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ABSTRACT

Mucormycoses are life-threatening infections in immunocompromised patients. This study
characterizes the response of human mononuclear cells to different Mucorales and Ascomycota.
PBMC, monocytes, and monocyte derived dendritic cells (moDCs) from healthy donors were
stimulated with resting and germinated stages of Mucorales and Ascomycota. Cytokine response
and expression of activation markers were studied. Both inactivated germ tubes and resting spores
of Rhizopus arrhizus and other human pathogenic Mucorales species significantly stimulated mRNA
synthesis and secretion of proinflammatory cytokines. Moreover, R. arrhizus spores induced the
upregulation of co-stimulatory molecules on moDCs and a specific T-helper cell response. Removal
of rodlet hydrophobins by hydrofluoric acid treatment of A. fumigatus conidia resulted in enhanced
immunogenicity, whereas the cytokine response of PBMCs to dormant R. arrhizus spores was not
influenced by hydrofluoric acid. Scanning electron micrographs of Mucorales spores did not exhibit
any morphological correlates of rodlet hydrophobins. Taken together, this study revealed striking
differences in the response of human mononuclear cells to resting stages of Ascomycota and
Mucorales, which may be explained by absence of an immunoprotective hydrophobin layer in
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Mucorales spores.

Introduction

Immunocompromised patients are at high risk of
acquiring invasive mycoses." Besides the most common
opportunistic fungal genera Candida and Aspergillus,
new emerging opportunistic molds such as Mucorales
account for an increasing share of these infections.>”
Species of the order Mucorales cause life-threatening sys-
temic infections predominantly involving the lung, nasal
sinus, and central nervous system. Mucormycoses are
often characterized by rapid progression, poor treatment
response, and high mortality rates.*”

The immunocompetent host possesses a vast arsenal of
defense strategies to eliminate fungal spores preventing
progression to an invasive infection. The mononuclear
phagocyte system plays a crucial role in this process.*”*
Professional phagocytes destroy fungal pathogens by
phagocytosis or release of fungicidal molecules. The
presentation of acquired antigens provides T-cells with
the required stimulus and serves as an important

crosslink between innate and specific immunity.” Recog-
nition of fungal pathogens by innate immune cells indu-
ces the expression and release of a variety of cytokines
and chemokines that regulate cell migration and activity,
systemic inflammation, and T-cell differentiation.'® This
results in a well-orchestrated host response ensuring
effective elimination of the pathogen while limiting host
damage caused by excessive inflammation.'"'?

In mold immunopathology, a key concept is the
dependence of the virulence and host defense on the fun-
gal maturational stage.*'> During their maturation,
conidia of Aspergillus fumigatus and other Ascomycota
undergo metabolic and morphologic changes.'* These
alterations are of major importance for the recognition
by the host immune system and its response to the fun-
gus. For example, the loss of the rodlet hydrophobin
layer during swelling of Aspergillus conidia is associated
with a distinctly stronger stimulation of human innate
immune cells.*"?
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Though similarities in terms of fungal biology, predis-
posing factors, and clinical presentation can be observed
in Mucorales and Aspergillus infections, recent studies
indicate differences in host immunity to these fungi.'®'"’
However, the morphotype-dependent impact of
Mucorales on the human immune system has not yet
been conclusively characterized. In this study we there-
fore sought to expand our knowledge of the interplay
between innate human immune cells and various Mucor-
ales species, focusing on the cytokine response of
mononuclear phagocytes to different morphotypes.

Results

Dormant Rhizopus spores induce early and strong
inflammatory cytokine gene expression in human
mononuclear cells

Co-culturing PBMCs, monocytes, and moDCs with etha-
nol-inactivated germ tubes of Rhizopus arrhizus and
Aspergillus fumigatus germ tubes led to significantly
increase  of proinflammatory  cytokine mRNA
(Fig. 1A-C). Interestingly, resting spores of R. arrhizus
also induced a strong upregulation of ILIB and TNFA
transcription compared with unstimulated control cells
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or those co-cultured with dormant conidia of A. fumiga-
tus. The expression levels of IL1B and TNFA mRNA in
PBMCs peaked after 3 h co-culture with resting
R. arrhizus spores, and declined subsequently (Fig. 1D).
However, significantly upregulated cytokine expression
was found compared with unstimulated cells at all stud-
ied time points. Elevated ILIB and TNFA gene expres-
sion was dependent on the multiplicity of infection (Sup.
Fig. 1A), whereas sterile-filtered supernatants of fungal
preparations did not cause induction of ILIB and TNFA
(Sup Fig. 1B). Upregulated transcriptional activity of
IL1B and TNFA was paralleled by markedly elevated
secretion of TNFA, IL1B, IL6, IL8, GM-CSF, and MCP-1
in PBMCs co-cultured with inactivated dormant spores
and germinated stages of R. arrhizus (Fig. 2). Impor-
tantly, stimulation of PBMCs with vital spores resulted
in a similarly strong induction of IL1B and TNFA expres-
sion (Sup. Fig. 2). Though the peak of TNFA transcrip-
tion was observed after 6 hours of co-culture, even a
20 min stimulation period resulted in a slight, but signifi-
cant induction of IL1B and TNFA transcription. Taken
together, these observations demonstrate that dormant
spores of R. arrhizus are a potent stimulus of an early
and strong proinflammatory cytokine response by
human mononuclear phagocytes.
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Figure 1. Dormant R. arrhizus spores induce an early and strong upregulation of inflammatory cytokine genes in human mononuclear
cells (A) 2 x 108 PBMCs, (B) 1 x 10° monocytes, and 5 x 10° (C) moDCs from healthy donors (n = 5) were co-cultured with an equiva-
lent amount (MOI 1.0) of ethanol-inactivated spores (Sp) and germ-tubes (GT) of R. arrhizus (Rar) and A. fumigatus (Afu) for a period of
6 hours. The expression of important proinflammatory cytokines genes was analyzed by RT-qPCR. Gene expression is shown as relative
expression levels compared with unstimulated cells. The errors bars represent the standard deviation. (D) Relative gene expressions of
TNFA and IL7B after a 3 to 12 hour co-culture of 2 x 10° PBMCs from 5 healthy donors with an equivalent amount of ethanol-inactivated
resting spores of R. arrhizus compared with unstimulated cells. Med. indicates “immune cells stimulated with medium without fungal
cells;” horizontal bars indicate the mean values. ns: not significant; p-values: =: 0.05 < p < 0.1; *: 0.01 < p < 0.05; **: 0.001 < p < 0.01.
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Immunogenicity of dormant spores is observed
for various Mucorales species

Further we assessed whether dormant spores of other
human pathogenic Mucorales species were capable of
stimulating an inflammatory cytokine response in
mononuclear cells. All Mucorales species assessed in
this study induced an at least 10-fold upregulation of
TNFA and ILIB mRNA synthesis in PBMCs after 6 h
co-culture (Fig. 3A-B), whereas the presence of Asco-
mycota, A. fumigatus, and F. solani did not result in
significant elevations of proinflammatory cytokine
gene expression. A similar pattern was observed for
the ILIB release into the culture medium (Fig. 3C).
These data suggest that spores of human-pathogenic
Mucorales species share common structural or meta-
bolic features triggering a proinflammatory cytokine
response by mononuclear cells.

Resting spores of R. arrhizus induce the upregulation
of co-stimulatory molecules on dendritic cells

Apart from orchestrating the host defense against
fungal pathogens by release of cytokines, mononu-
clear phagocytes serve a crucial role in triggering spe-
cific immune response with their ability to acquire,
process and present fungal antigens to naive T cells.
The upregulation of co-stimulatory molecules and
maturation markers on moDCs exposed to dormant
spores and germ tubes of A. fumigatus and R. arrhi-
zus was assessed (Fig. 4). Germ tubes of both fungi
and resting spores of R. arrhizus stimulated CD83
and CD86 upregulation on moDCs. In contrast, co-
culture with dormant conidia of A. fumigatus only
led to slightly increased CD83 and CD86 expression
(Fig. 4A+B). This suggests that dormant spores of R.
arrhizus induced the maturation of moDCs.

T-helper cells specifically responding to Rhizopus
spores can be detected in healthy subjects

To evaluate whether a specific T-cell response to
Mucorales spores can be observed in healthy subjects, a
described previously assay'® was used to quantify the fre-
quency of T-helper cells responding to inactivated spores
and germ tubes of A. fumigatus and R. arrhizus by
CD154 upregulation (Fig. 5). After overnight stimulation
with germ tubes of A. fumigatus and R. arrhizus, mean
frequencies of 0.29% (4+/— 0.15%) and 0.39%
(+/— 0.19%) CD1541/CD4" T-cells were measured,
respectively. Stimulation with dormant spores of R.
arrhizus resulted in a proportion of 0.35% (+/— 0.18%)
specific T-helper cells, whereas only 0.08% (+/— 0.05%)
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Figure 2. R. arrhizus spores induce the secretion of proinflamma-
tory cytokines (A-B) A total of 2 x 10° PBMCs from healthy
donors (n = 4) were co-cultured with 2 x 10° R. arrhizus spores
(Sp) and germ tubes (GT) for 9 hours. (A) Cytokine secretion into
the culture medium was quantified by bead-based luminex anal-
yses (H-CYTOMAG 60K, Merck-Millipore). ns: not significant; p-val-
ues: J: 0,05 <p< 0.1; : 0.01 < p <0.05; **: 0.001 < p <0.01,
***.'p <0.001. (B) TNFA and IL1B concentrations were quantified
using ELISA Max™ deluxe sets (Bio-Legend).

T-cells were CD154 positive in response to resting A.
fumigatus spores, which only slightly exceeds the unspe-
cific background frequencies in unstimulated cells.

The absence of rodlet hydrophobins contributes
to the immunogenicity of dormant Mucorales spores

We hypothesized that differences in outer cell wall com-
position may contribute to the immunogenicity of dor-
mant Mucorales spores. Particularly, the existence or
absence of a hydrophobin layer associated with immuno-
protective properties in Ascomycota has not been dem-
onstrated in Mucorales yet. Consistent with previous
findings," treatment of A. fumigatus conidia with 48%
hydrofluoric acid for cleavage of phosphodiester bonds
in GPI anchors connecting the hydrophobins with other
cell wall components led to an upregulation of ILIB,
TNFA, and further pro-inflammatory cytokines in
PBMCs exposed to these conidia, whereas a slight down-
regulation of IL10 was observed (Fig. 6A-B, Sup. Fig. 3).
Conversely, the immunogenicity of dormant R. arrhizus
spores was not enhanced when treated with hydrofluoric
acid. Though there was a tendency toward a slightly less
pronounced cytokine response to hydrofluoric acid
treated R. arrhizus spores, significant pro-inflammatory
cytokine gene induction and a specific T-helper cell to
these spores by CD154 upregulation were observed



(Fig. 6A-B, Sup. Figs. 3 and 4). In a time-course analysis
using different durations of hydrofluoric acid treatment,
neither shorter nor longer hydrofluoric acid treatment
resulted in an increased immunogenicity of dormant
Rhizopus spores (Fig. 6C-D).

High-resolution SEM was performed to obtain a
direct morphologic image of the cell wall surface
morphology of Mucorales. While A. fumigatus conidia
exhibited the described previously fibrillary rodlet sur-
face pattern,”® a morphologic correlate to these struc-
tures was not observed in resting spores of R. arrhizus,
C. bertholletiae, and R. pusillus (Fig. 7A). Treatment of
R. arrhizus spores with hydrofluoric acid did not lead to
a significantly altered morphology in the outermost cell
wall layer, whereas the A. fumigatus spores lost their typ-
ical rodlet surface pattern (Fig. 7B).

In accordance with these findings, pBLAST analyses
of the A. fumigatus RodA and RodB sequences against
the Joint Genome Institute MycoCosm database (634
organisms including 19 Mucoromycotina) did not reveal
any homologues of these proteins in Mucorales, while
significant homologies to proteins in numerous Ascomy-
cota species were detected (Table S1). Taken together,
the immunological data, morphological findings, and in
silico data do not provide any evidence for the existence
of immunoprotective rodlet hydrophobins in the cell
wall of the studied Mucorales spores.

Discussion

Opportunistic infections caused by molds are a major
threat for patients with impaired innate or specific
immunity. Mucorales have emerged as increasingly
important pathogens in these patients,’ but the immuno-
pathology of mucormycoses is poorly understood. Here
we provide evidence that human mononuclear phago-
cytes exposed to both resting spores and mature stages of
R. arrhizus and other opportunistic Mucorales species
respond with an early and strong proinflammatory cyto-
kine expression and release.

The data presented here are in accordance with
previous findings demonstrating that co-culture of
human monocytes with heat-inactivated Rhizopus
spores results in a robust induction of IL6 and TNFA
secretion.'® Our data further support previously pub-
lished results demonstrating that dormant conidia of
A. fumigatus and other airborne fungal spores induce
little inflammatory response.’’** Though different
immune cell subsets, effector-target ratios, and meth-
ods for inactivating fungal cells were used in our
study and the cited work,'® we share the conclusion
of an inflammatory immune response caused by rest-
ing Mucorales spores and corroborate these data via
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Figure 3. Proinflammatory cytokine response by human PBMCs is
caused by exposure to dormant spores of various Mucorales spe-
cies (A-B) 2 x 10° PBMCs were co-cultured with 2 x 10° ethanol-
inactivated resting spores of different opportunistic Ascomycota
and Mucorales species for 6 hours. The relative mRNA expression
of IL1B (A) and TNFA (B) was assessed by RT-qPCR. (C) IL1B con-
centrations in the culture medium after a 9 h co-culture of 2 x
105 PBMCS with an equal amount of inactivated dormant Asco-
mycota and Mucorales spores.

direct comparison of different Mucorales species and
morphotypes. The observed immunogenicity of rest-
ing Mucorales spores contrasts the findings in
Ascomycota.

Apart from orchestrating the host defense against
invading fungi via the release of cytokines, mononu-
clear phagocytes serve a crucial role in triggering spe-
cific immune response with their ability to acquire,
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Figure 4. Dormant R. arrhizus spores induce the upregulation of co-stimulatory molecules on moDCs (A) Geometric mean fluorescence
values for CD83 and CD86 expression after an 18 h co-culture of 5 x 10° moDCs with 5 x 10° spores (Sp) and germ tubes (GT) of A.
fumigatus (Afu) or R. arrhizus (Rar). (B) Gating strategy and CD83/CD86 plots for moDCs from one representative donor. CD1" CD14~
cells were identified among all harvested cells. Within this subset, geometric mean fluorescence for CD83-PE and CD86-APC was

quantified.

process, and present fungal antigens to naive T cells.
For this reason, we compared the upregulation of co-
stimulatory molecules and maturation markers on
moDCs exposed to dormant spores and germ tubes
of A. fumigatus and R. arrhizus. Confirming previous
data, T-cell response is limited to the germinated
stages of A. fumigatus,” whereas a significant propor-
tion of T-cells specifically respond to resting spores of
R. arrhizus by upregulating CD154 (Fig. 4B).
Immunogenicity of Mucorales spores may be
explained by differences in outer cell wall composi-
tion. The cell wall of dormant spores of A. fumigatus

is covered by a pigmented rodlet hydrophobin layer."
These conidial rodlet hydrophobins form highly insol-
uble complexes in the outermost cell wall layer facili-
tating aerosolic dispersion of airborne fungal spores
and their growth at air-liquid-interfaces.*****® Several
studies highlight an additional role of rodlet proteins
in mediating a stage-specific immune response to
fungal spores. During maturation, conidia of A. fumi-
gatus and other Ascomycota swell and lose their
hydrophobin layer. The structures within the cell wall
are composed primarily of ff-glucans, galactomannan
and chitin'* are exposed to the innate immune cells,
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Figure 5. (A) subset of T-helper cells specifically upregulating CD154 after exposure to R. arrhizus spores can be identified in healthy
donors (A) Proportion of CD1547/CD4" T-lymphocytes after an 18 h co-culture of PBMCs with ethanol-inactivated resting spores (Sp)
and germ tubes (GT) of A. fumigatus (Afu) or R. arrhizus (Rar). Samples from 5 healthy donors, pre-screened for a proportion of at least
0.2% CD154%/CD4™ T-cells after 18 h stimulation with 5 mg of a commercially available crude mycelial lysate of A. fumigatus (+ 0.1 g
«CD28), have been analyzed. Horizontal bars indicate the mean values. (B) Representative flow cytometry data of one donor (black sym-
bols in Fig. 5A) after stimulation of 1 x 10° PBMCs with 1 x 10° inactivated spores of A. fumigatus or R. arrhizus. 0.1 ;g «CD28 antibody
were used for co-stimulation. Medium control contains the co-stimulatory antibody, but no fungal cells.

leading to an inflammatory response of human and
murine phagocytes.*

Paris and colleagues showed that RodAp, the main
rodlet hydrophobin of A. fumigatus spores, mediates
resistance to host alveolar macrophages. Spores of a rod-
letless mutant (ArodA-47) were significantly more sensi-
tive to killing by macrophages than wild-type conidia.'’
Aimanianda and colleagues described that surface
hydrophobins prevent immune recognition of spores of
A. fumigatus and other Ascomycota species due to the
resistance of rodlet proteins to lysosomal proteolytic

degradation resulting in a lack of antigenic peptides."” In
another study, this group found that RodA hydrophobins
mask the immunogenic cell wall components 81,3 glucan
and o-mannose of Aspergillus and Fusarium impairing
Dectin-1 and Dectin-2 mediated recognition by
macrophages, leading to reduced cytokine secretion. In a
corneal murine infection model, ARodA Aspergillus
spores induced significantly stronger cytokine release
and neutrophil recruitment to the site of infection than
wild-type conidia reducing fungal survival in infected
mice.”” On the other hand, rodlet-mediated masking of
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the host response is assumed to provide a protective
mechanism against tissue damage caused by an excessive
inflammatory response to non-invasive fungal stages.”**’

Conidial hydrophobins have been identified in several
Ascomycota and Basidiomycota species.”®*® The exis-
tence of rodlet hydrophobins in airborne human-
pathogenic mold fungi has not been demonstrated in
other phyla. In this study we have provided first evidence
of the absence of a morphologic correlate of rodlet
hydrophobins in dormant Mucorales spores using high
resolution SEM, supported by in silico data underlining
the absence of RodAp and RodBp homologues in Mucor-
ales. The largely unaltered immunogenicity of R. arrhizus
spores after hydrofluoric acid treatment further supports
the absence of immunoprotective hydrophobins. The
trend toward reduced immunogenicity of spores treated
with hydrofluoric acid, especially after treatment of pro-
longed periods, may be attributable to potential off-target
effects of hydrofluoric acid including the depletion of
immunogenic proteins or polysaccharids in the fungal
cell wall. Our data, however, clearly demonstrate, that
both hydrofluoric acid treated and untreated R. arrhizus
spores induce a robust pro-inflammatory cytokine
response and specific T-cell response. Most importantly,
in contrast to A. fumigatus, no evidence for an enhanced
immunogenicity of R. arrhizus spores by hydrofluoric
acid treatment was obtained. Hence, the findings of this
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study suggest that the missing coverage of immunogenic
carbohydrate and protein structures in an immunopro-
tective rodlet hydrophobin layer in the fungal cell wall
may contribute to the immunogenicity of resting Mucor-
ales spores.

Despite of the clinical similarities of mucormycoses
and invasive mycoses caused by Ascomycota species, this
study highlights the existence of considerable differences
in the immunopathology and cell wall architecture of
these fungi. Further research is required to gain a com-
prehensive view of the immunogenic structures and anti-
gens of Mucorales spores as well as the receptors and
signaling pathways mediating the inflammatory response
to these spores. This may open the field of new prophy-
lactic and therapeutic strategies in mucormycosis target-
ing the early developmental stages of Mucorales.

Materials & methods
Preparation and culture of leukocyte subsets

Whole blood specimens were collected from healthy vol-
unteers after obtaining written informed consent. The
study was conducted in full compliance with the
Declaration of Helsinki and approved by the Ethics
Committee of the University of Wuerzburg. Peripheral
blood mononuclear cells (PBMCs) were purified by
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=+=R. arrhizus
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Figure 6. Hydrofluoric acid treatment does not increase the immunogenicity of resting R. arrhizus spores (A-B) Dormant spores of A.
fumigatus and R. arrhizus were fixed with 2.5% paraformaldehyde for 12 h, followed 48% hydrofluoric acid treatment of 72 h. After
extensive washing with dH,0 to remove residual hydrofluoric acid 2 x 10° spores were co-cultured with 2 x 10° PBMCs obtained from
healthy donors (n = 4). The expression of TNFA and IL7B was analyzed by RT-gPCR (crosshatched bars). For comparison, the expression
of these genes was also analyzed after co-culture of PBMCs with PFA-fixed untreated dormant spores (monochromatic bars). (C-D) Rela-
tive TNFA and /LTB mRNA expression levels after a 6 h co-culture of 2 x 10° PBMCs with dormant A. fumigatus and R. arrhizus spores
treated with 48% hydrofluoric acid for 0 to 120 hours. ns: not significant; p-values: ™: 0.05 <p < 0.1; *: 0.01 < p< 0.05; **: 0.001< p <

0.01.



Ficoll gradient centrifugation. Monocytes were isolated
using MACS CD14 positive selection (Miltenyi Biotec,
#130-050-201). To generate monocyte-derived dendritic
cells (moDCs), monocytes were incubated with IL4
(Miltenyi Biotec, #130-095-373) and GM-CSF (Sanofi,
Leukine® sargramostim) for a period of 6 d. The purified
leukocyte subsets were resuspended at a concentration of
1 x 10° cells/ml in RPMI 1640 (Gibco / Life Technolo-
gies, #72400-021) supplemented with 10% heat-inacti-
vated fetal bovine serum (FCS, Sigma-Aldrich, #F-7524)
and 100 pug/ml gentamicin (Merck Serono, Refobacin®).
Cells were cultured at 37 °C and 5% CO,.

Fungal strains and preparation of fungal cells

The following fungal strains were used in this study:
Rhizopus arrhizus var. arrhizus (CBS 110.17), Rhizopus
microsporus (CBS 53680), Rhizomucor pusillus (CBS
245.58), Lichtheimia corymbifera (CBS 271.65), Mucor
circinelloides (CBS 192.98), Mucor hiemalis (CBS
200.28), Cunninghamella bertholletiae (CBS 187.84),
Fusarium solani (CBS 181.29), and Aspergillus fumigatus
(ATTC 46645).
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Dormant spores of these isolates were prepared from
mature colonies grown on beer wort agar and passed
through a 40 pum cell strainer to remove residual myce-
lium. A total of 1 x 10® spores were incubated in 20 ml
RPMI 1640 under constant shaking at 200 rpm at RT.
Germ tubes were obtained after 12-14 hours, and hyphae
after 16-18 hours. To prevent further maturation during
co-culture with immune cells, the fungi were inactivated
by incubation in 96% ethanol for 30 min at RT. Subse-
quently, fungal morphotypes were washed 5 times with
dH,0 and resuspended at a concentration of 2 x 107
cells/ml in RPMI 1640. Successful inactivation was con-
firmed by incubation of 10 ul of the spore solution on
beer wort agar plates for 7 d.

Chemical removal of conidial hydrophobins
by hydrofluoric acid treatment

As described previously,'> dormant spores were fixed
with 2.5% paraformaldehyde (Carl Roth, #0335) for
12 h, followed by 48% hydrofluoric acid (Merck,
#100334) treatment of 72 h at 4 °C. After extensive wash-
ing with dH,O to remove residual hydrofluoric acid,

A

A. fumigatus

C. bertholletiae

A. fumigatus 48% HF

.. ‘.\I

My
F Y .
e F '}

R. arrhizus

R. arrhizus 48% HF

Figure 7. Mucorales do not possess a morphologic correlate of A. fumigatus rodlet hydrophobins (A) Scanning electron micrographs of
resting spores of A. fumigatus ATTC 46645 (shows approximately 10 nm wide rodlets), R. arrhizus CBS 110.17, R. pusillus CBS 245.58, and
C. bertholletiae CBS 187.84. Scale bar = 200 nm. (B) Scanning electron micrographs of native and hydrofluoric acid treated (48%, 72 h)
resting spores of A. fumigatus ATTC 46645 and R. arrhizus CBS 110.17. Scale bar = 200 nm.
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spores were resuspended in RPMI 1640 at a concentra-
tion of 2 x 107 cells/ml.

Gene expression analysis

Total RNA from human immune cells was purified using
the RNeasy® Mini Kit (Qiagen, #74106) according to the
manufacturer’s protocol. RNA was eluted in 30 ul of
RNase-free water and the concentration was quantified
with the NanoDrop spectrophotometer (Peglab). RNA
was determined by using the High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems,
# 4368814). Quantitative PCR was performed on a Ste-
pOne™ plus instrument (Applied Biosystems) using the
iTag™ Universal SBYR® Green Supermix (Biorad,
#1725122). An initial denaturation step (90 °C, 15 s) was
followed by 40 cycles of repeated denaturation (90 °C, 3
sec) and extension (60°C, 30 sec). The following primer
sequences were used: ALASI 5-GGCAGCACAGAT
GAATCAGA-3 and 5-CCTCCATCGGTTTTCACA
CT-3, IL1B 5'-GGACAAGCTGAGGAAGATGC-3" and
5-TCGTTATCCCATGTGTCGAA-3', and TNFA 5'-TG
CTTGTTC CTCAGCCTCTT-3' and 5'-TGGGCTACAG
GCTTGTCACT-3'. Primers were confirmed not to
cross-anneal nucleic acid sequences of the studied fungal
species.

Analysis of cytokine release

ELISA Max™ deluxe sets (Bio-Legend, #437004 and
#430204) were used to quantify the release of ILIB
and TNFA into the culture medium. Bead-based multi-
plex cytokine assays were conducted using a magnetic
Milliplex Human Cytokine Panel (Merck Millipore,
HCYTOMAG-60K) according to the manufacturer’s
instructions. Culture supernatants were pre-diluted 1:2
in fresh RPMI 1640.

Flow cytometry

For staining of surface markers moDCs were harvested
120 hours after seeding, washed with HBSS
(Sigma-Aldrich, #H6648) and resuspended in RPMI
1640 + 10% FCS at a concentration of 1 x 10° cells per
ml. 300 ul (3 x 10° cells) were plated in each well of a
48-well plate and co-incubated with ethanol-inactivated
fungal spores or germ tubes for 18 h. The cells were then
transferred to FACS tubes, washed and stained in 100 pl
HBSS containing CD1a-FITC, CD14-PerCP, CD83-PE,
and CD86-APC antibodies (Miltenyi Biotec, #130-097-
903, #130-094-969, #130-094,876; BD Biosciences,
#556855). Analysis was performed on a FACSCalibur
flow cytometer (BD Biosciences). CDla* CD14~ cells

were considered as moDCs and geometric mean fluores-
cence intensity of CD83-PE and CD86-APC was deter-
mined in the CD1a* CD14™ subset.

CD154-positive T-cells were detected after an 18 h co-
culture of 1 x 10° PBMCs with 5 jug of an A. fumigatus
mycelial lysate (Miltenyi Biotec, #130-098-170) or etha-
nol-inactivated fungal spores or germ tubes and 0.1 ug
CD28 co-stimulatory antibody. Cells were stained using
the Inside Stain Kit (Miltenyi Biotec, #130-090-477) as
well as CD4-FITC and CD154-APC antibodies (Miltenyi
Biotec, #130-092-358 and #130-092-290). Lymphocytes
were identified by FSC/SSC properties. The frequency of
CD154 positive cells among CD4 positive cells was
determined.

Scanning electron microscopy (SEM)

Freeze-drying was performed as described previously
[18]. The glutaraldehyde (Sigma-Aldrich, #G5882) fixed
samples mounted on small silicon chips were washed
with dH,O. The chips were blotted with filter paper to
remove most of the water before freezing by nitrogen
cooled propane. The frozen samples were cryo-trans-
ferred to a Baf 300 freeze-etching device (Bal-Tec) and
partially freeze-dried for 35 min at —90 °C. The samples
were then rotary coated by electron beam evaporation
with 2 nm of platinum and kept cold during liquid-nitro-
gen transfer to the cryo-stage of the SEM. Specimens
were investigated at a temperature of —100 °C, using a
Gatan cryo-holder 626 in a Hitachi S-5200, in-lens field
emission SEM at an accelerating voltage of 10 kV using
the secondary electron signal.

Statistical analysis

Unless otherwise indicated, cells from 5 different donors
were analyzed. Significance testing was defined p < 0.05
by using the paired 2-sided t-test.
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