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Abstract

For time-to-event outcomes, a rich literature exists on the bias introduced by covariate 

measurement error in regression models, such as the Cox model, and methods of analysis to 

address this bias. By comparison, less attention has been given to understanding the impact or 

addressing errors in the failure time outcome. For many diseases, the timing of an event of interest 

(such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant 

on self-report and therefore prone to measurement error. For linear models, it is well known that 

random errors in the outcome variable do not bias regression estimates. With non-linear models, 

however, even random error or misclassification can introduce bias into estimated parameters. We 

compare the performance of two common regression models, the Cox and Weibull models, in the 

setting of measurement error in the failure time outcome. We introduce an extension of the 

SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other 

analysis options to address measurement error in the response. A formula to estimate the bias 

induced into the hazard ratio by classical measurement error in the event time for a log-linear 

survival model is presented. Detailed numerical studies are presented to examine the performance 

of the proposed SIMEX method under varying levels and parametric forms of the error in the 

outcome. We further illustrate the method with observational data on HIV outcomes from the 

Vanderbilt Comprehensive Care Clinic.

Keywords

Accelerated failure time; Cox model; measurement error; SIMEX; survival analysis

1. Introduction

There are many examples in clinical research where the outcome of interest relies on an 

imprecisely measured event time. Researchers studying the epidemiology of chronic 

conditions may enroll subjects some time after an initial diagnosis, and so research questions 
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focused on the timing of events post diagnosis may need to rely on patient recall or chart 

review of electronic medical records, both of which are subject to error. For example, human 

biologists and demographers are interested in the variability in the age at menarche (first 

menstruation) [1]. Oftentimes, subjects are enrolled several years after menarche, and so the 

event-time is based on retrospective recall and hence subject to error. As Holt et al. [2] 

observed, studies comparing age at menarche reported retrospectively to those reported in 

medical records have shown that differences in the two can be attributed to recall error 

symmetrically distributed around zero. In addition, epidemiological researchers frequently 

use observational databases, where data accuracy can also be a concern. In observational 

studies of HIV/AIDS, the event time between antiretroviral therapy (ART) initiation and a 

disease outcome, such as AIDS-defining illness and associated risk factors, is often of 

interest. In prior studies using routinely collected health record data, we have observed 

substantial errors, in as many as 30% of patient records, in the time of ART initiation [3, 4]. 

Even in studies where a failure time may be measured precisely, such as time to virologic 

failure defined by an electronically recorded HIV-RNA test exceeding a threshold, the error 

in the baseline time will create error in the time-to-event outcome. Ignoring these errors can 

lead to biased estimates of the associations of interest.

There is a rich body of knowledge describing the impact of and methods to correct for 

covariate measurement error, particularly for time-to-event outcomes [5]. For the Cox 

model, these methods include approximate methods such as regression calibration [6] and 

SIMEX [7]. They also include methods that have been shown to be unbiased under certain 

assumptions; including the parametric corrected score [8], conditional score [9], non-

parametric corrected score [10, 11] and likelihood methods [12, 13], to name a few.

Much less has been written about the effect of or methods for errors in the failure time 

outcome itself. For continuous outcomes and linear regression, it is well known that random 

outcome error does not introduce bias into the regression coefficients. However, for 

nonlinear models, simple random error in outcomes can bias the coefficients [5]. This has 

been well studied in the case of binary outcomes [14, 15] and discrete failure time data [16], 

where estimates of sensitivity and specificity can be incorporated to adjust estimation for the 

bias induced by outcome misclassification. Errors in outcome that are correlated with 

covariates can also be a source of bias in the association between these variables. Some 

methods, which adjust for covariate-dependent estimates of sensitivity and specificity, have 

been presented [17, 18, 19].

For uncensored, continuous failure time outcomes, Skinner [20] found that random 

multiplicative error has little effect on the acceleration parameter estimated by a Weibull 

regression model, particularly when there is a relatively small measurement error variance. 

Korn et al. [21] noticed that the bias in estimating the hazard ratio is very small with small 

random multiplicative measurement error in the failure time. Even with larger random error, 

the bias was small when the hazard ratio was moderate, as commonly seen in clinical trials. 

However, Hong et al. [22] noticed in their statistical models for progression-free survival, 

which involved modeling tumor growth and error-prone detection, that multiplicative error 

would lead to attenuation of the hazard ratio, with larger measurement error leading to 

greater attenuation.
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The Simulation and Extrapolation method (SIMEX) was developed by Cook and Stefanski 

[7] to correct additive measurement error in the covariates. SIMEX has been applied to a 

wide variety of regression models and is generally implemented as an empirical method [5, 

23]. It has been shown to be a useful tool for estimation in the presence of unbiased 

covariate measurement error in regression models for time-to-event outcomes, e.g., see 

Zhang et al. [24], He et al. [25], and Greene and Cai [26]. We extend the SIMEX approach 

to address random multiplicative error in the event time and study whether this method can 

be applied to reduce bias in the regression coefficients.

In this manuscript we will present a detailed numerical study of the impact of non-

differential outcome measurement error on association analyses of failure time data. We 

provide an approximate formula to estimate the bias in the association parameters induced 

by random multiplicative error in the event time and examine performance of our proposed 

method to correct for the induced bias. In particular, we will consider two popular regression 

models for survival data, Cox and Weibull regression, and compare the vulnerability of these 

two regression frameworks to bias from error in the event time. The Weibull model is both 

an accelerated failure time (AFT) and proportional hazards (PH) model. Thus, within this 

modeling framework, we will compare the impact of outcome error on estimation of the 

hazard ratio and acceleration parameters for different measurement error scenarios.

Section 2 presents the survival time measurement error framework and develops the 

extended SIMEX method. Then Section 3 presents numerical studies of the bias on the 

hazard ratio and the acceleration parameter for different measurement error scenarios and 

the ability of the adapted SIMEX method to ameliorate this bias. We also discuss estimation 

options when there is a validation subset available with which to estimate the error structure. 

In Section 4, we apply the SIMEX method in an analysis of HIV outcomes among patients 

starting ART, where the time-to-event is sometimes recorded incorrectly.

2. Survival Time Model

We consider the Cox proportional hazards model and Weibull parametric regression model 

to study the effects of random error in survival time T. The Cox model is given by

where λ(t) is the hazard at time t given the p × 1 covariate vector X, λ0(t) is the baseline 

hazard, and β is the vector of log hazard ratio parameters. For the Weibull (AFT) model, one 

has

(1)

where α0 and α1 are regression coefficients, σ is a shape parameter, and ε is the error term 

following an extreme value distribution. The model is also known as a linear transformation 

model, given by
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2.1. Error Framework

We study the case where there is multiplicative error in the uncensored survival time. Let T′ 
be survival time measured with error such that we observe T′ = T × exp(ν), where ν has 

mean 0, variance , and is independent of T and X. Then the error prone survival time on 

the log-scale is given by

(2)

The performance of the Cox and Weibull models in the presence of outcome error, namely 

its ability to capture the true association with X, can be directly compared using the fact that 

the log hazard ratio from the Cox model can also be estimated from the Weibull model with 

the following relationship

We note that with the linear form for log(T′) above, the extra error term ν that is 

independent of the covariate X will not induce any bias in the acceleration parameter using a 

typical linear regression model. We also note that the error equation in (2) has the same 

mathematical form as a log-linear event time model with an added frailty term, ν. Keiding et 

al. [27] considered the AFT model for the setting of heterogeneity due to omitted covariates 

or frailties and observed that there is bias in the Cox model induced by erroneously ignoring 

an added fraility term ν, whereas there is no expected bias in the acceleration parameter α1. 

These authors also derived an approximate formula for the attenuation factor for the hazard 

ratio parameter in the Cox model, drawing connections between the log-linear model for the 

uncensored event time and the theoretical linear regression of log(T) on X. For further detail, 

see Keiding et al. [27]. When adapted to our setting, the bias in βn̂aive, the estimated hazard 

ratio from naively applying the Cox model in the presence of the error in (2), is given by the 

approximate attenuation factor

(3)

That is, βn̂aive ≈ β × γ.

2.2. SIMEX Method

Given the above framework for the survival model and outcome error, we adapt the SIMEX 

method to adjust estimation of a regression parameter of interest (e.g. the log hazard ratio β). 

The SIMEX method was originally developed for additive measurement error in the 
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covariates [7]. We adapt the SIMEX method by working with the log T, which converts the 

assumed multiplicative error to the additive scale.

We illustrate our method using Figure 1. Similar to the original SIMEX method, we estimate 

the relationship between the size of the measurement error, , and the bias in the naive 

estimate of the parameter of interest from an analysis that ignores the error. In the 

Simulation step, we add additional measurement error to each outcome by drawing ω from 

 and adding the value of this random variable to the already error prone variable 

log T′ and exponentiating to obtain a new . This error addition is repeated B times for a 

range of values of λ ≥ 0. Then for each iteration of λ and b = 1,…, B, we refit the regression 

model with the new vector of error prone measurement of the survival time  to obtain a 

new naive log hazard ratio estimate βλb (or other parameter of interest, e.g. acceleration 

parameter from the AFT). The new total measurement error variance in log  is then 

given by

(4)

For illustration, we set B = 1 and  to estimate new βλ1, 

which are shown as small circles in Figure 1, and plot these naive βλ1 versus λ. In the 

Extrapolation step, we then fit a curve to the plot of βλ1 as a function of the λ’s. From this 

fitted model, we extrapolate back to λ = −1, which given the new total measurement error 

variance in Equation 4, should approximate the true coefficient value. For the setting with 

covariate measurement error, Cook and Stefanski recommend a quadratic approximation due 

to good performance in most cases, but other extrapolation functions such as a linear, 

loglinear, or nonlinear function are possibilities. We investigated the performance of the 

quadratic form in our framework using simulations and it outperformed the linear and 

loglinear approximations. In Figure 1, this extrapolation is shown by extending the curve to 

λ = −1. Note, in any data application, one could draw a similar figure - increasing the 

denseness of the vector λ to verify the appropriateness of the chosen extrapolation function 

(as quadratic or otherwise). This procedure only yields an approximation, since we can only 

generate curves for which λ ≥ 0, and thus have no estimates on the curve in the region of 

curve between [−1, 0). To assess the sampling variability of the SIMEX estimates, we utilize 

the bootstrap to obtain standard errors.

Here, we assume the value of  is known. In some settings, an estimate of  may be 

available from a validation study. In the case that the true value of the measurement error 

variance, , is unknown and an estimate is not available, one can apply the method for a 

variety of possible values for , and examine the sensitivity of the estimated β. In our data 

example that follows, we will illustrate the method with an estimated  from a validation 

subsample.

Oh et al. Page 5

Stat Med. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Simulations and Results

Through simulation, we examined the bias that results from random multiplicative error in 

the failure time outcome with different distributions of errors and evaluated the estimators 

from both the Cox and Weibull models. We then applied the proposed SIMEX method to 

obtain error-corrected estimates of the log-hazard ratio. These values will be compared to 

those from the true model, a Cox proportional hazards regression model fit with true times 

T, and a naive Cox model fit with error prone times T′. We present results for varying values 

of the log hazard ratio β, assumed error distributions, and error variances. From these 

experiments, we derived means, biases, standard errors (SE), and mean squared errors 

(MSE). We also compare our observed bias in the hazard ratio with the expected value given 

by Equation 3. We estimate the hazard ratio parameter both parametrically using the Weibull 

model and semi-parametrically using the Cox model. As we will see from our results below, 

the multiplicative error introduces no bias in the estimated acceleration parameter, as 

expected, and so we present results for application of the proposed SIMEX method only for 

the hazard ratio estimated by the commonly applied Cox model approach.

All simulations were run 2000 times using R version 3.2.1 and assumed that the covariate X 
followed a standard normal distribution. In addition, we set the true parameters to be α0 = 0 

and α1 = −β for β ∈ {log(1.5), log(3)}. The survival outcome T is generated from a Weibull 

distribution with shape equal to 1 and scale set to exp (α0 + Xα1), as defined in Equation 1. 

For the error term ν, as defined in Section 2.1, we considered a normal distribution and a 

shifted gamma distribution with means 0 and variances equal to the varying values of . 

These are represented by  and Gamma , respectively, using a 

parametrization such that if X ~ Gamma(α, β), then  and . The set of 

simulations comparing the Cox and Weibull models set the cohort size at n = 1000 and 

varied the measurement error variance to be . We refer to  as 

small error,  moderate error,  large error, and  very large error. For 

simulations examining the proposed SIMEX method, we set B = 50 and λ ∈ {0, 0.5, 1, 1.5, 

2}, following the recommendation by Cook and Stefanski for covariate measurement error. 

A quadratic function is used in the extrapolation step. These simulations ran 100 bootstrap 

replications and let the number of subjects be n ∈ {300, 1000}, and set the measurement 

error variance to be  to examine the performance of the SIMEX method 

under different amounts of error.

Supplemental Table 1 presents summary statistics for  for different values of  to provide 

a description of the error in T′ as a function of the  in our simulations. We note that even 

for our small and normally distributed error, the ratio of  could still be quite appreciable. 

The error-prone time had an average (SD) multiplicative error factor of 1.15(0.61) with an 

IQR of (0.71, 1.41). For moderate error, the average error (SD) factor was 1.25(0.96) with an 

IQR of (0.58, 1.59). For large error, average (SD) error factor was 1.69(1.95) with an IQR 
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(0.53, 2.08). As expected for very large error, the error factor was quite large with an average 

(SD) of 2.55(5.14) and an IQR of (0.38, 2.52). When the error term followed a gamma 

distribution, we of course observed more extreme skewness in  and much larger standard 

deviation for this factor compared to those of the normal distribution, as seen in 

Supplemental Table 1.

Table 1 presents the relative performance of the Cox and Weibull models in the presence of 

multiplicative error, with ν following a normal distribution. Namely, we present the bias, 

average model standard error (ASE), empirical standard error (ESE), mean-squared error 

(MSE), and coverage probabilities for the 95% confidence intervals across the simulations. 

The ASE is calculated as the mean of the model standard errors and the ESE is calculated as 

the standard deviation of the parameter estimates. As expected, the estimated acceleration 

parameter (α1) using both true time and the error-prone time are extremely close, with small 

bias in the naive estimate for all settings of the measurement error variance and β. We also 

notice that for all measurement error variance parameter values, the Weibull and Cox 

estimates for the hazard ratio parameter are biased and reasonably similar, but the bias from 

the Weibull estimates is consistently slightly smaller. Overall, the naive intercept, shape, and 

Cox and Weibull hazard ratio parameters remain largely biased through each value of β and 

the variance of ν. For moderate error, the percent bias magnitude is greater than 16% and 

the absolute bias is large for the intercept in the Weibull models. For large to very large 

error, similar results are observed with percent bias magnitude greater than 30% for 

estimates of β and large absolute bias for the intercept. In addition, these results in Table 1 

are consistent with the theoretical amount of attenuation bias in β from Equation 3. The 

expected attenuation for β is approximately 0.816 for  for , and 0.577 for 

. For , the observed attenuation was 0.799 and 0.797 for true β = log(1.5) and 

log(3), respectively. Similarly for , the attenuation was 0.689 and 0.687, respectively, 

and 0.562 and 0.563, respectively, for .

Supplemental Table 2 presents analogous results to Table 1 using the shifted gamma error 

distribution. Similar results are observed, with the naive intercept, shape, and Cox and 

Weibull hazard ratio parameters largely biased for each value of  and β.

Table 2 presents the % bias, coverage probabilities (CP), MSE, ESE, average bootstrap 

standard errors (ASE) for SIMEX estimates, and average model standard errors (ASE) for 

naive estimates to compare the performance of our SIMEX method for estimating the hazard 

ratio with the naive method of ignoring the error, which was simulated as normally 

distributed. We notice that for small error and both values of n and nonzero β, the bias for 

the SIMEX method is below 5% with coverage close to 95%. The bias for the naive method 

(14 – 15%) is well over double that of SIMEX, with considerably worse coverage. As 

increases, the results tell a similar story. Overall, the bias for both methods increases, but the 

bias of the naive method continues to be at least double that of the SIMEX method. The 

coverage for both methods decreases with , with naive methods’ falling off much more 

rapidly than that of the SIMEX method. For small error, the SIMEX method performs 
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admirably with small % bias and near 95% coverage. For moderate error, SIMEX still works 

reasonably well with under 10% bias and coverage close to 90%. With large amounts of 

outcome error, SIMEX is noticeably biased, with close to 20% bias, but still outperforms the 

naive method.

Table 2 also presents the type 1 error, coverage probability, MSE, ESE, and ASE 

measurements for the SIMEX method simulated with the true β = 0 with a normal error 

distribution. For all combinations of  and n, we see that the type 1 error hovers around 

0.05.

Table 3 presents similar estimates of relative performance of estimating the hazard ratio, 

comparing our SIMEX method to the naive method when the error in T′, ν, follows a 

gamma distribution. In these scenarios, the average multiplicative error and variance for the 

error in T′ were larger compared to the same scenario for the normally distributed error 

(Supplemental Table 1), and the SIMEX method performed worse overall than with the 

normally distributed error for a fixed value of . We notice that for small error and both 

values of nonzero β and n, the bias for the SIMEX method is 8% or below with coverage 

close to 95%. The bias for the naive method (16 – 18%) is over double that of SIMEX, with 

considerably worse coverage. As  increases, the bias for both methods increases, but the 

bias of the naive method continues to be just under double that of the SIMEX method. As 

expected, the coverage for both methods decreases with , with naive methods’ decreasing 

much more rapidly than that of the SIMEX method. Even with dramatically skewed error, 

for small outcome error, the SIMEX method performs well with reasonably small % bias 

and decent coverage (76 – 93%). For moderate error, SIMEX performs less well with bias 

around 16% – 17% and relatively weak coverage with the errors from this skewed 

distribution becoming quite large. Our most extreme skewed error setting led to upwards of 

15-fold multiplicative error factors and SIMEX performing poorly with bias around 30%. In 

a real data setting, this magnitude of error may actually be detected and corrected by usual 

out of range data quality assurance methods at the data collection level.

For the proposed SIMEX method, Table 3 also presents analogous type 1 error results to 

Table 2 using a gamma error distribution. Even for this skewed error, the type 1 error rate 

was preserved at 0.05 for all  and n.

Supplemental Table 3 presents the performance for the normal error distribution, but with 

time following a log-normal distribution. In this case, the Weibull model is no longer the 

correct one even for the true event time. We let ν have variance 1 and let β = log(3). Even 

for this relatively large β and mis-specified parametric model, we see that the naive 

acceleration parameter is quite unbiased, as before. However in contrast to the previous 

results, the Cox and Weibull hazard ratios are quite similar and nearly unbiased, although the 

bias for the Weibull hazard ratio remains slightly smaller. The naive intercept for the Weibull 

model continues to display large bias with time distributed log-normally. The lack of bias in 

the hazard ratio can be attributed to the fact that the naive shape parameter in this model, σ, 

is estimated without bias, in contrast to all three previous models. These results emphasize 

that the hazard ratio parameter has unpredictable bias depending on the underlying 

Oh et al. Page 8

Stat Med. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution, but that the acceleration parameter is more robustly estimated in the presence of 

random multiplicative error in the outcome.

3.1. Censoring

The above simulations were done with no censoring of the event time. To examine the 

impact of censoring, simulations were run in similar parameter settings as described in the 

beginning of Section 3 with the addition that the true survival times were randomly censored 

and error was added to the censored event times. Specifically, we considered β ∈ {log(1.5), 

log(3)}, , and simulated 25%, 50%, 75%, and 90% censoring. True survival 

times were again generated exponentially, but with the baseline hazard set to 0.1. After the 

true survival times were generated, separate random right censoring times were determined 

for each β to yield the desired % censored event times. The censoring times were generated 

uniformly with lengths 4, 4, 2, and 1 for each % censored time, respectively, to mimic trials 

of different lengths. The error-prone times were then generated by adding random 

multiplicative error to the censored times and the rest of the simulation parameters follow as 

before. We note that this kind of error, ie. error in the censored event time, is consistent with 

a time-to-event outcome in the HIV/AIDS setting discussed in the introduction, where there 

may be error only in the start time of the observation period for an event (e.g. time of ART 

initiation) but the event time (e.g. virologic failure) is determined precisely. As Table 4 

shows, although the SIMEX method does not handle censoring directly, applying our 

extension to this setting still improves the bias compared to ignoring the error. Of equal 

interest is that the amount of censoring seems to have an inverse relationship with the 

percent bias in the log HR. For example with β = log(1.5) and , as the percent 

censored increases from 25 to 50 to 75 to 90, the percent bias decreases from −12.72 to 

−7.090 to −3.130 and to −1.690, respectively. In addition, we observe that the CP increases 

with increasing censoring. A similar effect is observed for other combinations of β and  in 

Table 4. Thus our results suggest that for rare events that are exponentially distributed and 

randomly censored, the effect of random, multiplicative measurement error in the censored 

failure time outcome has little effect on the estimates of β. In this case, the risk sets in the 

Cox partial likelihood score at each failure time remained largely the same. In such 

scenarios, since the event indicator is correct in this setting, the Cox score defined by the 

error prone event times would be a sum of similar score contributions over the same 

individuals as the score defined by the true event times, hence why there is little bias. This 

seems to reconcile the different conclusions that Korn et al. [21] and Hong et al. [22] came 

to regarding this setting described in Section 1. Korn et al. considered simulations that 

approximated data involving outcome error in the evaluation of progression-free survival for 

breast cancer patients. These authors observed that with the correct hazard ratio and 50% 

censoring, there is very little bias caused by the random measurement error. In addition, 

simulating a cancer trial with a very rare event, with 96% censoring, resulted in even less 

bias. On the other hand, the more appreciable effects of event time error on the estimated 

hazard ratio that Hong et al. found may be attributed to the studied setting being one where 

there was a much smaller percentage of censored events (5–25% censoring in simulated 

tumor progression).
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Lack of bias in the naive estimates may not always be the case for rare events. For instance, 

there can be appreciable bias in the naive estimate for the rare event setting when the 

majority of the censoring happens early in the observation time period, creating observed 

event times that are close together relative to the size of the measurement error. We 

simulated this scenario by censoring an exponential event time T, with baseline hazard 0.1 

and a log hazard coefficient of 1 for a standard normal covariate X, on the interval (0, 0.15) 

and generating the error-prone T′ by adding a random, standard normal error term to the 

censored event time. In this case, there was approximately 90% censoring and −13.55% bias 

in the naive estimate as Supplemental Table 4 shows. SIMEX in this case provides a modest 

bias reduction, with a bias of −11.6%. We simulated a second scenario with appreciable bias 

for rare events, which included multiplicative random error and covariate-dependent 

censoring. For this setting, we simulated the underlying proportional hazards model, only we 

censored uniformly on (0,0.15) if X > 0, and otherwise uniformly on (0, .05). Random log-

normal multiplicative error with variance 0.5 was added to the censored event time. In this 

example, there was approximately 90% censoring and the naive estimate had a bias of 

−14.70%, while the SIMEX estimate had a bias of −7.91% as Supplemental Table 5 shows.

4. Data Example

For the purposes of illustration, we apply the proposed method to electronic health records 

data from a large HIV clinic, the Vanderbilt Comprehensive Care Clinic (VCCC). The 

VCCC is an outpatient clinic that provides care to HIV patients and collects clinical data 

over time, including demographics, laboratory measurements, and pharmacy dispensations. 

In addition, the VCCC has fully validated all key research variables, which revealed 

extensive errors in the original data. Thus, this observational cohort is ideal for directly 

assessing the relative performance of the SIMEX estimators compared to naive estimators. 

Throughout this example, we considered the estimates from the fully validated dataset to be 

the “truth”. For a more detailed description of the cohort, see Lemly et al. [28].

We analyzed data on 3996 HIV-positive patients who established care at the VCCC between 

1998 and 2013. The event time here is considered to be the time from the start of 

antiretroviral therapy (ART) to the time at virologic failure, which is defined as an HIV-

RNA count greater than or equal to 400 copies/mL. The HIV-RNA assay, and hence time at 

virologic failure is considered to be free of errors, whereas the time at the start of ART is 

error-prone. We studied the association between CD4 at enrollment (i.e. at first visit to the 

VCCC), patient sex, age at enrollment and the defined event time. For each analysis (using 

validated or unvalidated data), patients were excluded if they had a missing ART start date, 

did not start ART after enrollment, or had no follow-up after starting ART. In the unvalidated 

dataset, 3049 patients satisfied the criteria for inclusion whereas 2973 patients satisfied the 

criteria in the validated dataset. A total of 2923 met the inclusion criteria for the analysis of 

both the validated and unvalidated datasets and were used in all further analyses to ensure 

that any differences between estimators are not due to differences in included patients. In 

this dataset, 28.6% of event times had an error with an average (SD) multiplicative error 

factor of 2.33(32.06). Of the 2923 subjects, 22 did not reach failure in the unvalidated but 

did reach failure in the validated and 54 failed in the unvalidated but not in the validated. 

Thus, the number of subjects who, due to the error-prone ART start time, had an incorrect 
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event indicator was small at 3%. While SIMEX does not directly address this kind of 

inclusion/exclusion error, we were interested in seeing how SIMEX would perform in this 

real data scenario. Censoring was 23.4% in the validated data and 22.3% in the unvalidated 

data.

We utilize the method described in Section 2 and compare the performance of the SIMEX 

estimator to that of the naive estimator that ignores the error. The univariate and multivariate 

Cox models were fit and used to calculate the hazard ratios (HR) for a 100-unit increase in 

CD4, comparing females to males, and a 10-year increase in age. This was done for both the 

validated and unvalidated datasets. For our SIMEX approach, we set B = 50 and λ = {0, 0.5, 

1, 1.5, 2}, as described in Section 2.2. Here, the variance of the error in time is not assumed 

to be known, but rather estimated from a validation subset. From the 2923 subjects in both 

datasets, a random subsample of 300 was assumed available and  was estimated. As 

Supplemental Table 6 shows, the amount of error in  compared to T, , is substantial, 

as the IQR increases with λ and the standard deviation stays relatively large. Using a 

quadratic function, we then extrapolate back to λ = −1 and obtain our approximation of the 

true HR using the full cohort. Standard errors for the SIMEX method were then obtained 

using a bootstrap method, with bootstrap sampling stratified on the validation subset 

membership and using 100 bootstrap samples.

The HR’s and their corresponding confidence intervals are shown in Table 5 comparing the 

true, naive, and SIMEX estimators. The true estimator was calculated using the validated 

dataset, whereas the naive estimator was calculated using the unvalidated dataset to simulate 

a scenario in which validated data are not available on any subjects. The SIMEX estimator 

was also calculated on the unvalidated data, assuming a subset of 300 validated subjects was 

available to estimate the error variance. For the univariate analyses, the SIMEX estimator 

appears to slightly improve the bias in the HR compared to the naive estimators for patient 

sex (−2.39% and −2.66%, respectively) and a 100-unit increase in enrollment CD4 (−0.11% 

and 0.23%, respectively). However, for a 10 year increase in age at enrollment, the SIMEX 

estimator does not improve the bias compared to the naive estimator with −1.00% and 

−0.50% bias, respectively. Overall, there is very little bias in the naive analyses of the 

unvalidated data. We observe similar results in the multivariate analysis. The SIMEX 

estimator again appears to slightly improve the bias in the HR compared to the naive 

estimator for patient sex (−2.10% and −2.58%, respectively) and a 100-unit increase in 

enrollment CD4 (−0.11% and 0.23%, respectively), but not for a 10 year increase in age at 

enrollment (−0.82% and −0.20%, respectively). Overall both the SIMEX and naive methods 

are quite close to the HR from the fully validated data. The performance of our SIMEX 

extrapolation is presented graphically in Supplemental Figure 1. Note that our SIMEX 

approach assumes random measurement error in the time-to-event outcomes. To test whether 

this assumption holds for the VCCC data, logistic regression models were run on the full 

data (N=2923) to estimate the odds of the unvalidated censored event time being incorrect 

for the covariates sex (OR=0.971, p-value=0.756), enrollment CD4 (OR=0.880, p-value < 

0.001 for a 100 unit increase), and enrollment age(OR=0.995, p-value=0.241 for a 10-year 

increase). Given the odds ratio and significant p-value for CD4, it appears the measurement 
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error in the outcome is not purely random. However, even under some modest violations of 

the random error assumption in this data example, the method still performed relatively well.

In addition, a similar analysis was run with the event time defined to be the time from the 

start of ART to the time of first opportunistic infection (OI). Here, the time at first OI is also 

error-prone, resulting in 45.0% error in the event time and an average (SD) multiplicative 

error factor of 1.84(18.8). Censoring for this endpoint is 79.4% in the validated data and 

69.2% in the unvalidated data. We observe similar results in this scenario - the bias in the 

naive HRs is small to moderate and the SIMEX estimators stay close to those values. More 

detailed results are shown in Supplemental Table 7. We note that although the average error 

factor is less than that of the analysis for time to virologic failure, the time at first OI has 

much greater censoring. This may have contributed to the SIMEX method’s success in 

estimating HRs very close to those of the validated estimates.

The run time for the mulivariate analysis described above was 1.06 hours on a 64-bit PC 

with an i7 processor. We also provide code and a simulated dataset in the Supplemental files 

to further demonstrate the ease of application of our SIMEX method.

4.1. VCCC Data Simulation

We consider a simulation study that mirrors attributes of the VCCC dataset, excluding any 

covariate-dependent measurement error, to explore the performance of SIMEX under 

random multiplicative error in this setting. In particular, the true variance of the error in time 

is estimated from a random subsample of 300 from the VCCC data similar to above. The 

true beta parameters were obtained by fitting a parametric Weibull regression model to the 

fully validated data for time to virologic failure, with CD4 count, patient sex, and age at 

enrollment as covariates. The sample size for the simulated cohort was set at n = 2923 and 

random right censoring times generated uniformly to average 24% censoring to match those 

settings of the VCCC data. In addition, all three covariates were generated to be as similar as 

possible to those observed in the VCCC data. Patient sex was randomly sampled according 

to the true observed probabilities of males and females. Then stratified on patient sex, we 

generated bivariate normal distributions for the age at enrollment and the square root of CD4 

count, where the square root transformation was applied for normality; the means, SDs, and 

correlations were matched based on the true covariates. True survival times (T) were 

generated exponentially using the simulated CD4 count, sex, and age at enrollment variables 

and censoring applied as described above. For the error-prone T′, we applied random 

multiplicative error to T and matched the measurement error distribution for ν to that of the 

VCCC data. Specifically, 71.5% of subjects in the VCCC had no error in the time-to-event 

and the remaining subjects had highly right-skewed error. Thus, a shifted gamma error with 

shape and rate both equal to the estimated measurement error variance was applied to 28.5% 

of the simulated subjects. We additionally varied the distribution of ν to be normal and 

shifted gamma (applied to all simulated subjects) to test the sensitivity of the results to the 

shape of the error distribution. Similar to the VCCC data analysis, the SIMEX method 

estimated the measurement error variance using a validation subsample of 300 simulated 

subjects and obtained standard errors using 100 bootstrap samples stratified on validation 

subset membership.
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Supplemental Table 8 presents the % bias, CP, and SEs for the simulation described above 

using the gamma mixture, mean zero normal, or shifted gamma error distributions. First, we 

note that with the assumed random measurement error, there was a modest amount of bias in 

the naive estimates (10–17% depending on the coefficient and the error distribution) 

compared to what we observed in the true data (under 3%). We then observe for our 

simulation that for all covariates, the SIMEX estimates had at least an 80% reduction in bias 

over the naive for the gamma mixture, a 60% reduction for normal error, and at least a 40% 

reduction for the shifted gamma. In addition, the CPs for all covariates are similar or a little 

higher for SIMEX compared to the naive method for all error distributions and the MSEs are 

generally similar for the SIMEX and naive methods. Thus, these simulations suggest that the 

non-random measurement error that seems to be present in the VCCC data counteracted bias 

that would have been observed in the naive estimates with random, multiplicative error. The 

random error in our simulation for this setting induces bias in the naive estimates that our 

SIMEX method is able to correct for a variety of underlying error distributions.

5. Discussion

There is no substitute for carefully and accurately collected data. In the event that an error-

free outcome cannot be obtained, then ideally one would be able to do a detailed validation 

study to obtain data on the structure of the outcome measurement error in a subset so that 

proper statistical models could be formulated to estimate and adjust estimators for this error 

structure. Without the availability of a validation subset, it is common practice to simply 

ignore the errors in the outcome and proceed with the same analysis as if there were no 

measurement error. In this work, we saw that even simple random error in a survival 

outcome can bias the hazard ratio estimator for continuous time-to-event outcomes. We 

propose a few analysis options for this setting involving random multiplicative error.

Regression theory and our simulations demonstrate that the log hazard ratio from the Cox 

model can be quite biased even for relatively small amounts of random measurement error; 

whereas, the acceleration parameter of the Weibull model remains unbiased in the presence 

of random multiplicative measurement error. This is notable, since the addition of the error 

for the studied settings meant the parametric form for the survival outcome assumed by the 

Weibull model no longer held for the error prone covariate. The observation also held true in 

our simulations when the parametric form of the true event time was not Weibull. Given this 

robustness, and the fact that the AFT model has been advocated as a more intuitive model 

for treatment effects in clinical settings [29, 30], we recommend consideration of this 

regression model in place of, or at least performed alongside of, the Cox model, in settings 

where the censored event time is known to have random error. Due to the Weibull model 

being both PH and AFT, this is more a change in which summary statistic is chosen for the 

association between a covariate and outcome, than in the model for how X affects the 

outcome. Keiding et al. [27] and others [31] made a similar recommendation for AFT 

models due to their ability to separate out dispersion from regression parameters.

In addition, we described an extension of the SIMEX algorithm to correct the bias in the 

hazard ratio induced by non-differential multiplicative outcome error for a continuous event 

time. Although the proposed method is only an approximate method, with some expected 
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bias, simulations demonstrated that our method corrected multiplicative outcome error and 

performed much better than the common naive method of ignoring the error, maintaining a 

smaller MSE in a variety of settings. The method does start to break down with large error 

variance resulting in bias greater than 15%; however, as Supplemental Table 1 illustrates, the 

amount of multiplicative error that induced large biases was extreme, with the inter-quartile 

range of the ratio of the error prone to the true outcome ranging from less than half to more 

than double, and would require analyses beyond that of our approximate method. We also 

applied the proposed method to a data example where there were both censoring and known 

associations between the outcome error distribution and important predictors. In this 

example, SIMEX performed similar to the naive method, and in some cases perhaps made 

mild improvements. These findings under a non-random error scenario are similar to those 

of Küchenhoff et al. [23], who studied the use SIMEX for misclassification error in binary 

response variables and in one simulation assessed effects of differential measurement error. 

They found that the naive estimates are biased, but in different directions (away from or 

towards the true parameter). Our results suggest, that like with random error, the hazard may 

be less subject to bias with moderate systematic error in the outcome when the observed 

event time is rare. It is of note that the above simulations and data example all involved 

right-skewed error, with the mean error-prone T′ larger than that of the true T, due to the 

nature of time-to-event data. We investigated the performance of our method with left-

skewed error for a small number of settings and found that SIMEX overestimated the true 

hazard ratio while still providing similar reduction in the magnitude of the bias for all 

settings. Detailed results can be found in Supplemental Table 9. Thus, our simulations 

showed that the SIMEX method under random error was an improvement over the naive 

estimator for a variety of underlying error distributions.

Because the error model under study was observed to cause appreciable bias in the estimated 

hazard ratio, but imperceptible bias in the acceleration parameter, we applied our method 

only to the Cox model. However, it could be similarly applied to other regression models. 

Limitations of our findings include the need to have a known error variance  or the 

availability of a validation subset from which to obtain an estimate of this error variance. 

With a validation subset, our method can incorporate an estimated error variance and the 

bootstrap can be used to obtain standard error estimates that incorporate the additional 

uncertainty from the estimated nuisance parameter. It is also noteworthy that all of our 

simulations were done with independent error terms. Our approximate method is likely not 

able to easily handle covariate-dependent or differential error in the general setting and 

correction methods for this error structure is an area for future work. It is also of interest to 

extend this method to be able to handle data with both outcome and covariate measurement 

error.

In the setting of random error, SIMEX provides a practical estimation method to adjust the 

hazard ratio for bias induced by non-differential measurement error in the failure time 

outcome. Without the availability of a validation subset or known variance for the outcome 

error, our method provides analysts with a new tool to perform sensitivity analyses that vary 

assumptions about the underlying measurement error variance, and examine the robustness 

of results to random error in the event time.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The quadratic approximations of the β parameters as a function of λ, extrapolated to λ = −1, 

with the dotted lines denoting the true β for β = log(1.5) (a) and β = log(3) (b)
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Table 5

The hazard ratios (HR) and their corresponding bootstrap 95% confidence intervals for sex, a 100-unit 

increase in enrollment CD4, and a 10 year increase in age at enrollment for the time at virologic failure post 

ART.

Univariate

Sex 100 × CD4 10 × Age at Enrollment

True 1.128 (1.024,1.243) 0.883 (0.867,0.900) 0.995 (0.955,1.037)

Naive 1.098 (0.997,1.208) 0.885 (0.869,0.901) 0.990 (0.951,1.032)

SIMEX 1.101 (0.988,1.227) 0.882 (0.863,0.902) 0.985 (0.948,1.024)

Multivariate

Sex 100 × CD4 10 × Age at Enrollment

True 1.047 (0.950,1.155) 0.883 (0.867,0.900) 0.975 (0.935,1.017)

Naive 1.020 (0.926,1.123) 0.885 (0.869,0.901) 0.973 (0.933,1.014)

SIMEX 1.025 (0.929,1.131) 0.882 (0.862,0.902) 0.967 (0.926,1.010)
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