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Abstract

The investigation of biological systems involving all organs of the body including the skin is in an 

era of big data. This requires heavy-duty computational tools, and novel statistical methods. 

Microarrays have allowed the interrogation of thousands of common genetic markers in thousands 

of individuals from the same population (termed genome wide association studies or GWAS) to 

reveal common variation associated with disease or phenotype. These markers are usually single 

nucleotide polymorphisms (SNPs) that are relatively common in the population. In the case of 

dermatological diseases such as alopecia areata, vitiligo, psoriasis and atopic dermatitis, common 

variants have been identified that are associated with disease, and these provide insights into 

biological pathways and reveal possible novel drug targets. Other skin phenotypes such as acne, 

color and skin cancers are also being investigated with GWAS. Analyses of such large GWAS 

datasets require a consideration of a number of statistical issues including the testing of multiple 

markers, population substructure, and ultimately a requirement for replication. There are also 

issues regarding the missing heritability of disease that cannot be entirely explained with current 

GWAS approaches. Next generation sequencing technologies such as exome and genome 

sequencing of similar patient cohorts will reveal additional variants contributing to disease 

susceptibility. However, the data generated with these approaches will be orders of magnitude 

greater than that those generated with arrays, with concomitant challenges in the identification of 

disease causing variants.

THE GENOME-WIDE ASSOCIATION STUDY ERA

Studies on Mendelian diseases in the 1980s and 1990s were performed with traditional 

family and linkage studies and showed genetic regions segregating with disease. Positional 

cloning then led to the identification of the mutated genes (Collins, 1995). However, this 

approach offered low power and poor resolution when dealing with polygenic disorders, in 

which it is less likely for all the genetic factors to aggregate in every family under study and 

the penetrance of risk alleles can be low. In the case of common diseases, there has been a 

shift to genetic association studies, where parameters such as mode of inheritance and 
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penetrance do not need to be known. Although association studies between common traits 

and human phenotypes had been used for many years, it was only with the advent of 

genomic technologies that a global approach was possible. This is usually performed with 

arrays through which single nucleotide polymorphisms (SNPs) are interrogated by hundreds 

of individual DNA samples. Termed genome-wide association studies (GWASs), this 

approach has provided important insights into many common skin diseases, phenotypes, and 

skin cancer by providing genetic risk factors for disease (Bowcock, 2007).

GWASs are justified on the basis of the “common disease, common variant” hypothesis, 

where allelic variants present in more than 1e5% of the population can contribute to 

susceptibility to common disease. Although SNPs have usually been the polymorphic 

marker of choice because they are frequent in the genome and alleles are common and easy 

to type, there have also been association tests for other types of variation in the genome such 

as copy number variation (Craddock et al., 2010). The most popular study design used in 

GWAS is the case-control study in which the frequencies of markers are tested for 

association between the genotyped groups with and without disease. One of the most critical 

aspects of a GWAS is to use a sample size with sufficient statistical power to detect 

significant association with markers of low effect. The size depends in part on the study 

design (case-control vs. case-parents), effect sizes of genetic variants, linkage disequilibrium 

between markers and number of markers used. Although early GWASs were performed on 

hundreds of patients versus control subjects, cohort sizes in later studies increased by over 

10-fold. For most diseases and phenotypes, this has led to the identification of ±10–100 

genetic risk factors of low effect.

GWAS HIGHLIGHTS IN DERMATOLOGY

Alopecia areata, vitiligo, psoriasis, and atopic dermatitis are common skin diseases with 

complex etiologies involving genetic and environmental risk factors. In many cases, GWASs 

have shown the involvement of unexpected pathways or cell types. Alopecia areata is an 

autoimmune disease resulting from damage of the hair follicle by T cells. Associations with 

the major histocompatibility complex (MHC), including HLA-DR, have been described. A 

region of strong association also resides within the ULBP gene cluster on chromosome band 

6q25.1, which encodes activating ligands of the natural killer cell receptor NKG2D. This 

had not previously been implicated in an autoimmune disease. ULBP3 is up-regulated in 

lesional scalp from patients with alopecia areata in the hair follicle dermal sheath during 

active disease (Petukhova et al., 2010). The latter observation is consistent with the 

observation that cytotoxic CD8+NKG2D+ T cells are both necessary and sufficient for the 

induction of alopecia areata in mouse models of disease. Other pathways implicated from 

GWAS include autophagy/apoptosis, transforming growth factor-β/regulatory T cells, Jak 

signaling, and activation and proliferation of regulatory T cells (Betz et al., 2015; Petukhova 

et al., 2010).

Vitiligo GWASs have shown associations with genes encoding immunoregulatory 

components such as TYR, CD80, CLNK, BACH2, SLA, CASP7, CD44, IKZF4, and 

SH2B3, as well as genes encoding melanocyte components (OCA2-HERC2 and TYR) (Jin 

et al., 2012).
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GWASs for psoriasis have shown over 50 associations to date. This includes an early 

association with the IL12B 3′-untranslated-region SNP (Cargill et al., 2007), confirming the 

results of a small Japanese study (Tsunemi et al., 2002). Subsequently, many GWASs for 

psoriasis have been performed with overwhelming evidence for association with the class I 

region of the MHC being obtained in all studies. Other implicated pathways include T-cell 

development and T-cell polarization, innate immunity, and negative regulators of immune 

responses (Jordan et al., 2012; Nair et al., 2009; Strange et al., 2010; Stuart et al., 2010; Sun 

et al., 2010; Tsoi et al., 2012; Yin et al., 2014). There are also associations with a select set 

of genes involved in barrier formation (e.g. deletion of a region of the late cornified envelope 

gene cluster) (de Cid et al., 2009).

Heterozygotes with loss-of-function mutations in the FLG gene are at increased risk of AD 

(Palmer et al., 2006). This important finding implicated altered epidermal differentiation in 

the genesis of this disease. Subsequent GWASs of large European and Asian cohorts have 

shown over 20 associated loci that also implicate the innate-adaptive immune response, IL-1 

family signaling, regulatory T cells, the vitamin D pathway, and the nerve growth factor 

pathway. Some loci are shared by both populations (e.g., that harboring the gene for 

OVOL1), and others are unique (e.g., the MHC and CARD11 in Asia) (Ellinghaus et al., 

2013; Esparza-Gordillo et al., 2009; Hirota et al., 2012; Sun et al., 2011; Tamari and Hirota, 

2014; Weidinger et al., 2013).

Systemic lupus erythematosus is a heterogeneous disease with a diverse spectrum of clinical 

symptoms, ranging from skin rash to end-organ damage. GWASs for systemic lupus 

erythematosus have confirmed earlier known HLA associations and have shown additional 

associations at IRF5 and genes encoding immune system components (Gateva et al., 2009; 

Graham et al., 2008; Han et al., 2009; International Consortium for Systemic Lupus 

Erythematosus et al., 2008).

Individuals with Behçet’s disease suffer from recurrent inflammatory attacks leading to 

recurrent ocular symptoms, oral and genital ulcers, and skin lesions. Behçet’s disease is 

associated with HLA-B*51, and GWAS of a Turkish cohort has also shown association of a 

variant within IL-10 conferring decreased mRNA expression (Remmers et al., 2010) and 

IL23R-IL12RB2. There are also associations with genes encoding other immune system 

components. Three risk loci are shared with ankylosing spondylitis and psoriasis and include 

the MHC class I region, ERAP1 and IL-23R, and the MHC class I-ERAP1 interaction), as 

well as two loci encoding genes shared with inflammatory bowel disease (IL-23R and 

IL-10). This implicates shared pathogenic pathways in the spondyloarthritides and Behçet’s 

disease (Kirino et al., 2013).

Systemic sclerosis is an autoimmune disease characterized by fibrosis of the skin and 

internal organs that leads to profound disability and premature death. Associated loci include 

CD247, the MHC, IRF5, and the gene encoding STAT4 (Radstake et al., 2010). Acute 

urticaria and angioedema (nonsteroidal anti-inflammatory drug-induced) have also shown 

associations through a small GWASs (Cornejo-Garcia et al., 2013).

Anbunathan and Bowcock Page 3

J Invest Dermatol. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Risk of acne vulgaris, a common inflammatory disorder of the cutaneous pilosebaceous unit 

is associated with a locus at chromosome band 11q13.1 in Asians (candidates are DDB2 and 

SELL) (He et al., 2014). These are both genes encoding proteins that are involved in 

androgen metabolism, inflammation processes, and scar formation. In Europeans, three 

associated loci contain genes linked to the TGF-βcell signaling pathway (OVOL1, FST, and 

TGFB2) (Navarini et al., 2014). Although there is little overlap between the studies, these 

studies illustrate the power of GWAS in helping understand the causes of some common, 

poorly understood skin diseases.

Other skin phenotypes that have also been examined through GWAS include skin color. 

Nine SNPs can predict skin color in Europeans and neighboring populations and could be 

relevant in future forensic and anthropological investigations (Han et al., 2008; Liu et al., 

2015). Several SNPs located in or adjacent to pigmentation genes play a role in tanning 

response after exposure to sunlight (Nan et al., 2009). There is also a locus on chromosome 

3, harboring skin-expressed genes STXBP5L and FBXO40, that is associated with facial 

photoaging (Le Clerc et al., 2013).

GWASs have also shown associations with basal cell and melanoma skin cancer risk (Barrett 

et al., 2011; Bishop et al., 2009; Brown et al., 2008; Falchi et al., 2009; Gudbjartsson et al., 

2008; Law et al., 2015; Macgregor et al., 2011; Stacey et al., 2008, 2009, 2011, 2015). In the 

case of melanoma these include genes involved in melanocyte development and telomere 

maintenance. In the case of basal cell carcinoma, these include MYCN, CASP8-ALS2CR12, 

ZFHX4, and GATA3 in European populations.

STATISTICAL CONSIDERATIONS IN GWAS

Analysis methods

For binary traits such as presence or absence of disease or a particular phenotype, 

contingency tables are used to test deviation from independence expected under the null 

hypothesis of no association. Commonly used statistical tests include Fisher exact test, 

genotypic tests, and the Cochran-Armitage trend test, which tests if a given genetic marker is 

associated with the disease, in which case the allele frequencies or genotype frequencies will 

be different between the two groups. For complex traits for which the models need to 

include additional covariates such as epidemiological or clinical risk factors, logistic 

regression models are used. These predict the probability of having the disease for a given 

genotype. Analysis of variance is used for quantitative traits that are similar to linear 

regression with a categorical outcome variable. This tests the null hypothesis of no 

difference between the phenotypic means of any genotype group and can incorporate 

covariates with main effects and interactions.

For family-based association studies, the transmission disequilibrium test (TDT) (Spielman 

et al., 1994) can be used to evaluate transmission of one allele more often by chance among 

families with at least one affected child. PLINK is a popular tool that is used to perform 

these standard genome-wide association analyses and to provide a framework for modeling 

quantitative data, allowing incorporation of covariates and family-based genome-wide 

association analyses like the transmission disequilibrium, DFAM (family-based association 
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for disease traits), and QFAM (family-based association tests for quantitative traits) tests 

(Purcell et al., 2007).

Multiple testing

The enormous number of statistical tests of association performed for each SNP against the 

phenotype is an essential part of the GWAS. However, because many tests are done (e.g., by 

using thousands of SNPs), P-values must be adjusted for multiple testing. In general, this has 

been somewhat arbitrarily set at 5 × 10−8 (on the basis of the number of markers tested and a 

P-value of association of .025 per marker). However, this restrictive value means that many 

bona fide associations cannot be identified because they lie within a region harboring 

multiple associations that are due to statistical noise. There are also issues of the population 

being screened. Although 500,000 SNPs is sufficient for detecting a reasonable number of 

associated loci in European populations, older populations such as those from Africa, where 

regions of linkage disequilibrium are smaller (for example ±5–30 kilobase pairs for African 

genomes vs. 30–100 kilo base pairs for European genomes, on average), a GWAS in African 

populations could require a larger number of markers (probably > 1.5 million) and a 

concomitantly more significant P-value for detecting and reporting associations.

Population substructure

One of the important considerations in the GWAS design is to control for population 

structures between the groups. SNP allele frequencies often vary in different populations and 

can cause spurious associations. Population stratification can be detected with algorithms 

such as EIGENSTRAT, which uses a principal components analysis approach (Li and Yu, 

2008). Data with subpopulations can then be used in genome-wide association analysis by 

excluding samples with allele frequencies dissimilar to the target population or by adding 

this as a covariate in the statistical model. Both principal component analysis and 

multidimensional scaling have been applied to correct population stratifications to reduce 

spurious associations (Price et al., 2010).

Replication

After detection of association, it is recommended that the association be replicated in 

another cohort of samples to distinguish true signals from spurious ones and to make a 

reliable estimate of the effect sizes. It has been a challenge to replicate many GWAS 

findings, and some guidelines have been outlined by National Human Genome Research 

Institute working group (Chanock et al., 2007). Some of these include use of sufficient 

sample sizes, independent datasets from the population in which the initial GWAS finding 

was made, and identical phenotype criteria in both the GWAS and replication studies.

Meta-analyses

To increase statistical power, multiple studies can be combined to perform a meta-analysis. 

This helps in the discovery of new variants or in replication of known significant variant, but 

this approach requires many stages of organization (Evangelou and Ioannidis, 2013). 

Imputation is used to predict the genotypes of SNPs that have not been typed in the study 

samples or are missing. A number of algorithms have been developed for this and include 
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IMPUTE, version 1 (hidden Markov model) (Marchini et al., 2007), fastPHASE (Scheet and 

Stephens, 2006), BIMBAM (expectatione—maximization algorithm) (Servin and Stephens, 

2007), MACH (imputes unobserved genotypes fusing reference panel of haplotypes) (Li et 

al., 2010), and BEAGLE (uses graphical model) (Browning and Browning, 2011). Other 

imputing methods include an SNP-tagging approach (Johnson et al., 2001), which is used by 

PLINK (Purcell et al., 2007), SNPMSTAT (Lin et al., 2008), and TUNA (Nicolae, 2006). 

Approaches for imputation are rapidly evolving, and the next-generation sequencing 

methods can complement the array-based methods for SNP detection, to help increase the 

phenotypic prediction accuracy.

Conditional analysis

There are a number of instances in which the top GWA SNP does not account for all the 

variation at that locus. To detect this additional variation, conditional analyses are performed 

where secondary association signals are detected after conditioning on the primary 

associated SNP. Examples of this in skin diseases are the MHC in psoriasis, where there are 

at least two other secondary signals and secondary hits at IFIH1 and IL12B (Cargill et al., 

2007; Yin et al., 2015), and Behçet’s disease, where there is an MHC class II association and 

a second, independent association within the MHC class I region (Remmers et al., 2010).

Missing heritability

One major issue with GWASs is the missing heritability. Even with increased sample sizes it 

is not possible to account for a considerable fraction of the genetic contribution of common 

disease. Detection of missing heritability can include meta-analyses to increase the power of 

GWASs, resequencing to search for rare variants that cannot be detected with GWAS, and a 

search for epistasis (gene-gene interactions) and heritable epigenetic effects. An analysis of 

rare variants identified by resequencing over 1,000 genomes (Abecasis et al., 2012) and 

typed on an “exome chip” has shown additional variants associated with psoriasis that 

account for an additional 1.9% of psoriasis heritability (Zuo et al., 2015).

Modeling gene-gene interactions presents a challenge because of the small sample size and 

large number of SNPs interrogated. Although most computers can handle statistical analysis 

of few hundred SNPs, higher-order interactions, for which the search space grows with the 

number of SNPs, require much greater computational resources, along with robust statistical 

methods. A number of methods have been used for modeling epistatic interactions, including 

PLINK using standard regression, Random forest (trademark of Leo Breiman and Adele 

Cutler), and bayesian epistasis association mapping using Markov chain Monte Carlo 

sampling (Zhang and Liu 2007). In the case of psoriasis, interaction between HLA-C and 

ERAP1 (Strange et al., 2010) and between HLA-C and a locus within the epidermal 

differentiation complex (the LCE deletion described earlier) (Bergboer et al., 2012) have 

been described. Interaction between HLA-B*51 and ERAP1 is described in Behçet’s disease 

(Remmers et al., 2010). However, there are few examples of gene-gene interactions in any 

common human disease. This could be due to lack of power to detect such epistatic 

interactions, even with large cohorts. The interactions with the MHC that have been 

described might have achieved statistical significance because of the strong initial 

associations of this locus with the diseases in question.

Anbunathan and Bowcock Page 6

J Invest Dermatol. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pathway analysis

Once a GWAS has shown its top hits and provided a preliminary framework for identifying 

the genetic component of a disease or phenotype of interest, additional analyses are required 

to accumulate evidence for association (particularly in the case of less significant findings). 

Taking a pathway-based approach can help prioritize GWAS results to identify disease-

specific pathways, classify clinical outcomes, and find drug targets. These analyses can be 

loosely classified into three categories (Kraft and Raychaudhuri, 2009): user-defined gene 

set analysis (over-representational analysis and gene set enrichment analysis), data mining 

methods (Chen et al., 2010; Wu et al., 2010), and network-based approaches. The last 

include GRAIL (Raychaudhuri et al., 2009), DAPPLE (Rossin et al., 2011), and 

GeneMANIA (Warde-Farley et al., 2010). Network-based approaches interrogate a variety 

of sources including the literature, gene expression, known protein-protein interactions, 

protein domain similarity, and protein co-localization. Besides pinpointing plausible genes 

in regions of association, they can help identify additional susceptibility that might be 

missed because of the genome-wide significance threshold. This was used for osteoporosis, 

and additional novel genes were identified using connectivity to known bone genes (Farber, 

2013).

Transcriptome analyses of psoriatic versus normal skin have been performed with both 

array-based and next-generation sequencing methods (Li et al., 2014; Suarez-Farinas et al., 

2010), and integration of the altered transcriptome with genes identified through GWAS can 

also be useful for creating altered disease networks. Although currently challenging because 

of limited knowledge, such approaches have shown transcription factor/DNA-binding 

proteins that also connect transcriptomics to drug development (Swindell et al., 2015b). 

Recently, proteomic studies have also been performed in psoriasis (Swindell et al., 2015a), 

reflecting a future direction of “-omic” studies.

Computational challenges with big data

With the technological advances in the capture of biological data (including next-generation 

sequencing), the volume of data for common diseases and phenotypes is rapidly growing. 

Studies involving subjects from large populations with phenotypic and health information 

require a pipeline that uses advanced informatics methods to convert raw data into useful 

information. However, these approaches impose a heavy computational burden, and tools 

used for these computations need to be developed and optimized for the large amounts of 

data and iterative processes.

PERSONALIZED MEDICINE

With the advances in next-generation sequencing it is possible to identify highly penetrant 

mutations that could have a direct impact on a patient. However, unlike Mendelian traits, for 

which genetic risk factors (mutations) are rare and of high penetrance, risk factors identified 

through GWAS are common and of low penetrance. Hence, although factors identified 

through GWAS might help assess risk susceptibility for a disease or drug response, the 

genetic prediction for a complex disease using information from SNPs with alleles with 

small effect sizes may add little value in clinical decision making until it is possible to 
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explain most of the genetic heritability of any common disease. In spite of this limitation, 

multiple risk factors from GWASs often cluster into specific biological pathways, and in this 

way provide novel drug targets (Price et al., 2010). One excellent example of this is the 

association of psoriasis with the IL-23 receptor gene (IL23R) (Cargill et al., 2007) and the 

efficacy of biologics targeting components of the IL-23 heterodimer (IL-12B/p40 by 

ustekinumab) and its downstream pathway (e.g., the anti-IL-17 receptor A by brodalumab) 

(Lebwohl et al., 2015). In the case of common diseases of the skin, the integration of many 

layers of biological data (clinical, genetics/genomics, proteomics, epigenomics, 

metabolomics etc.) will ultimately show the basis for their complex and heterogeneous 

natures.
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