Table 1. Photophysical and electrochemical data for the photoredox catalysts.
λabs a (MLCT) (nm; log ε) | PLQY b | MLCT c (%) | ΔE T d (eV) | E ox e (V vs. SCE) | E red f (V vs. SCE) | E * ox g (V vs. SCE) | E * red h (V vs. SCE) | τ obs i (μs) | |
Ptdfppy | 380 (3.76) | 0.31 | 28 | 2.73 | 0.62 (qr) | –2.46 | –2.11 | 0.27 | 0.382 ± 0.059 |
Ptppy | 386 (3.91) | 0.44 | 27 | 2.64 | 0.57 (irr) | –2.38 | –2.07 | 0.26 | 2.21 ± 0.14 |
PtOMe | 420 (3.78) | 0.74 | 15 | 2.45 | 0.52 (irr) | –2.20 | –1.93 | 0.25 | 11.6 ± 0.50 |
a10 μM in acetonitrile solutions, 298 K.
bPhotoluminescence quantum yields determined relative to the fluorescein standard (0.1 N NaOH (aq), PLQY = 0.79).
cMLCT contribution to the triplet transition estimated using AOMix based on the TD-DFT (CPCM(CH3CN)-TD-B3LYP/LANL2DZ:6-311+G(d,p)//B3LYP/LANL2DZ:6-311+G(d,p)) results.
dTriplet-state energy determined from the phosphorescence spectra.
eDetermined using cyclic and differential pulse voltammetry. Conditions: scan rate = 100 and 0.4 mV s–1 for CV and DPV, respectively; 1.0 mM Pt complex in Ar-saturated acetonitrile containing the 0.10 M Bu4NPF6 supporting electrolyte; a Pt wire counter electrode and a Pt microdisc working electrode; the Ag/AgNO3 couple as the pseudo-reference electrode; qr = quasi-reversible; irr = irreversible.
fEstimated using E red = E ox – ΔE g, where ΔE g is the optical band gap energy: Ptdfppy, 3.08 eV; Ptppy, 2.95 eV; PtOMe, 2.72 eV.
g E * ox = E ox – ΔE T.
h E * red = E red + ΔE T.
iPhotoluminescence lifetimes observed at λ em = 465 nm (Ptdfppy), 483 nm (Ptppy), and 543 nm (PtOMe). The measurements were collected in triplicate.