
Enhanced n‑Doping Efficiency of a
Naphthalenediimide-Based Copolymer
through Polar Side Chains for Organic
Thermoelectrics
David Kiefer,† Alexander Giovannitti,‡ Hengda Sun,§ Till Biskup,⊥ Anna Hofmann,† Marten Koopmans,∥

Camila Cendra,# Stefan Weber,⊥ L. Jan Anton Koster,∥ Eva Olsson,∇ Jonathan Rivnay,○

Simone Fabiano,§ Iain McCulloch,‡,◆ and Christian Müller*,†

†Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
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∥Zernike Institute for Advanced Materials, 9747 AG Groningen, The Netherlands
#Department of Materials Science and Engineering, Stanford University, Stanford, California 94304, United States
∇Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
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ABSTRACT: N-doping of conjugated polymers either requires a
high dopant fraction or yields a low electrical conductivity because
of their poor compatibility with molecular dopants. We explore n-
doping of the polar naphthalenediimide−bithiophene copolymer
p(gNDI-gT2) that carries oligoethylene glycol-based side chains and
show that the polymer displays superior miscibility with the
benzimidazole−dimethylbenzenamine-based n-dopant N-DMBI.
The good compatibility of p(gNDI-gT2) and N-DMBI results in a
relatively high doping efficiency of 13% for n-dopants, which leads
to a high electrical conductivity of more than 10−1 S cm−1 for a
dopant concentration of only 10 mol % when measured in an inert
atmosphere. We find that the doped polymer is able to maintain its
electrical conductivity for about 20 min when exposed to air and
recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI
results in a larger thermoelectric power factor of up to 0.4 μW K−2 m−1 compared to other NDI-based polymers.

Doping of organic semiconductors is essential for the
optimization of a number of electronic components,
ranging from the hole and electron blocking layers

used in organic solar cells1−3 and organic light-emitting diodes
(OLEDs)1,4,5 to trap filling in organic field-effect transistors
(OFETs)6−8 and the legs of thermoelectric generators.9,10 For
many of these applications, conjugated polymers are partic-
ularly intriguing because they permit one to adjust the
rheological properties of processing solutions and the
mechanical properties of the final (flexible) thin film
architectures. Doping can be achieved through electron transfer
between the semiconductor and a molecular dopant via a redox

reaction. Alternatively, a proton/hydride (H+/H−) can be
transferred from an acid/base to the semiconductor.11 In the
case of p-doping, positive charge carriers are introduced,
whereas n-doping refers to the addition of extra electrons to the
conjugated system. It is desirable that each dopant molecule
that is added to the semiconductor material introduces as many
charges as possible. Therefore, the presence of unreacted
dopant should be avoided in order to maximize the amount of
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conducting material. Moreover, the presence of excess dopant
has the tendency to disrupt the nanostructure of the neat
semiconductor, which can negatively impact charge trans-
port.10,12−14 Hence, it is critical that the doping efficiency, i.e.,
the fraction of dopants that ultimately create a charge on the
organic semiconductor, be as high as possible.15

To realize thermoelectric generators, both p- and n-type
materials are needed. They should display a high figure of merit
ZT = α2σ·T/κ, where α is the Seebeck coefficient, σ the
electrical conductivity, T the absolute temperature, and κ the
thermal conductivity. If the thermal conductivity, which is
challenging to measure for thin film architectures, is unknown,
the power factor α2σ is instead used to compare the
thermoelectric efficacy of different materials. P-doping of
conjugated polymers is now well established6,16,17 and can be
carried out with high efficiency and with high environmental
stability, leading to a thermoelectric power factor of at least 100
μW m−1 K−2.18−20 In contrast, n-doping continues to pose a
formidable challenge because of very low doping efficiencies as
well as poor stability of the doped state.21 The most widely
studied classes of n-type materials include naphthalenediimide
(NDI)-based copolymers,14,22−29 diketopyrrolopyrrole (DPP)-
based polymers,30−32 as well as fullerenes and their
derivatives.3,8,33−45 We have compiled data from the literature
to compare the dopant fractions that are required to achieve the
maximum conductivity σmax through n-doping of various
semiconductors (Figure 1; Supporting Information Table S1).
It is evident that n-doping of NDI-based polymers is limited by
a too low doping efficiency. The result is either a low maximum
electrical conductivity of less than 10−2 S cm−1 at low dopant
fractions (Figure 1a; bottom left) or the need for a large dopant
fraction of more than 30 mol % to achieve a higher electrical
conductivity (Figure 1a; top right). For example, Schlitz et al.
investigated n-doping of the high-mobility naphthalenedii-
mide−bithiophene copolymer p(NDI2OD-T2)46 with the
commonly used n-dopant N-DMBI (see Figure 2 for the
chemical structure) and reached an electrical conductivity of
about 10−3 S cm−1 at a dopant fraction of 9 mol %.14 The
insolubility of N-DMBI in the host polymer leading to
segregation of the dopant was noted to be a limiting effect
for the electrical properties. Naab et al. studied doping of
several NDI-based polymers with a dimer version of DMBI and
found that a dopant fraction of up to 43 mol % was required to
maximize the electrical conductivity,26 despite a higher doping
efficiency, because each dimer can create two charges.42

One emerging tool to increase the doping efficiency is the
replacement of nonpolar alkyl side chains with more polar
oligoethylene glycol side chains, which enhances the compat-
ibility of semiconductor/dopant pairs.17 Li et al. have observed
that the common p-dopant F4TCNQ more readily diffuses into
a polythiophene that carries oligoethylene glycol side chains as
well as a sulfonate group, as compared to poly(3-hexylth-
iophene) (P3HT), which indicates that polar side chains can
improve dopant miscibility.49 As a result, polar side chains can
lead to complete p-doping efficiency of polythiophenes by
F4TCNQ, resulting in both a σmax ≈ 100 S cm−1 for a low
dopant fraction of 10 mol % as well as enhanced thermal
stability.13 Likewise, fullerenes that carry oligoethylene glycol
side chains feature enhanced compatibility with N-DMBI and
therefore a high doping efficiency of about 18%, which yielded
a maximum conductivity of about 2 S cm−1 and power factor of
up to 19 μW m−1 K−2.39,43

In this work, we explore n-doping of the naphthalenedii-
mide−bithiophene copolymer p(gNDI-gT2) (for details on
synthesis and characterization, see the Supporting Information
and Figures S1 and S2), a structural analogue of p(NDI2OD-
T2) with polar oligoethylene glycol-containing side chains on
both the NDI acceptor and the bithiophene donor unit, which
has proven to be a promising material for organic electro-
chemical transistors (OECTs).50−52 We anticipate that the
structural alteration from nonpolar alkyl side chains to more
polar oligoethylene glycol side chains will aid doping of the
polymer backbone through enhanced dopant miscibility. We
chose to investigate n-doping with N-DMBI, which is thought
to donate a hydride (H−),27,42,53,54 and found that our best
results in terms of doping efficiency and maximum conductivity
are superior to previous results that have been reported for
other n-type polymers (Figure 1a, bottom right, green).
In a first set of experiments, we recorded UV/vis spectra of

p(gNDI-gT2) solutions (Figure 3a) and films (Figure 3b)
before and after addition of N-DMBI. The thin film spectrum
of the pristine polymer consists of a peak at around ∼440 nm
and a broad spectral feature between 600 and 1500 nm, which
we attribute to the π−π* transition and a strong intramolecular
charge transfer complex as a consequence of strong donor−
acceptor interactions.50,55 Because Giovannitti et al. observed

Figure 1. (a) Literature values of the molar dopant fraction
required to reach the maximum electrical conductivity (σmax) for n-
doped NDI-based polymers (▲),14,22−24,26,27,29 other (e.g DPP- or
NTDI-based) polymers (▼),30−32,47,48fullerene derivatives
(⧫),8,34,36−43,45 and p(gNDI-gT2) (★, this work); (b) correspond-
ing Seebeck coefficient (α) at maximum electrical conductivity;
empirical relation α ∝ σ−1/4.10
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very little variation of the higher-energy absorption peak upon
electrochemical doping, we chose to normalize all spectra to
this peak for comparison. We note that for slight doping with
10 mol % N-DMBI the low-energy absorption peak slightly
increases. Instead, upon additional doping, the broad spectral
feature at higher wavelengths diminishes, while the absorption
at around 600 nm increases relative to the peak at 440 nm after
doping with N-DMBI. The latter trend is in full agreement with
the study by Giovannitti et al. and previous literature on n-
doping.26,28,50 Doping results in a gradual red shift of the low-
energy absorption peak from 1016 nm for the pristine polymer
to 1040 nm for p(gNDI-gT2) doped with 50 mol % N-DMBI.
We tentatively assign this red shift as well as the slight increase
in absorption upon doping with 10 mol % N-DMBI to
planarization of the polymer backbone. Interestingly, we note
that the addition of N-DMBI has seemingly no effect on the
solution spectra of dissolved p(gNDI-gT2). Thus, we conclude
that doping of the polymer is likely to occur during the film
formation step upon solvent removal.
To obtain an estimate of the charge carrier density (n), we

used the change in the activation energy of the conductivity
upon doping. The estimation is based on the extended
Gaussian disorder model (EGDM)56 as reported by Liu et
al.39 The model yields a general relationship of the charge-
carrier density and Ea/E0, where Ea and E0 are the activation
energies at a certain doping fraction and at a low carrier density

Figure 2. Chemical structures of (a) p(gNDI-gT2)50 and (b) the
molecular dopant N-DMBI.

Figure 3. (a) Solution absorbance spectra of pristine p(gNDI-gT2), p(gNDI-gT2) + 20 mol % N-DMBI (note that the spectral feature at 315
nm is due to neat N-DMBI), and neat N-DMBI in chloroform; (b) normalized absorbance spectra of pristine and N-DMBI-doped p(gNDI-
gT2) films (10, 20, 30, and 50 mol % N-DMBI); (c) Arrhenius plots of variable-temperature conductivity measurements (dashed lines are fits
to the Arrhenius equation, yielding the activation energies E0 and Ea); and (d) electron paramagnetic resonance (EPR) spectra of pristine and
N-DMBI-doped p(gNDI-gT2) films.
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(pristine material) for a specific disorder parameter, respec-
tively. The activation energies of pristine and doped p(gNDI-
gT2) were extracted from variable-temperature electrical
conductivity measurements by fitting an Arrhenius temperature
dependence (Figure 3c)

σ σ= −e E k T
0

/( )a B

where Ea is the activation energy, kb the Boltzmann constant,
and σ0 a pre-exponential factor that does not influence the
activation energy. We obtained activation energies of E0 = 290
meV and Ea = 130 meV for the pristine polymer and a sample
doped with 20 mol % N-DMBI, respectively. We extracted a
disorder parameter of 90 meV and hence estimated a charge
carrier density of 1.5 × 1019 cm−3, assuming an average hopping
distance for conjugated polymers of 1 nm57,58 and an overall
density of states of 1021 cm−3 (see Supporting Information
Figure S3 for details). Note that we can produce good fits for
nearest-neighbor hopping as well as 1-, 2-, and 3D variable
range hopping, which prevents us from determining the
transport mode based on our data (see Supporting Information
Figure S4).
To corroborate the estimated charge carrier density of N-

DMBI doped p(gNDI-gT2), we employed electron para-
magnetic resonance (EPR) spectroscopy (Figure 3d). In the
case of (negative) polarons as predominant charge carrier
species, the electron spin density acquired by measurement
against a known reference sample is directly equivalent to the
charge carrier concentration. The lack of an EPR signal for the
pristine polymer indicates that the number of unpaired
electrons is low. In contrast, for a sample doped with 20 mol
% N-DMBI, we readily observe an EPR signal, indicating that
n-doping of the polymer has indeed taken place. Quantification
of the spectra yields a spin density of ∼1.0 × 1019 cm−3 (±0.3 ×

1019 cm−3). This value is consistent with our estimate for the
charge carrier density from the EGDM model, which indicates
that polarons are the predominant type of charge carriers
because bipolarons would not give rise to an EPR signal. We
explain the absence of an EPR signal for the neat polymer
despite considerable background doping (cf. discussion below),
with the 50 times lower conductivity and hence polaron
concentration, which means that our measurement is not
sensitive enough.
Comparison of the number of charge carriers n and the total

number of N-DMBI molecules nN‑DMBI allows us to estimate
the doping efficiency, i.e., the ratio n/nN‑DMBI. A dopant
concentration of 20 mol % translates into 1.3 × 1020 cm−3 N-
DMBI molecules, assuming a density of 1 g cm−3. Hence, we
estimate an approximate doping efficiency of about 13% for
p(gNDI-gT2) doped with 20 mol % N-DMBI. In comparison,
Schlitz et al. have deduced a more than 10-times lower N-
DMBI doping efficiency of only 1% for the nonpolar
p(NDI2OD-T2).14 In analogy to several studies of poly-
thiophenes13,49 and fullerenes39,43 decorated with more polar
oligoethylene glycol moieties, we attribute the higher doping
efficiency of N-DMBI-doped p(gNDI-gT2) to enhanced
miscibility of the polymer/dopant pair.
The low doping efficiency of polymers such as p(NDI2OD-

T2) results in the formation of numerous N-DMBI aggregates
on the film surface, which become clearly visible for a doping
fraction as low as 9 mol %.14 We therefore anticipate that the
superior doping efficiency of p(gNDI-gT2) reduces the
tendency for N-DMBI aggregation. We employed atomic
force microscopy (AFM) and scanning electron microscopy
(SEM) to study the surface topography of p(gNDI-gT2) thin
films (Figure 4a−d; Supporting Information Figures S5−S7).
Both AFM and SEM images indicate formation of dopant
aggregates on the surface of the blend films that increase in

Figure 4. Atomic force microscopy (AFM) height images of (a) pristine, and N-DMBI-doped p(gNDI-gT2): (b) 10, (c) 20, and (d) 30 mol %
N-DMBI. X-ray diffractograms of pristine and doped p(gNDI-gT2) obtained by integration along the (e) out-of-plane (qz) and (f) in-plane
(qxy) direction. Scattering from lamellar and π-stacking is indicated with (h00) and (0k0); scattering marked with an asterisk (*) is associated
with the neat dopant. 2D grazing-incidence wide-angle X-ray scattering images of (g) pristine p(gNDI-gT2) and (h) the polymer doped with
20 mol % N-DMBI.
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quantity and size with an increasing amount of N-DMBI. The
surface roughness (Supporting Information Figure S8) changes
only slightly from 2 nm for the pristine film to 6 nm after up to
20 mol % N-DMBI is added but increases sharply for 30 mol %
and more. Intriguingly, the surface roughness in the regions
between the aggregates is not significantly affected by doping,
even at higher doping fractions, which suggests that the
nanostructure of the pristine polymer is largely maintained.
To further elucidate the effect of the dopant on the

nanostructure of the polymer, we obtained a series of scattering
diffractograms in the out-of-plane and in-plane directions
(Figure 4e,f) through integration of grazing-incidence wide-
angle scattering (GIWAXS) images of pristine and heavily
doped p(gNDI-gT2) (Figure 4g,h; Supporting Information
Figure S10). The pristine polymer features distinct scattering
peaks from lamellar stacking at q100 ≈ 0.27 Å−1 and q200 ≈ 0.54
Å−1 and from π-stacking at q010 ≈ 1.6 Å−1. Further, in the in-
plane scan, two additional peaks are present at qxy ≈ 0.45 Å−1

and qxy ≈ 0.9 Å−1. We assign these peaks to the repeat distance
along the backbone and argue that, similar to p(NDI2OD-
T2),59−62 two polymorphs are present. The diffraction peaks
that we observe for pristine p(gNDI-gT2) are not altered upon
doping with 20 mol % N-DMBI. Addition of 50 mol % dopant
results in the appearance of a new out-of-plane scattering peak
at qz ≈ 1 Å−1 and in-plane at qxy ≈ 1.3 Å−1 as well as qxy ≈ 1.75
Å−1, which we explain with the presence of unreacted excess
dopant. Further, annealing of the films does not alter the
diffraction from the polymer but results in a slight shift of the
peaks associated with excess N-DMBI, as well as a decrease in
scattering intensity (Supporting Information Figure S11). We
conclude that significant segregation only takes place for a
dopant concentration above 20 mol %. Note that a few isolated
aggregates are already visible in the AFM images of p(gNDI-
gT2) doped with 20 mol % N-DMBI, which are weakly visible
in the GIWAXS measurements. Comparison with the nonpolar
p(NDI2OD-T2) (cf. study by Schlitz et al.14) indicates that the
polar oligoethylene glycol side chains largely suppress N-DMBI
aggregation up to a concentration of about 20 mol %, which is
consistent with our picture of enhanced polymer/dopant
miscibility.
In a further set of experiments, we characterized the electrical

properties of p(gNDI-gT2) ≈ 60 nm thin films doped with
various amounts of N-DMBI (Figure 5). The pristine polymer
features an electrical conductivity of 6 × 10−3 S cm−1, which
arises due to background doping. In a first regime up to 20 mol
%, the addition of N-DMBI is concomitant with an increase in
electrical conductivity. We reach a value above 10−1 S cm−1,
which is more than 2 orders of magnitude higher than
p(NDI2OD-T2) doped with N-DMBI (Supporting Informa-
tion Figure S12a) due to the here-reported higher doping
efficiency in the case of p(gNDI-gT2). At the same time, for a
dopant concentration up to 20 mol %, the Seebeck coefficient
decreases from 359 to 93 μV K−1. Upon further doping, we
observe a substantial drop of the electrical conductivity by
nearly 2 orders of magnitude. In contrast, in this second regime,
the Seebeck coefficient only slightly decreases to, e.g., 70 μV
K−1 for 30 mol % N-DMBI, indicating that the number of
mobile charge carriers is not strongly enhanced upon further
addition of N-DMBI. We rationalize this behavior with gradual
disruption of the polymer nanostructure by excess unreacted
dopant, which coincides with the appearance of N-DMBI
aggregates (cf. Figure 4).

We chose to compare the thermoelectric performance of N-
DMBI-doped p(gNDI-gT2) with the empirical correlation that
Glaudell et al. have proposed for the thermoelectric power
factor of not mobility-limited p-doped semiconductors: α2σ ∝
σ1/2.10 We observe a good correlation for a doping
concentration of up to 20 mol % but a considerable deviation
for higher amounts of N-DMBI. This behavior corroborates our
picture that excess dopant interrupts the nanostructure of the

Figure 5. (a) Electrical conductivity (σ) and Seebeck coefficient
(α); dashed lines are a guide to the eye. (b) Thermoelectric power
factor (α2σ) as a function of the electrical conductivity at various
dopant fractions; the dashed line represents the empirical relation
α2σ ∝ σ1/2.10 (c) Air stability of pristine and N-DMBI-doped
p(gNDI-gT2): the current at 0.5 V was extracted from I−V curves
recorded in nitrogen, in air, and finally again in nitrogen; note that
the nonohmic behavior of several samples prevented us from
extracting the electrical conductivity. A contact geometry with a
channel length of 1000 μm and a channel width of 30 μm was used
for air stability measurements of doped samples, which resulted in
similar currents for the pristine and doped sample.
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polymer, causing a considerable reduction in mobility and
hence electrical conductivity at high dopant fractions. Overall,
we obtain a maximum thermoelectric power factor of 0.4 μW
K−2 m−1 in the case of doping with only 10 mol % N-DMBI,
which is much higher than the highest value of 0.02 μW K−2

m−1 measured for p(NDI2OD-T2) (Supporting Information
Figure S12c).
For p(gNDI-gT2) doped with up to 20 mol % N-DMBI, we

anticipate that the electrical conductivity is not limited by the
bulk electron mobility. To gain a more complete picture of
charge transport in the here-studied system, we estimate the
electron mobility μ according to σ = nqμ, where q is the
elementary charge, i.e., 1.6 × 10−19 C. For a dopant
concentration of 20 mol %, for which we have deduced the
charge carrier density from EGDM as well as EPR, we obtain a
value of μ ≈ 0.2 cm2 V−1 s−1. This value is considerably higher
than the electron field-effect mobility μFET ≈ 10−5 cm2 V−1 s−1

reported for the pristine polymer, which may arise due to the
low degree of polymerization of not more than seven repeat
units50 or due to the presence of polar side chains attached to
the backbone of the copolymer. In contrast, the here-studied
case of highly doped p(gNDI-gT2) does not appear to suffer
from a low electron mobility. This observation is consistent
with our recent study on p-doping of P3HT, where we likewise
concluded that the molecular weight does not influence the
conductivity at high dopant levels.63

Finally, we investigated the air stability of the electrical
conductivity of a doped and a pristine thin film of p(gNDI-
gT2) by exposing freshly prepared samples to air while
measuring the current−voltage (I−V) behavior at various times.
The nonlinear behavior of doped p(gNDI-gT2) samples after
30 min in air prevented us from extracting the electrical
conductivity. Instead, we chose to plot the electrical current at
0.5 V (Figure 5c; cf. Supporting Information for I−V curves,
Figure S13). The doped and pristine samples show a markedly
different response to air exposure. For the pristine polymer, we
observe an immediate drop of the current. In contrast, N-
DMBI-doped p(gNDI-gT2) is able to maintain a similar
current (and hence electrical conductivity) for the first 20 min
of air exposure, which suggests that the doped polymer is more
air-stable and hence can be handled outside of a protective
atmosphere for at least a short period of time. However, after
30 min of air exposure, the current likewise drops by several
orders of magnitude. After returning the samples to the
glovebox, the current measured for the doped and pristine
polymer quickly recovers. Subsequent annealing at 80 °C for 10
min almost restores the current (and hence the electrical
conductivity) to the initial value. We tentatively explain this
behavior with adsorption of, e.g., oxygen and water from the
ambient atmosphere introducing charge traps, which are
subsequently desorbed from the film upon re-exposure to a
protective atmosphere and annealing.21 To demonstrate the
negative influence of water, we compared the conductance of
the doped polymer at ambient conditions before and after
placing a water droplet onto the film, which caused a 5-fold
decrease in conductance (Supporting Information, Figure S14).
We have studied n-doping of the polymer p(gNDI-gT2),

which bears oligoethylene glycol-based chains, with the hydride
dopant N-DMBI. The polar side chains facilitate more effective
doping of the semiconducting polymer by increasing the
miscibility with the dopant, resulting in a doping efficiency of
∼13% for a sample doped with 20 mol % N-DMBI. We were
able to prepare films with a conductivity above 10−1 S cm−1 and

obtained a thermoelectric power factor of up to 0.4 μW K−2

m−1. Additional doping leads to segregation of the dopant,
which ultimately results in a drastic reduction in the
thermoelectric performance caused by a less optimal nano-
structure due to excess unreacted dopant. Moreover, we found
that N-DMBI-doped p(gNDI-gT2) displays improved air
stability as compared to the pristine polymer. We conclude
that polar side chains are a powerful tool for the design of more
conductive and stable n-type materials.
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