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ABSTRACT Nef-specific CD8� T lymphocytes (CD8TL) are linked to extraordinary
control of primate lentiviral replication, but the mechanisms underlying their
efficacy remain largely unknown. The immunodominant, Mamu-B*017:01�-restri-
cted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif im-
portant for interactions with host AP-2 proteins and, hence, downmodulation of
several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and
SERINC5. We reasoned that CD8TL-driven evolution in this epitope might com-
promise Nef’s ability to modulate these important molecules. Here, we used
deep sequencing of SIV from nine B*017:01� macaques throughout infection
with SIVmac239 to characterize the patterns of viral escape in this epitope and
then assayed the impacts of these variants on Nef-mediated modulation of mul-
tiple host molecules. Acute variation in multiple Nef195-203MW9 residues signifi-
cantly compromised Nef’s ability to downregulate surface Tetherin, CD4, and
CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral in-
fectivity but did not impact downregulation of CD3 or major histocompatibility
complex class I, suggesting the selective disruption of immunomodulatory path-
ways involving Nef AP-2 interactions. Together, our data illuminate a pattern of
viral escape dictated by a selective balance to maintain AP-2-mediated down-
regulation while evading epitope-specific CD8TL responses. These data could
shed light on mechanisms of both CD8TL-driven viral control generally and on
Mamu-B*017:01-mediated viral control specifically.

IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected
with SIV can control the virus without aid of antiviral medications. A common fea-
ture of these individuals is the ability to mount unusually effective CD8 T lympho-
cyte responses against the virus. One of the most formidable aspects of HIV is its
ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We
show that macaques that target a specific peptide in the SIV Nef protein are capable
of better control of the virus and that, as the virus evolves to escape this response,
it does so at a cost to specific functions performed by the Nef protein. Our results
help show how the virus can be controlled by an immune response, which could
help in designing effective vaccines.
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Virus-specific CD8� T lymphocytes (CD8TL) play a critical role in establishing the set
point of HIV-1 and SIV replication in vivo. There are strong correlations between

expression of particular major histocompatibility complex class I (MHC-I) alleles and
extraordinarily low or high viral set points (1, 2), further implicating CD8TL as causative
agents in viral control. The control of HIV and SIV replication by antiviral CD8TL is
complicated by the immense capacity of the viruses to evolve to escape these immune
pressures (3–15). In fact, CD8TL are likely dominant selective forces driving viral
sequence variation in individuals and on population scales during infection with HIV-1
or SIV (16, 17). In addition, escape from CD8TL can exact a cost to viral fitness (9, 18–24).
The balance among these variables—the efficacy of antiviral CD8TL, the propensity of
the virus to evolve to evade them, and the specific fitness costs associated with
particular escape mutations—is likely critically important in determining the viral set
point in a given individual. Hence, understanding immune-mediated control of HIV/SIV
replication necessitates understanding all components of this process.

Although several lines of data indicate that CD8TL targeting epitopes in HIV-1 Gag
are important for enhanced viral control, likely due to functional constraints limiting
viral escape (6, 9, 18, 22, 25–31), CD8TL-mediated control of SIV in rhesus macaques
(RM) is better correlated with CD8TL targeting the viral Nef and Vif proteins (12, 14,
32–36). Evidence suggests that Nef-specific CD8TL might aid in HIV-1 control as well
(37–39), an underappreciated effect. The Nef protein in both SIV and HIV-1 is highly
immunogenic and harbors epitopes restricted by MHC-I alleles associated with control
in both RM and humans (5, 12, 14, 40–42). Hence, understanding the mechanisms of
CD8TL-mediated selection in Nef is important for understanding CD8TL-mediated viral
control in general.

Nef represents an intriguing and potentially important target for CD8TL. In both SIV
and HIV-1, Nef is a pleiotropic protein whose myriad functions are focused on immu-
nomodulation, including the downregulation of several cell surface proteins that are
involved in host immunity, such as TCR-CD3 (in most SIVs but not HIV-1) (43), CD4
(44–46), CD8�� (47), CD28 (48), Tetherin (BST2 or CD317; in most SIVs but not HIV-1)
(49, 50), MHC-I (51), MHC-II (52), CD1d (53), CD80/CD86 (54), and likely others, as well
as enhancing viral infectivity by preventing virion incorporation of host serine incor-
porator 3 (SERINC3) and SERINC5 proteins (55–58). Modulation of several of these
molecules, including CD4, CD8��, CD28, Tetherin, and SERINC3 and SERINC5 is effected
via interactions between Nef and adaptor protein 2 (AP-2) complexes (47, 55, 59–63).

Interestingly, one of two dominant Mamu-B*017:01-restricted epitopes in Nef,
Nef195-203MW9, spans the region between two characterized sorting motifs. The first of
which is a “dileucine” motif (ExxxLM in SIVmac viruses) known to be important for
modulation of host molecules (62, 64), likely via direct interactions with host AP-2
proteins. The other is a diacidic motif (DD in nearly all primate lentiviruses), which
represents a novel AP-2 binding motif in HIV-1 Nef (63, 65). Given the importance of
Nef-mediated immunomodulation to viral replication and pathogenesis in vivo, we
were intrigued by whether viral escape in this epitope compromised Nef’s ability to
downregulate host molecules that rely on interactions between Nef and host AP-2
proteins, such as Tetherin, CD4, CD28, SERINC3, and SERINC5.

Since Tetherin directly traps budding virus particles at the cell surface, leading to
increased surface Env, we also investigated whether variations that impacted Tetherin
expression levels correlated with the cell surface expression of Env. Increased surface
Env may increase the susceptibility of infected cells to antibody-dependent cell-
mediated cytotoxicity, suggesting that virus-mediated downregulation of Tetherin
serves as a means to escape these potentially important immune responses (66–68).
Here, we comprehensively examined the impacts of natural variation in a CD8TL
epitope, which partially overlaps a known AP-2 binding domain, on Nef’s ability to
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perform functions that rely on this interaction and functions that do not. Variation at
every residue in the epitope impacted Nef’s ability to perform functions that rely on
AP-2 interactions but did not impact other functions. Our data illuminate a process
whereby Nef cannot effectively evolve to escape Nef195-203MW9-specific CD8TL without
some loss of viral function.

RESULTS
Acute-phase CD8TL target Mamu-B*017:01-restricted Nef195-203MW9. We mea-

sured the magnitude of Nef195-203MW9-specific CD8TL during infection with SIVmac239
in our acutely infected cohort of six rhesus macaques (RM) using IFN-� enzyme linked
immunospot (ELISpot) assays from peripheral blood mononuclear cells (PBMC) samples
collected at 4 and 8 weeks postinfection. All six RM made responses to the epitope at
one or both time points (Fig. 1). The magnitude of these responses varied among RM
but generally increased in dominance between 4 and 8 weeks postinfection. For
instance, in RM r97088 the response was undetectable at 4 weeks but high magnitude
at eight (�2,000 spot-forming cells [SFC]/million PBMC).

Characterizing sequence variation in Nef195-203MW9 throughout infection. To
evaluate viral sequence evolution under pressure from the Nef195-203MW9-directed
CD8TL response, we used deep sequencing of plasma virus at multiple time points
during infection. Six RM were sampled periodically during acute and early chronic
infection (ranging from 3 to 17 weeks postinfection) with one exception. RM r03007
was maintained for more than 1 year and sampled at 60 weeks postinfection. Three
additional RM used in separate studies were sampled at multiple chronic phase time
points (the earliest at 12 weeks postinfection and the latest at 267 weeks postinfection).
Isolated viral RNA was reverse transcribed and amplified using four overlapping am-
plicons spanning the SIV genome as we described previously (69). Pooled reverse
transcription-PCR (RT-PCR) products were sequenced on an Illumina MiSeq instrument,
and this data set has recently been published. Methods of sequencing an analysis were
as described previously (69) and similar to previous studies (70).

Nonsynonymous variation at �1% was found at every residue in the Nef195-203MW9
epitope (Fig. 2A), while nonsynonymous variation above 0.5% was never detected in
nucleotides encoding highly conserved amino acids near the Nef195-203MW9 epitope,
including in the diacidic motif. We identified a limited number of variants within the
Nef195-203MW9 epitope (Fig. 2B). For instance, variation at M195 (p1 of the epitope)
nearly always showed a change from methionine (M) to isoleucine (I) or valine (V) and
frequently was a mixture of both mutants, along with residual wild-type virus. In fact,
variant nucleotides were not fixed in the viral population as late as 17 weeks postin-
fection (Fig. 2B, RM r02105) in our acutely infected cohort and 35 weeks in RM rh1937
in our chronically infected cohort, followed by nearly complete fixation of the M-to-I
mutant at 167 weeks postinfection in rh1937. Similarly, nonsynonymous variants at
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FIG 1 Acute-phase CD8TL responses against the Nef195-203MW9 epitope. Peptide representing the
Nef195-203MW9 epitope was used at 0.01 mM to stimulate PBMC from six RM from 4 and 8 weeks
postinfection. Overnight stimulations of 100,000 cells per well were tested in duplicate and followed by
spot development and counting. Data shown represent the SFC per million PBMC.
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FIG 2 Viral evolution in the Nef195-203MW9 epitope. (A) Heat map generated from the deep sequence data showing the frequency of nonsynonymous
variation at each residue in the epitope at each sampled time point. Only nonsynonymous mutations that represented more than once and �1% of
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H196 nearly always encoded an H196Q change, with similarly limited variations at other
positions in the epitope.

Most detected variants in Nef195-203MW9 confer escape from CD8TL. We next
sought to determine whether variants detected in Nef195-203MW9 conferred escape
from CD8TL that target this epitope. We tested cryopreserved PBMC from week 8 from
three animals in our study with relatively high magnitude Nef195-203MW9-specific
responses for reactivity to dilutions of peptides representing the most common variants
detected in our animals. In all animals, the M195V variant completely abrogated the
response, as did the H196Q and W203C variants. All variants resulted in reduced
reactivity in PBMC from animal r97088 (Fig. 3A) and, with the exception of S201A, all
other variants resulted in reduced reactivity relative to the wild-type Nef195-203MW9
peptide in cumulative data from all three animals (Fig. 3B).

Primary CD4 T cells express Tetherin. Tetherin is induced as part of the type I
interferon (IFN) antiviral pathway, and its expression in primary CD4 T cells would not
be expected in the absence of exogenously added IFN-�, although these cells might
upregulate it upon infection with SIV. We used transcriptome sequencing (RNA-seq) to
measure global transcription in primary CD4 T cells either activated with concanavalin
A (ConA) or left untreated and infected with SIVmac239. Surprisingly, the BST2/Tetherin
gene was unambiguously expressed in these cells (Fig. 4A). Despite not being treated
with exogenous IFNs, transcriptional profiles in these cells were consistent with IFN
stimulation as several IFN-stimulated genes (ISGs) were expressed, including known
HIV/SIV restriction factors such as Apobec3G, TRIM5, and SAMHD1, as well as genes
selectively induced by IFN-� (such as IRF1) and those induced selectively by type I IFNs
such as OAS1 (Fig. 4B). These data were collected as part of a separate experiment that
did not involve uninfected cells, so we cannot rule out the role of SIV infection in
upregulating ISGs. However, the Tetherin protein was also easily detected on the
surface of both infected and uninfected primary CD4 T cells using a fluorescently
labeled monoclonal antibody (MAb). These data suggest that SIV infection alone was
not the cause of its upregulation, but rather it was induced either in vivo prior to cell
isolation or due to an unknown aspect of our isolation or culture conditions.

Multiple variants in Nef195-203MW9 impact surface Tetherin and CD28, but not
CD3 or MHC-I modulation in primary CD4 T cells. To identify the functional conse-
quences of escape in the Nef195-203MW9 epitope, we introduced the most common
Nef195-203MW9 variants identified from our cohorts into both the SIVmac239-encoding
plasmid, which was used to produce infectious SIV stocks bearing the introduced
mutations, and an expression construct (pCGCG) that expresses both Nef and green
fluorescent protein (GFP) from the same bicistronic mRNA by way of an internal
ribosomal entry site. Whenever possible, we measured the Nef-mediated modulation of
specific host proteins in primary CD4 T cells infected in culture with SIVmac239 and our
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FIG 3 Evolution in Nef195-203MW9 confers escape from CD8TL. (A) PBMC from animal r97088 8 weeks after SIV
infection were tested for reactivity to dilutions of peptides representing the wild-type Nef195-203MW9 peptide (WT)
and the most common variants identified by deep sequencing in our cohort. (B) Reactivity to variant peptides
assessed with week 8 PBMC from three animals from our cohort, tested in duplicate IFN-� ELISpot wells. Shown are
the reactivities relative to the wild type.

Selective Forces Underlying Viral Escape Journal of Virology

March 2018 Volume 92 Issue 5 e01822-17 jvi.asm.org 5

http://jvi.asm.org


Nef variants. We were able to assess the impacts of these mutants on Nef-mediated
modulation of CD3, MHC-I, CD28, and Tetherin using these cells. An additional two Nef
functions, CD4 downregulation and inhibition of SERINC5-mediated reductions in viral
infectivity, were measured using cell lines transfected with our pCGCG-Nef vectors.

To determine the impact of the mutants on Nef-mediated CD3, MHC-I, CD28, and
Tetherin downmodulation, we used our Nef mutant viruses to infect ConA-activated,
primary CD4 T cells using the spinoculation technique (71). After 36 h, we used MAbs
to label the surfaces of the cells for the expression of these proteins. After fixation and
permeabilization, cells were labeled with a fluorescein isothiocyanate (FITC)-labeled
MAb against the Gag p27 protein. We used differential gating of p27� and p27�

(uninfected and infected, respectively) cells (Fig. 5A) to assess surface Tetherin, CD3,
CD28, and MHC-I molecules using flow cytometry. We measured the n-fold downregu-
lation of each molecule relative to uninfected cells from a minimum of four healthy
macaques. Cells from each animal were tested singly, and in Fig. 5B to E the error bars
represent variations between animals.

While neither variant detected at M195 (M195I and M195V) had a significant impact
on downregulation of any of the tested molecules, the variants tested at all other
residues in the epitope (H196Q, P197T, A198D, Q199R, T200A, S201A, Q202K, and
W203C) significantly reduced Nef’s ability to downregulate Tetherin (Fig. 5B). Most also
impacted the ability of Nef to downregulate host CD28 molecules (Fig. 5C). Importantly,
the variant with the greatest impact on Nef-mediated Tetherin and CD28 downregu-
lation was H196Q. H196 is the N-terminal anchor residue, critical for binding of the
peptide to the Mamu-B*017:01 molecule, while variation of the C-terminal anchor
residue (W203C) also reduced both Nef-mediated Tetherin and CD28 downregulatory
capacity. We found that mutations in this epitope had no effect on expression of CD3
or MHC-I (Fig. 5D and E).

Viral evolution in Nef195-203MW9 modulates cell surface Env expression. We
next sought to determine whether selected variants in Nef195-203MW9 that impacted

BST2/Tetherin

Transcripts per million (TPM) in ConA stimulated, SIVmac239 infected CD4 T cells

Gene ID RM1 RM2 RM3 RM4
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FIG 4 RNA-seq analysis of ISG expression in primary CD4 T cells. Directional whole transcriptome libraries
were sequenced from SIV-infected primary CD4 T cells that were either activated with ConA or left
nonactivated. (A) Sashimi plot showing BST2/Tetherin coverage depth and exon splicing from a repre-
sentative animal. Coverage depth is shown by peaks above the axis, and splicing events are shown as
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Nef-mediated Tetherin expression also lead to increased cell surface Env expression. To
test this, we surface labeled cells with a rhesus-derived monoclonal antibody against
SIV gp120 (clone 1.9C) and stained intracellularly for Gag p27 and used the same gating
strategy as with other cell surface markers to determine the impact of our identified
mutants on surface Env expression. We found that most variants that impacted surface
Tetherin expression also led to increased Env expression with the most profound
impact on Env expression coming from the H196Q and W203C variants (Fig. 6A shows
representative data from cells from a single animal, while Fig. 6B shows the analysis
with cells from multiple animals). H196 and W203 are the anchor residues that bind the
Nef195-203MW9 peptide to the Mamu-B*017:01 molecule, and variation in these residues
completely abrogated recognition of the epitope by CD8TL.

Multiple variants of Nef195-203MW9 modulate cell surface CD4 expression.
Using SIV-infected CD4 cells, we found that surface expression of CD4 was reduced in
infected cells even in the absence of Nef (SIVmac239Δnef) possibly due to direct
interactions between Env and CD4 (Fig. 7A), negating our ability to assess variants of
Nef to modulate surface CD4 expression. Thus, to detect impacts of the variants on CD4
downregulation, we devised an alternate strategy that used introduction of the muta-
tions into the pCGCG Nef construct, which expresses both GFP and Nef via a bicistronic
mRNA. To detect the impacts of the variants on CD4 downregulation, we transfected
TZM-bl (CD4-expressing HeLa cells) with the pCGCG Nef vectors. Forty-eight hours later,
we labeled the surfaces of the cells with an anti-CD4 antibody. We used flow cytometry
to analyze CD4 expression in Nef-expressing cells, identified by the coexpression of GFP
in transfected cells (Fig. 7B). By comparing the median fluorescence intensity (MFI) of
CD4 expression in GFP� and GFP� cells in the same sample, we calculated the
downregulation of CD4 by each Nef variant. The H196Q variant had the most significant
impact on Nef’s ability to downregulate CD4 (Fig. 7C). Generally, the pattern of variants
that impacted CD4 downregulation mirrored that of variants that impacted CD28
downregulation, with the exception of P197T, which impacted CD28 but not CD4
downregulation.

Variation in every residue in Nef195-203MW9 impacts Nef-mediated anti-SERINC
activity. We next tested whether our identified variants in Nef195-203MW9 negatively
impacted Nef’s ability to enhance viral infectivity by countering the restriction factor,
SERINC5 (56, 58). Proviral SIVmac239 Δnef plasmid was transfected into JTag SER-

FIG 5 Legend (Continued)
CD3 (D), and MHC-I (E) levels were measured. Above each bar graph is a representative histogram showing the strategy for assessing surface
downregulation of each molecule. For each tested molecule, the n-fold downregulation was compared between each variant and wild-type SIVmac239
using a paired t test (*, P � 0.05).

Surface Env expression

0

1

2

3

4

M
19

5I
M

19
5V

H
19

6Q
P1

97
T

A
19

8D
Q

19
9R

T2
00

A
S2

01
A

Q
20

2K
W

20
3C

Δn
ef

N
-fo

ld
 in

cr
ea

se
 in

 s
ur

fa
ce

 E
nv

 e
xp

re
ss

io
n 

re
la

tiv
e 

to
 w

ild
 ty

pe
 S

IV
m

ac
23

9

* * *
*

*

*
M195I
M195V
H196Q
P197T
A198D
Q199R
T200A
S201A
Q202K
W203C

WT Nef

Δnef0

20

40

60

80

100

0-10
3

10
3

10
4

10
5

A B

FIG 6 Impact of mutations in the Nef195-203MW9 epitope on surface Envelope expression. (A) MFIs of
surface Env expression in Gag p27� cells infected with SIVmac239 and the indicated mutants. (B) n-fold
increases in surface Envelope expression in cells infected with each mutant virus compared to cells
infected with wild-type SIVmac239. *, P � 0.05 for each measure compared to cells infected with
wild-type SIVmac239 tested using a two-tailed t test.

Schouest et al. Journal of Virology

March 2018 Volume 92 Issue 5 e01822-17 jvi.asm.org 8

http://jvi.asm.org


INC3�/� cells that express SERINC5 and trans-complemented with pCGCG-empty vec-
tor or pCGCG-Nef constructs. At 72 h posttransfection, the viruses in the supernatant
were collected and quantified by p27 enzyme-linked immunosorbent assay (ELISA), and
the infectivity was assayed on TZM-bl reporter cells with p27-normalized viruses. The
anti-SERINC5 activity of each Nef195-203MW9 variant was impaired with variants of
residues closest to the dileucine and diacidic motifs with the strongest impacts (Fig. 8).

Detected variants in Nef195-203MW9 do not globally impact Nef protein stabil-
ity and do not impact viral replication in vitro. To assess the impact of the tested
mutations on Nef protein stability, we infected ConA-activated primary CD4 T cells with
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the mutant viruses and labeled cells intracellularly with both an anti-Nef monoclonal
antibody and an anti-Gag p27 antibody. We then used flow cytometry to measure the
median fluorescent intensity of Nef expression in p27� cells 36 h after infection (Fig.
9A). None of the tested mutants significantly impacted Nef stability (Fig. 9B).

To assess the impacts of our identified Nef195-203MW9 variants on viral replication
kinetics, we used quantitative RT-PCR to measure viral RNA in supernatant of infected
CD4 T cells over a 1-week assay. None of the variants was significantly different from the
wild type. We also conducted competition assays with equal ratios of wild-type
SIVmac239 and virus harboring the M195I, M195V, and H196Q variants. We infected
ConA-activated primary CD4 T cells with the wild type or the variant viruses and cloned
and sequenced a PCR amplicon spanning the Nef195-203MW9 epitope in supernatant
virus on days zero (the inoculum), 2 and 7 days after infection. The ratios of variant
viruses in the assays stayed relatively constant throughout the assays, suggesting no
impact on viral replicative capacity (Fig. 9C).

DISCUSSION

We identified a pattern of variation in the Nef195-203MW9 epitope that suggest that
viral evolution in this epitope is a result of an interplay of selective forces to effectively
escape CD8TL immunity while maintaining optimal modulation of molecules such as
Tetherin. This epitope completely encompasses the region spanning the ExxxLM motif
(ExxxLL in HIV-1) and the diacidic (DD) motif, both of which are sorting signals
important for interaction with host adaptor proteins, which Nef uses to facilitate
clathrin-mediated endocytosis and modulation of multiple surface proteins, including
Tetherin, CD4, CD8, CD28, SERINC3, and SERINC5 and possibly others (55, 56, 62, 63, 65,
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72). Hence, immune targeting of the Nef195-203MW9 epitope might be important for
viral control due to fitness costs associated with viral escape in this critical region of the
Nef protein. Interestingly, CD8TL targeting of nearly the same epitope in Mauritian
cynomolgus macaques has been associated with control of SIV, further demonstrating
the importance of this region of Nef (42).

Several mutations we identified in the Nef195-203MW9 epitope impaired Nef’s ability
to modulate Tetherin, CD4, CD28, and SERINC5, while others only impacted modulation
of a subset of these molecules, suggesting genetic separation of these Nef functions
and that the loss of direct binding between Nef and AP-2 likely does not fully explain
the compromised functions in this study. Thus, viral evolution in Nef195-203MW9 likely
impacts direct interactions between Nef and AP-2 but may also impact other interac-
tions as well. For instance, the P197T variant significantly impacted Nef’s ability to
modulate Tetherin, CD28, and SERINC5 but did not impact CD4 downregulation.
Several of the residues we identified as being important for Tetherin and/or CD4
modulation were recently shown to impact the same molecules through the use of
alanine substitutions (64), while our data demonstrated overlapping but not identical
impacts. For instance, Serra-Moreno et al. reported that positions Q199 and T200 in Nef
(p5 and p6 in the epitope) were important for Tetherin but not CD4 downregulation
(64). Our results show that these residues are important for both Tetherin and CD4
downregulation. It is not entirely surprising that our approach of using mutants
selected in vivo would have results that differed from those using alanine scanning and
highlight the need to address Nef functions with multiple approaches, particularly
given the immunogenicity of Nef and the propensity of it to evolve to escape CD8TL
responses.

It is interesting that the sole residue in the Nef195-203MW9 epitope that could vary
with the least impact on tested functions is the methionine in the first position. This
residue forms part of what is typically characterized as a dileucine motif (ExxxLL in
HIV-1, ExxxLM in SIVmac239) that binds host AP-2 proteins. However, the M195I variant
at this position also did not provide complete escape from CD8TL but was the most
commonly selected variant. These data underscore the balance of providing escape
with a minimum of loss of function. In contrast, variation in residues near the motif,
such as H196Q, which provided complete escape but dramatically impacted all func-
tions known to rely on AP-2 binding. The AP-2 protein tolerates more variation in the
recognition sequence of targeted molecules than other adaptor proteins, such as AP-1
and AP-3 (73), which might explain our data. Our data are nonetheless important in that
they highlight the process by which selection must favor a compromise between loss
of function with escape from immune responses. CD8TL that target specific regions of
HIV-1 Gag are correlated with viral control, likely due to fitness costs associated with
viral evolution in targeted epitopes (25, 74, 75). Our data suggest that similar mecha-
nisms could be important for CD8TL that target the viral Nef protein, which is inherently
more variable than Gag and, as such, often ignored as an important CD8TL target. Many
CDTL escape mutations in Gag are associated with extraepitopic mutations that com-
pensate, or partially compensate, for the functional consequences of variation within
the epitope. We tested whether any of the variants we characterized were commonly
associated with any specific variants outside the epitope. Since variation at every
residue in the Nef195-203MW9 epitope negatively impacted Nef’s ability to perform at
least one of the tested AP-2 dependent functions, extraepitopic variants might com-
pensate to restore or partially restore these functions. Although extensive sequence
variation occurred in Nef outside the Nef195-203MW9 epitope in all animals, we found no
evidence of compensatory variation in Nef that associated with any of the variants we
tested, i.e., no specific variants outside the epitope were found to co-occur with variants
within the epitope. In fact, the most common variants observed outside the epitope
were found within the Nef165–173IW9 epitope, which is also restricted by Mamu-
B*017:01 and which also evolves in the face of acute CD8TL immune pressure (69).

Unfortunately, the three-dimensional structure of the flexible loop of SIV Nef (which
contains the Nef195-203MW9 epitope) has not been determined. However, the structure
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of HIV-1 Nef complexed with human AP-2 is known (63), and this structure clearly
showed that the dileucine motif in Nef (LM in SIVmac239) was physically anchored to
the AP-2 protein (60). However, the H166 residue (homologous to H196 in SIVmac239
Nef) protruded away from AP-2 but formed part of a small loop, presumably important
for the dileucine anchor. Without similar data for SIV Nef, we cannot be certain of the
role of this H residue in SIV Nef interactions with macaque AP-2, and our data do not
directly address how variation in Nef195-203MW9 impacts interactions between Nef and
AP-2 proteins. Regardless, these data further support an important role for this residue
in AP-2 interactions despite not interacting directly with the AP-2 protein.

One of the most recently discovered functions of Nef is its ability to enhance virion
infectivity by preventing host SERINC3 and SERINC5 proteins from being packaged into
viral particles. Given this function relies on Nef interactions with AP-2 proteins (55, 56,
76), it stands to reason that variants that impact downregulation of Tetherin, CD4, and
CD28 might also impact SERINC3 and SERINC5 modulation. Indeed, we found that this
function may have been the most impacted by variation in the Nef195-203MW9 epitope,
including the M195I and M195V variants, which were the most dominant residues
selected for in our cohort.

Finally, we found that the N-terminal anchor residue in the epitope, H196, was
critical for all tested functions. This amino acid is conserved across nearly all sequenced
primate lentiviral Nef proteins (77), suggesting strong stabilizing selection. Hence,
targeting this epitope could limit pathways of escape enabling enhanced viral control.
It is well known that viral escape can occur in nonanchor residues, but variant viruses
harboring such mutations can also be targeted by de novo, variant-specific CD8TL
responses. Indeed, we showed previously that variation at p1 of this epitope, specifi-
cally the M195I variant, maintained the ability to bind the Mamu-B*017:01 molecule
and was recognized by CD8TL in chronically infected macaques, suggesting that the
most common escape variant in the epitope may not confer complete escape from host
immunity (14).

Together, our data assess the immunovirology of the interaction between the
Mamu-B*017:01 molecule and SIV. Intriguingly from a molecular immunology perspec-
tive, the mutation in Nef195-203MW9 that most dramatically impaired downregulation of
Tetherin, CD4, and CD28 was in the anchor residue that binds the Nef195-203MW9
peptide to the Mamu-B*017:01 molecule. This same residue might also anchor the
Nef196-203HW8 peptide to the Mafa-A1*063 molecule, which is also associated with
enhanced control of SIVmac239 in Mauritian cynomolgus macaques (42). Hence, our
data link the molecular immunology of the MHC-associated lentiviral control with
specific functions and motifs of the SIV Nef protein. Taken together, our data suggest
that Nef-specific CD8TL can control viral replication by targeting epitopes in which viral
escape is associated with significant loss of critical functions. Hence, particular regions
of the Nef protein might be beneficial components of vaccines designed to induce
potent CD8TL responses.

MATERIALS AND METHODS
Viral RNA isolation, RT-PCR, Illumina sequencing, and analysis. Viral RNA was isolated as previously

described (69) using the QIAamp viral RNA minikit (Qiagen, Valencia, CA) or the QIAamp UltraSens virus
kit for low viral load samples (specifically from week 60 from RM r03007). We reverse transcribed and PCR
amplified SIV vRNA from select time points as described previously (78, 79) using Superscript III one-step
RT-PCR (Life Technologies) and four overlapping PCR amplicons that, together, span the genome.
RT-PCR-amplified products were isolated using agarose gel electrophoresis, followed by isolation of
fragments using a Qiagen MinElute gel extraction kit. Fragments were quantified using Qubit reagents
(Life Technologies, Carlsbad, CA). All amplicons from a single viral genome were pooled in equimolar
amounts. Approximately 1 ng of DNA was subjected to tagmentation (simultaneous fragmentation and
adaptor ligation) using the Nextera XT DNA prep kit. After cleaning of the DNA using an Agencourt
AMPure system, the samples were PCR amplified to add Illumina-compatible adaptors onto each
fragment, followed by further cleanup. DNA fragments were then sequenced by using an Illumina MiSeq
instrument. Data analysis was performed using Geneious software version 10.0.2 (created by Biomatters).
After pairing bidirectional sequence reads, sequence reads were trimmed and mapped to the SIVmac239
genome. Nonsynonymous polymorphisms were pursued in subsequent assays if they were represented
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multiple times and at a minimum frequency of 1% of sequences at a given nucleotide. We used this
cutoff previously with this same sequence data set (69).

ELISpot assays. IFN-� ELISpot assays were performed as previously described (80) using 100,000
PBMC per well in 96-well plates (Mabtech, Stockholm, Sweden) assayed in duplicate. Peptide represent-
ing the Nef195-203MW9 epitope and variants thereof were synthesized by GenScript (Piscataway, NJ) and
used in assays at 0.01 mM or in 10-fold dilutions.

Site-directed mutagenesis and mutant virus and plasmid production. Mutations identified via deep
sequencing were engineered into a plasmid encoding the 3= end of the SIVmac239 genome, as well as
the pCGCG-Nef plasmid, as described previously (81) using a Stratagene QuikChange site directed
mutagenesis kit (Agilent, Santa Clara, CA) and according to the manufacturer’s protocol with primers that
harbored the mutant residue near the center of the primer. Virus was produced by transfecting plasmids
into Vero cells using Lipofectamine 2000 (Life Technologies). Twenty-four hours after transfection, Vero
cells were overlaid with CEMx174 cells, and virus was harvested at the peak of syncytium formation
(typically 10 to 14 days posttransfection). The viruses were then sequenced to verify maintenance of the
mutations through production. At 24 h after complete medium replacement, virus stocks were obtained
by freezing filtered culture media from the infected CEMx174 cells at �80°C for short-term storage and
in vapor-phase liquid nitrogen for longer-term storage. Introduced mutations were verified by Sanger
sequencing of both the plasmid DNA and the harvested viral stocks prior to use in assays.

CD4� T cell isolation, infection, and functional assays. Primary PBMC were harvested from SIV-naive
Indian rhesus macaques from the Tulane National Primate Center’s specific-pathogen-free breeding
colony. CD4� T cells were isolated from the PBMC using nonhuman primate CD4 microbeads (Miltenyi
Biotec, Bergisch Gladbach, Germany). CD4� T cells were then activated using ConA (Sigma, St. Louis, MO)
for 3 days in RPMI 1640 medium (Cellgro; Corning, Corning, NY) containing 15% FCS (Atlas Biologicals,
Fort Collins, CO) and 50 U/ml IL-2 (Peprotech, Rocky Hill, NJ). Activated cells were infected using the
spinoculation technique (71) with virus purified through 20% sucrose as described previously (82). At 36
h after infection, the cells were surface labeled for the following molecules: CD4 (Qdot605, NHP Reagent
Reference Program, www.nhpreagents.org/), CD3 (PE-Cy7; BD Biosciences, Franklin Lakes, NJ), Tetherin
(PE; BioLegend, San Diego, CA), and MHC-I (W6/32, Alexa 647; BioLegend). After fixation, the cells were
washed and permeabilized, followed by intracellular staining with an FITC-labeled antibody against the
Gag p27 molecule (NIH AIDS Reagent Program and conjugated with FITC at the Wisconsin National
Primate Research Center).

Measurements of surface Env expression. Surface Envelope expression was measured using flow
cytometry as described previously (83, 84). Briefly, the cells were incubated at room temperature with the
rhesus anti-gp120 MAb clone 1.9C for 30 min, followed by two washes and then incubated with a
phycoerythrin (PE)-labeled anti-rhesus secondary antibody for 30 min, followed by fixation and acqui-
sition. Flow cytometry was performed on a BD Fortessa or LSRII instrument, and data were analyzed using
FlowJo software (vX.07).

RNA-seq on SIV-infected CD4 T cells. CD4 T cells were isolated and infected as described above. At
36 h after infection, total RNA was isolated using the RNeasy minikit with genomic DNA eliminator
columns (Qiagen). The rRNA was removed, and strand-specific cDNA libraries were constructed using the
Illumina TruSeq kit. Samples were multiplexed at up to six samples per lane and sequenced on an
Illumina HiSeq 2000 instrument. Sequence reads were aligned to the rhesus macaque (MMul8.0.1)
genome using a STAR aligner (85), and transcript abundance estimates were generated using RSEM (86).
Data, including coverage depth and splicing patterns, were visualized using Integrated Genome Viewer
(Broad Institute).

TZM-bl CD4 downregulation assay. TZM-bl cells were obtained from the NIH AIDS Reagent
Program. TZM-bl cells were cultured in Dulbecco modified Eagle medium with 10% fetal bovine serum
(FBS). For the CD4 downregulation assays, cells were plated in 48-well plates and transfected with 1 �g
of each pCGCG vector using the GenJet transfection reagent for HeLa cells (SignaGen). At 48 h after
transfection, cells were removed from the plate using trypsin and labeled with a BV605-labeled anti-CD4
antibody (clone OCT-4; BioLegend) for 30 min. The cells were then washed once using phosphate-
buffered saline supplemented with 10% FBS and fixed. Data were acquired on a BD LSRII instrument and
analyzed using FlowJo software (vX.07). Preliminary analysis showed that Nef and GFP were expressed
in a 1:1 ratio, so gating on GFP-positive cells served as a surrogate for Nef expression. The MFI values for
GFP-positive cells were compared to those for GFP-negative cells in each sample. Data were analyzed
using GraphPad Prism and are displayed as the n-fold downregulation relative to untransfected (GFP-
negative) cells. Downregulation was compared between each mutant pCGCG Nef vector and wild-type
pCGCG Nef using a two-tailed t test, and the differences were considered significant if the P value was
�0.05.

Infectivity assay to assess SERINC5 antagonism. JTag SERINC3�/� cells were kindly provided by H.
Gottlinger and were cultured in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, and
penicillin/streptomycin. To assess the anti-SERINC5 activity of SIV Nef mutants, 100,000 JTag SERINC3�/�

cells were plated and transfected with 450 ng of SIVmac239Δnef and 50 ng of pCGCG-Nef expression
constructs, or pCGCG-empty constructs using GenJet Jurkat transfection reagent (SignaGen) according to
the manufacturer’s instructions. At 72 h posttransfection, the supernatant was collected, and p27 in the
supernatant was quantified using SIV p27 antigen capture ELISA kit (ABL Inc.). The infectivity of the
resultant viruses was assayed with 0.5 ng equivalent of p27 applied to 10,000 TZM-bl cells in duplicate.
The luciferase activities of the infected cells were assayed 72 h postransduction. The percent anti-
SERINC5 activities of the individual Nef mutants were normalized to the pCGCG-WT Nef and pCGCG-
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empty vector as follows: % anti-SERINC5 activity � (infectivity with Nef mutant � infectivity with empty
vector)/(infectivity with WT Nef � infectivity with empty vector).

Viral replication and competition assays. One million ConA-activated CD4� T cells were infected
with 100 pg of each indicated virus for 4 h, followed by plating in duplicate in 0.5 ml on medium with
50 U/ml IL-2. Half of the medium was replaced every other day, and virus was quantified on days 2, 4,
and 8 postinfection according to previously described methods (87). Competition assays entailed the
same infection protocol but using equal amounts of both wild-type SIVmac239 and the indicated
variants. RT-PCR was conducted with PCR primers flanking the Nef195-203MW9 epitope (forward primer,
GGATACTCGCAATCCCCAGG; reverse primer, CCTCTGACAGGCCTGACTTG) using a SuperScript III one-step
RT-PCR kit (Life Technologies). PCR amplicons were cloned into Top10 cells, and 32 clones were picked
for each time point and sequenced.
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