller part 
of the spectrum (covering a region spanning ~ 0.15 ppm) 

is aligned to a corresponding reference by shifting (right 
or left) and then using linear interpolation to adjust the 
spectra piecewise (Forshed et al. 2003).

Another technique for NMR peak alignment is called 
the fuzzy warping method which was originally developed 
and used for the alignment of urine NMR spectra (Wu 
et al. 2006a). Fuzzy warping seeks to establish a corre-
spondence between the most intense peaks in the spectra 
to be aligned, where iterative procedures alternate between 
fuzzy matching and signal transformation. The parame-
ters are weighted according to the corresponding of target 
spectrum. The performance of the peak alignment can be 
carried out to assess the alignment procedure in terms of 
any erroneous alignment or change of peak shape (Wu 
et al. 2006a).

The interval correlated optimized shifting (icoshift) 
method is the newest approach to NMR spectral align-
ment (Savorani et al. 2010). It is based on dividing a given 
NMR spectrum into different segments or intervals, then 
aligning the spectral intervals to the corresponding seg-
ment of a reference spectrum. Icoshift optimizes the piece-
wise cross-correlation using a fast Fourier transform (FFT) 
and a greedy algorithm that allows for user-defined recur-
sion. In particular, each spectrum or interval is allowed 
to shift right or left until the maximum correlation to the 
target spectrum is achieved. The use of the FFT approach 
allows for simultaneous processing and alignment of all 
spectra. Icoshift has been found to be substantially faster 
than other algorithms (such as COW, fuzzy warping and 
beam search) thereby making full-resolution alignment 
of large 1D 1H-NMR datasets possible in just a few sec-
onds—even on a desk-top computer. Unlike most other 
tools, icoshift also allows users to customize peak shape, 
peak multiplicity, peak position and peak height to better 
match the target spectrum. Icoshift is available as both 
an open source MatLab package and a Python package. 
While icoshift only achieves local alignment optimization 
and it cannot deal with strongly overlapped regions, the 
fact that it is open access and substantially faster/better 
than previously published methods, we recommend that 
icoshift should be used in the alignment of biofluid (esp. 
urine) NMR spectra.

Table 1 summarizes the four spectral alignment algo-
rithms discussed above. A much more detailed discussion 
and assessment of NMR spectral alignment algorithms is 
provided in a recent review (Vu and Laukens 2013). While 
icoshift goes a long way towards simplifying and improv-
ing the quality of NMR spectral alignment, a fully auto-
mated, perfectly functioning NMR spectral alignment tool 
is still not available. In particular, the problem of peak order 
changes (Csenki et al. 2007) has yet to be addressed, as all 
existing alignment methods assume the same peak order 
between spectra.

Fig. 3   NMR spectra of urine samples, a original spectra in the 
selected region, and b normalized spectra warped to spectrum num-
ber 52 in the same region, from (Wu et al. 2006a)
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3.3 � Binning and peak picking

The next “post-processing” step is usually some form of 
binning. Binning can be a very simple method, not even 
requiring alignment, to extract peak intensities from multi-
ple NMR spectra prior to performing multivariate statistical 
analysis. Binning involves dividing NMR spectra into small 
regions (typically spanning 0.04–0.05 ppm), which are suf-
ficiently wide to include one or more NMR peaks. The inten-
sity of each bin is determined by calculating the area under 
the curve (AUC). As a result, a typical urine NMR spectrum 
will often generate 500–1000 bins with non-zero intensities. 
Multivariate statistical analysis is then carried out on the 
extracted bin intensities and the most significant peaks (or 
bins) are then assigned to specific metabolites. Binning can 
be done using prior knowledge (i.e. knowing where metabo-
lite peaks appear) or naively using an automatic algorithm.

Table 2 describes a number of common binning tech-
niques including equidistant (equal size) binning (Izquierdo-
Garcia et al. 2011), Gaussian binning (Anderson et al. 2008), 
adaptive-intelligent binning (De Meyer et al. 2008), dynamic 
adaptive binning (Anderson et al. 2011), adaptive binning 
using wavelet transforms (Davis et al. 2007) and an opti-
mized bucketing algorithm (Sousa et al. 2013). Equidistant 
binning takes a spectrum and then divides it into equal spec-
tral widths (i.e. 0.02, 0.04 or 0.05 ppm) and is the most com-
monly used binning method (Craig et al. 2006; De Meyer 
et al. 2010; Izquierdo-Garcia et al. 2011). However, a disad-
vantage of this method is the lack of flexibility with regard 
to boundaries in cases where peaks are split between two 
adjacent bins. Other methods such as adaptive-intelligent 
binning (De Meyer et al. 2008), dynamic adaptive binning 
(Anderson et al. 2011) and adaptive binning using wavelet 
transforms (Davis et al. 2007) can be utilized to overcome 
this problem by adjusting the bin position so that one bin can 
only cover complete peaks. We cannot recommend a single 
binning method because all of them have pros and cons, and 
their efficiency is somewhat dataset-dependent. As a general 
rule, equidistant binning is the most commonly used method 
(Smolinska et al. 2012a), and often works quite well despite 
its simplicity.

Several non-binning methods such as spectral deconvolu-
tion (Weljie et al. 2006), curve-fitting (Bollard et al. 2005), 
direct peak fitting (Schuyler et al. 2015), and peak alignment 
have been developed to overcome the drawbacks to binning. 
However, these methods are generally best for simpler bio-
fluids (serum, plasma, CSF, saliva) and are not yet suited to 
handling the spectral complexity of urine.

3.4 � Normalization

After NMR peaks have been aligned, identified or binned, 
and their respective intensities determined, the next step in Ta
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the post-processing pipeline is to correct for inherent con-
centration differences. Plasma and serum are examples of 
biofluids that are under strict physiological control, so the 
spectra collected from these biofluids (at least for the same 
organism) can often be compared without further adjust-
ment, normalization or scaling. On the other hand, most 
other biofluids are not under such strict physiological con-
trols and so corrections for dilution effects must be made, for 
example urine is certainly subject to substantial metabolite 
concentration variation. Urine volume varies greatly with 
fluid intake and it is also affected by many other physiologi-
cal and pathophysiological factors. More specifically, the 
concentrations of endogenous metabolites in urine (even 
from the same individual) can vary by several orders of 
magnitude (Emwas 2015). Therefore, proper adjustment 
to accommodate these large intensity/concentration varia-
tions is critical. The best approach for doing this is called 
normalization, a well-known data processing technique that 
aims to make all samples comparable to each other. Note 
that normalization can mean different things under different 
situations. In statistics, normalization means transforming 
a collection of data so that it is normally distributed (i.e. 
follows a Gaussian distribution). In clinical science, nor-
malization means multiplying the data by some correction 
factor to make the values more comparable. In this regard, 
normalization for clinical scientists is similar to the statisti-
cal definition of scaling.

Many approaches for sample normalization of urine have 
been proposed and reviewed in the literature (see Table 3). 
As a general rule, sample-to-sample normalization can be 
divided in two broad categories: physiological (normaliza-
tion to the urine output relative to creatinine or osmolality) 
or numerical (i.e. all the others). Fig. 4 shows how metabo-
lite concentration profiles change when different normaliza-
tion strategies are applied to the data. Physiological normali-
zation generally requires a separate measurement using: (1) 
an osmometer (or osmality meter) to measure the electrolyte 
to water balance, (2) a refractometer to measure refractive 
index (a proxy for specific gravity) or (3) a creatinine test 
(via direct measurement using an enzyme assay or by NMR 
analysis/integration of the creatinine peaks). Physiological 
normalization (especially to creatinine) is how most urine 
concentrations are reported in the clinical and biochemi-
cal literature. Its widespread use in the medical community 
made it a preferred normalization option in the past. How-
ever, normalization to creatinine assumes that creatinine 
clearance is constant and this may not be true in presence 
of metabolic dysregulation. Therefore, normalization to 
creatinine should be used only when significant metabolic 
dysregulation is not suspected (which is not always the case). 
Measures of urinary specific gravity and osmolality are not 
as highly dependent on the state of an individual’s metabolic 
regulation. As a result they are gaining increasing traction 

in the urinalysis community(Miller et al. 2004; Edmands 
et al. 2014; Sauve et al. 2015; Waikar et al. 2010; Tang et al. 
2015). Therefore, for physiological normalization of NMR-
based urinary metabolomic data we recommend the use of 
specific gravity over creatinine. However, physiological nor-
malization assumes one is working with real concentration 
data (uM or mM) and in many cases with NMR-based urine 
metabolomics, only relative concentration data (i.e. no con-
centration units) are available.

When physiological normalization is not possible, numer-
ical normalization is a viable alternative and, in some cases, 
can yield even better normalization results than physiologi-
cal normalization. There is now a large body of literature 
covering numerical normalization techniques for urine 
analysis (see Table 3 for a list of methods, abbreviations, 
short descriptions and references). Different approaches 
work better for different situations. Lusczek et al. (2013b) 
found constant sum (CS), constant sum excluding lactate, 
glucose, and urea concentrations CS-LGU and total spectral 
area TSA normalized data appear to correlate well with each 
other. They also do a good job of representing NMR spec-
tral intensities. probabilistic quotient normalization (PQN) 
normalized data was found to be moderately correlated with 
UO and osmolality (OSM) data and not with CS, CS-LGU 
and total spectral intensity (TSI) normalized data.

Kohl et al. (2012) recently reviewed and compared many 
of the more advanced numerical normalization methods. 
In particular, they tested the impact of these normalization 
methods on data structures and sample classification using 
NMR data from healthy and autosomal polycystic kidney 
disease (ADPKD) patients. They found only four methods 
(Loess, Quantile, Linear and Spline normalization) that were 
able to perform better than methods without normalization 
for the detection of differentially expressed metabolites. 
For the accurate determination of metabolite concentration 
changes, the same four methods provided the most uniform 
results for all tested metabolites investigated.

In a sample classification context, Quantile and Spline 
normalization were found to be the best performing meth-
ods. Overall, they found that Quantile normalization out-
performed all of the most common normalization methods, 
but achieved mediocre classification performance for small 
data sets. The opposite was found for Spline normalization. 
In contrast, Filzmoser and Walczak (2014) found PQN to 
outperform other methods and recommended it over other 
numerical normalization techniques. However, Saccenti 
(2017) found that PQN did not perform particularly well in 
discriminant/classification setting (see the results of partial 
least squares discriminant analysis shown in Table 4).

It is interesting to note that total content normalization, 
urinary output normalization, internal standard normaliza-
tion, and probabilistic quotient normalization were origi-
nally developed for processing metabolomic data. All of the 
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other methods were developed to normalize microarray data, 
which have inherently different properties in terms of vari-
ance and covariance patterns and error structure. Indeed, the 
performance of the latter normalization methods on metab-
olomics data can be quite inconsistent, as observed by a 
number of different authors (Hochrein et al. 2015; Saccenti 
2017).

Many of the numerical methods used for normalization 
implicitly assume that the average sum of measured metabo-
lite concentrations is constant across samples or group of 
samples. In other words, it is assumed that the total quantity 
of dissolved metabolites is invariable. Unfortunately, this is 
often an unrealistic assumption. In particular, Hochrein et al. 
(2015) showed that commonly used normalization and scal-
ing methods fail to retrieve true metabolite concentrations 
in the presence of increasing amounts of glucose added to 
simulate unbalanced metabolic regulation. They also pro-
posed an alternative method to compensate for these effects 
in the presence of marked unbalanced metabolic regulation.

Fig. 4   Metabolite concentrations in a urine sample after different normalization procedures have been applied. For a full description of the meth-
ods see Table 3. The data are originally from (Lusczek et al. 2013b) and were retrieved at http://www.ebi.ac.uk/metab​oligh​ts/MTBLS​123

Table 4   Quality of PLS-DA model for the discrimination of two 
groups when different normalization approaches are applied on the 
data. The table is reproduced with permission from (Saccenti 2017)

NMC Number of misclassifications, DQ2 discriminant Q2, AUROC 
area under the receiver operating curve. The measures are discussed 
in (Saccenti 2017)

Method NMC Q2 DQ2 AUROC

1 TSA 64 0.02 0.02 0.60
2 IS 77 − 0.33 0.005 0.37
3 UO 57 − 0.04 0.007 0.61
4 PQN 62 − 0.05 − 0.03 0.64
5 Loess 1 0.89 0.92 1
6 Contrast 23 0.41 0.56 0.99
7 Quantile 7 0.63 0.81 0.99
8 Linear 86 − 0.69 − 0.02 0.28
9 Li Wong 64 − 0.25 − 0.03 0.56
10 Spline 7 0.36 0.7 1
11 VSN 0 0.95 0.97 1
12 None 33 0.21 0.25 0.77

http://www.ebi.ac.uk/metabolights/MTBLS123
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All normalization methods alter the structure of the data 
and the results of subsequent analysis will be affected by 
the choice of the normalization method applied, especially 
when the data are used to infer correlations and biological 
networks as described in (Saccenti 2017). Jauhiainen et al. 
(2014) proposed a method based on linear mixed modelling, 
and found that it performed well when assessing robustness 
and its ability to discover true correlations. Figure 5 shows 
the results of a principal component analysis, which is one 
the most commonly used multivariate tools in metabolomics 
(Table 3), after it has been applied to the data. While this is 
just one example taken for one particular data set, it clearly 
illustrates how normalization not only affected the results 
of this exploratory analysis but also the performance of the 
methods used to discriminate between groups of samples, 
which is a typical problem in metabolomics studies.

It is evident from the reported literature that there is no 
consensus on which numerical method should be applied to 
normalize data and that a consensus is difficult to establish. 
Therefore, we are unable to make a formal recommendation 

on which numerical normalization method should be used 
for NMR-based urinary metabolomics. Based on the data at 
hand, it seems advisable to use PQN when the goal is bio-
marker selection but when the goal is discrimination/classi-
fication Quantile normalization for large (> 50 samples) data 
sets would seem to perform best, while Spline normalization 
seems to work better for smaller data sets.

3.5 � Scaling and transformation

Scaling and transformation refer to statistical techniques that 
help to make data more normally distributed or to reduce 
the spread in values by employing a mathematical operation 
on the spectral signal intensities (or concentrations) for all 
samples. As mentioned earlier, urinary metabolite concen-
trations can range over several orders of magnitude. The 
detectable variations in metabolites with higher concentra-
tions will of course be easier to detect than the ones with 
low concentrations. This can lead to a bias or an undue influ-
ence from highly concentrated metabolites on the results of 

Fig. 5   Loadings for the first principal components for a PCA model 
fitted on the data normalized with the different procedures. Data are 
Pareto scaled before PCA. ) Data are from (Lusczek et  al. 2013b)  

and have been retrieved at http://www.ebi.ac.uk/metab​oligh​ts/
MTBLS​123</link> The figure is from reference (Hochrein et  al. 
2015

http://www.ebi.ac.uk/metabolights/MTBLS123
http://www.ebi.ac.uk/metabolights/MTBLS123
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a urinary metabolomic study (Ebbels et al. 2011). This influ-
ence can, in turn, make a small number of metabolites domi-
nate the outcomes from multivariate statistical analyses. To 
avoid this kind of bias it is often necessary to scale metabo-
lite intensities before undertaking any further analysis (van 
den Berg et al. 2006). Table 5 shows a list of scaling and 
transformation methods, several of which were investigated 

and compared by (van den Berg et al. 2006). Centering is 
commonly used to adjust the differences between low-con-
centration and high-concentration metabolites by scaling 
all values so that they vary around zero (zero becomes the 
mean metabolite level). Mean-centering, on its own, is not 
sufficiently powerful to correct for scaling issues if the data 
is composed of sub-groups with different variability. As a 

Fig. 6   Effect of different center-
ing, scaling and transformation 
approaches on concentration 
values (a) and variance (b). For 
a description of the methods see 
Table 4. Data are from (Lusczek 
et al. 2013b) and have been 
retrieved at http://www.ebi.
ac.uk/metab​oligh​ts/MTBLS​123

http://www.ebi.ac.uk/metabolights/MTBLS123
http://www.ebi.ac.uk/metabolights/MTBLS123
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result, mean centering is usually combined with other scal-
ing methods.

These “other” scaling methods include level scaling, 
range scaling, VAST scaling, Pareto scaling, and autoscal-
ing (Ebbels et al. 2011; Craig et al. 2006). In Fig. 6, we 
show the effects of several scaling and transformation meth-
ods on urine metabolite concentration data. Each scaling 
method had its own strengths and weaknesses. For example, 
autoscaling can often increase noise artefacts from spectral 
regions devoid of usable signals. To address this problem, 
Pareto scaling uses the square root of the standard deviation 
instead of the standard deviation as the scaling factor. This 
increases the sensitivity and reduces noise, while still allow-
ing the data to remain closer to the original measurements 
(Ebbels et al. 2011). Variable stability scaling (VAST) is 
another method that weighs each variable according to its 
measured stability and then down-weights the variables that 
are less stable. This approach is believed to improve the 
distinction between different classes in subsequent multi-
variate analysis (Keun et al. 2003). The advantages of this 
method were first demonstrated by analysing NMR spectra 
of urine in an animal model of bilateral nephrectomy (Keun 
et al. 2003).

Numerical transformations (e.g. power or logarithmic 
transformation) are another example of scaling or statistical 
normalization. Transformations are mostly used to correct 
for heteroscedasticty or to correct for data skewness and 
non-normality before statistical testing. When power and 
log transformations (or more sophisticated transformation 
like the Box–Cox’s transformation) are used, large values 
are more heavily penalized than small values. This provides 
a pseudo-scaling effect that can be particularly relevant to 
NMR data as it enhances the importance of small peaks 
relative to larger ones (Sakia 1992; Kvalheim et al. 1994). 
Although working on a different context, Feng et al. cau-
tioned against the use of logarithmic transformation not-
ing that the results of standard statistical tests performed on 
log-transformed data are often not relevant for the original, 
non-transformed data (Changyong 2014).

The optimal transformation method should be capable 
of reducing or removing heteroscedastic noise (i.e. vari-
ables of sub-group are different than other sub-groups) into 
homoscedastic information (i.e. variables are similar in sub-
groups). These methods are more relevant when reducing 
non-linear, non-additive, non-normalized or heteroscedastic 
noise in NMR data and will enhance the information con-
tained in small peaks (Sakia 1992; Kvalheim et al. 1994). 
For instance, the Box–Cox transformation is a parametric 
power transformation method used for nonlinear conversion 
of data where large values are reduced relatively more than 
the small values (Ebbels et al. 2011; Sakia 1992).

Van den Berg et  al. reviewed most of the meth-
ods presented in Table 5 using MS data and found that 

auto-scaling and range scaling performed better with 
regard to biological interpretation when data were ana-
lysed using PCA. In particular, these two methods were 
able to remove the dependence of metabolite rank impor-
tance in the PCA model from the average concentrations 
and the magnitude of fold changes. They also found that 
centering, log transformations, and power transforma-
tions, along with level and Pareto scaling showed a strong 
dependence on concentration and fold changes leading 
to poorly interpretable PCA results. However, Kohl et al. 
(2012) found VSN to outperform the latter two methods 
in a more exploratory setting.

In many situations, high concentration and high vari-
ance metabolites may not be the most relevant to the 
biological problem being studied. However, since most 
(multivariate) statistical approaches use the information 
embedded in the variance/covariance matrix, it is crucial 
that the variance structure of the data is preserved because 
it contains valuable (biological) information. However, the 
choice of the scaling methods needs to be tailored on both 
the application and the data type. NMR and MS data have 
inherently different properties in term of range and error 
structure and this may explain the different performance 
of the same method when applied on different data from 
different platforms. Depending on the final application, for 
NMR binned data, Pareto scaling may be the most sensible 
choice when the aim is data exploration through PCA. In 
a more discriminant setting, Parsons et al. (2007) found 
generalised logarithm transformations to significantly 
improve the discrimination between sample classes yield-
ing higher classification accuracies compared to unscaled, 
auto-scaled, or Pareto scaled data (Parsons et al. 2007).

Gromski et al. (2015) investigated the effect of autoscal-
ing, range scaling, level scaling, Pareto scaling and VAST 
scaling on four classification models [principal compo-
nents-discriminant function analysis (PC-DFA), support 
vector machines (SVM), random forests (RF) and k-nearest 
neighbours (kNN)] and found that VAST scaling was more 
stable and robust across all the classifiers considered and 
advocated for its use.

Our recommendation is that scaling and transformation 
should be done on all NMR-derived biofluid data prior 
to conducting multivariate statistical analyses. Visualiza-
tion and assessment of the scaling and/or transformation 
effects on the data is necessary to ensure that these scal-
ing or transformation efforts make the data more centred 
and more Gaussian in its overall distribution (i.e. reducing 
heteroscedasticity). Researchers must refrain from blindly 
(i.e. without visualizing the consequences) applying dif-
ferent transformation and scaling methods until the results 
of the analysis match some predefined hypothesis, as this 
is scientifically and statistically improper.
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3.6 � Multivariate statistics, compound identification 
and biological interpretation

Once all the NMR data has been properly prepared through 
the careful use of phasing, weighting functions (apodiza-
tion), zero filling, baseline correction, normalization, and 
scaling (among other methods described previously and 
in the referenced materials), then the specialized work of 
statistical analysis, compound identification and biological 
interpretation may begin. There are many excellent reviews 
on how to conduct multivariate statistics with MS or NMR-
based metabolomics data (Ren et al. 2015; Emwas et al. 
2013; Izquierdo-Garcia et al. 2011) as well as on methods 
to perform compound identification and biological interpre-
tation from NMR data (Karaman et al. 2016; Donaa et al. 
2016; Schleif et al. 2011). It is well beyond the scope of this 
paper to provide an overview or an assessment of these sub-
jects. However, a few comments or suggestions are perhaps 
worthwhile.

In the field of NMR-based metabolomics there are a num-
ber of well-regarded, freely available software tools and 
resources that are widely used and which we highly recom-
mend. These include: MetaboAnalyst (Xia et al. 2009, 2015; 
Xia and Wishart 2010) for multivariate analysis, metabolite 
annotation and biological interpretation, MVAPACK for 
multivariate analysis (Worley and Powers 2014), Work-
flow4Metabolomics for multivariate analysis (Giacomoni 
et al. 2015), Metassimulo for multivariate analysis (Muncey 
et al. 2010), the Human Metabolome Database (HMDB) for 
metabolite annotation and biological interpretation (Wishart 
et al. 2013), and the BioMagResBank (BMRB) for metabo-
lite identification (Markley et al. 2008). There are also a 
number of commercial tools such as Chenomx’s NMR Suite, 
Bruker’s AMIX software, MestreLab’s MNova and Umet-
rics SIMCA that offer tools for multivariate analysis and/
or metabolite identification. While many researchers prefer 
to do their own statistical analysis and data interpretation, 
our recommendation is, for those who are new to metabo-
lomics, that they should collaborate with an individual who 
has already had significant prior experience in metabolomic 
data analysis and data interpretation. Alternately, statistical 
neophytes should dedicate considerable time and effort to 
become a proficient in this area as possible, prior to embark-
ing on this sort of analysis.

4 � Conclusion

The intent of this review was to provide readers with some 
guidance and recommendations regarding how to process 
and post-process NMR spectral data collected on bioflu-
ids, with a particular focus on urine. The wide disparity 
in published practices and outcomes from different NMR 

metabolomics laboratories led us to investigate exist-
ing practices and to systematically assess which methods 
worked best under which situations. In doing so, we have 
tried to highlight the advantages and disadvantages of dif-
ferent NMR spectral collection and spectral data processing 
steps that are common to NMR-based metabolomic studies 
of biofluids such as urine. More specifically we reviewed the 
existing literature, assessed the methods in our laboratories 
and made the following best-practice recommendations:

1.	 We recommend the use of DSS (especially deuterated 
DSS) as the chemical shift reference standard for all uri-
nary NMR spectroscopy.

2.	 We recommend that auto-phasing should be used as an 
initial phasing step. Subsequently, all biofluid NMR 
spectra should be manually inspected for phase distor-
tions and, if necessary, those spectra exhibiting phase 
distortions should be phased manually.

3.	 We recommend that all biofluid NMR spectra should 
be manually inspected for baseline distortions and, if 
necessary, those spectra exhibiting baseline distortions 
should be corrected using specific high quality baseline 
correction software (mentioned in this document).

4.	 For urine NMR spectra we recommend the removal of 
the upfield region (0.00–0.60 ppm), the residual water 
region (~ 4.50–4.9  ppm) and the urea region (5.5–
6.1 ppm), especially prior to alignment and binning.

5.	 We recommend that icoshift should be used in the align-
ment of biofluid (esp. urine) NMR spectra.

6.	 No specific recommendation on the best spectral binning 
method is possible, although equidistant binning appears 
to be the simplest and fastest approach.

7.	 When possible, we recommend physiological normaliza-
tion for NMR-based urinary metabolomic studies, with 
specific gravity being preferred over creatinine normali-
zation. In situations where physiological normalization 
is not possible, we recommend Quantile normalization 
for large (> 50 samples) data sets while Spline normali-
zation is recommended for smaller data sets.

8.	 We recommend that scaling and transformation should 
be done on all NMR-derived biofluid data prior to con-
ducting multivariate statistical analyses and subsequent 
compound identification or biological interpretation. 
Furthermore, this scaling and transformation must be 
visualized and assessed by users to determine if the het-
eroscedasticity has been properly reduced.

Following these recommendations should allow users not 
only to get consistent, reproducible NMR data but also to 
optimize the outcome for their multivariate statistical analy-
sis as well as their subsequent final data interpretation.

This review is not intended to be prescriptive. Describing 
a single protocol that works for all situations is simply not 
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practical. Indeed, the optimal choice of data processing (and 
post-processing) options depends on the experiment being 
conducted, the quality of the data at hand, along with an 
appreciation of the problem being addressed. For example, 
if the focus of a study is on exploring differences between 
groups or subgroups, one should always try to employ a 
normalization and scaling strategy that will not level out 
possible differences. If the focus in on data exploration, it is 
advisable to scale the data in such a way as to avoid using 
high variance values that will dominate the final model. In 
all cases, careful experimental preparation prior to any NMR 
data acquisition, followed by careful, consistent spectral 
processing and post-processing is necessary before a truly 
productive NMR data analysis can begin. Otherwise pre-
cious time and resources will be wasted on trying to interpret 
inconsistent data and inaccurate results.
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