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SUMMARY

The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth 

that is commonly deregulated in human diseases. Here we find that mTORC1 controls a 

transcriptional program encoding amino acid transporters and metabolic enzymes through a 

mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive 

mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a 

key effector of the integrated stress response. ATF4 translation is normally induced by the 

phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires 

upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 

translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 

instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results 

link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional 

program that controls the supply of amino acids to the translation machinery.
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INTRODUCTION

Cell growth is an energetically intensive process that is tightly coupled to environmental 

conditions. Throughout eukaryotes, the multi-protein kinase called the mammalian target of 

rapamycin complex 1 (mTORC1) is a major regulator of the growth process (Laplante and 

Sabatini, 2012). mTORC1 activity responds to a wide range of growth signals, including 

nutrients and growth factors, and it is transmitted to an array of substrates that orchestrate 

the balance between anabolic and catabolic metabolism (Laplante and Sabatini, 2012). A 

central function of mTORC1 is to control protein synthesis, a fundamental step in the 

minting of new cellular material. mTORC1 communicates with the protein synthesis 

machinery through at least two families of substrates, the S6 kinases (S6Ks) and the 4E-

binding proteins (4E-BPs). S6Ks phosphorylate multiple translation factors (e.g., RPS6), 

while 4E-BPs control the cytoplasmic cap-binding multi-protein complex eIF4F, a canonical 

translation factor that facilitates the rate-limiting step in translation initiation (Sonenberg and 

Hinnebusch, 2009). In the absence of mTOR activity, dephosphorylated 4E-BPs inhibit 

eIF4F function by binding to the cap-binding subunit (eIF4E) and preventing it from 

associating with the scaffold protein eIF4G, an interaction required for eIF4F translation 

initiation functions.

While the signaling links between mTOR and the translation machinery have been known 

for decades, their significance has only recently become apparent. The reason is that 

rapamycin, the classical mTOR inhibitor, is an unexpectedly weak inhibitor of protein 

synthesis in mammalian cells (Feldman et al., 2009; Thoreen et al., 2009). It is now clear 

that rapamycin only partially blocks the phosphorylation of many mTOR substrates, 

including some that are translation regulators (e.g., 4E-BPs) (Feldman et al., 2009; Thoreen 

et al., 2009). While the molecular details underlying this phenomenon are not entirely 

understood, they likely result from rapamycin’s allosteric mechanism of action, which may 

not affect all substrates equally (Kang et al., 2013). In contrast, inhibiting mTOR with either 
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ATP-competitive inhibitors or by genetic means leads to sharp decreases in bulk protein 

synthesis and cell-cycle arrest (Feldman et al., 2009; Thoreen et al., 2009). Importantly, the 

activation of 4E-BPs is necessary for both outcomes (Dowling et al., 2010; Feldman et al., 

2009; Thoreen et al., 2009).

The precipitous drop in protein synthesis following mTOR inhibition disrupts the balance of 

nutrient uptake and consumption. We wondered whether mTOR controls other mechanisms 

in parallel to maintain nutrient homeostasis. Here we show that mTOR inhibition triggers 

widespread repression of mRNAs encoding amino acid transporters and metabolic enzymes 

by post-transcriptionally repressing the transcription factor ATF4. ATF4, a member of the 

CREB/ATF family of bZIP transcription factors, is best known as the central mediator of the 

integrated stress response (Walter and Ron, 2011). The results described here establish a 

mechanism that controls its translation independently of the classical stress-induced trigger, 

phosphorylation of eIF2α, a translation factor. We further propose that a central function of 

ATF4 under non-stress conditions is to maintain the homeostatic balance between translation 

supply and demand by tuning the expression of the many enzymes and transporters required 

for delivering amino acids to the translation machinery.

RESULTS AND DISCUSSION

mTOR Controls the Expression of a Conserved Module of ATF4 Target Genes Involved in 
Amino Acid Metabolism and Uptake

To better understand the cellular response to growth inhibition, we used RNA sequencing 

(RNA-seq) to analyze changes in mRNA levels in HEK293T cells treated with vehicle or the 

ATP-competitive mTOR inhibitor Torin 1 for 24 hr (Thoreen et al., 2009). Significant 

changes in gene expression occurred throughout the transcriptome (13,570 detected, 1,004 

decreased, and 895 increased; q value < 0.1) (Figure 1A; Table S1). A bioinformatic analysis 

of mTOR-regulated mRNAs revealed a concerted repression of mRNAs encoding proteins 

that maintain amino acid homeostasis, including transporters, metabolic enzymes, and tRNA 

aminoacyl transferases (Figure 1B). These results are consistent with previous studies of 

mTOR-regulated transcription in mouse and human fibroblasts (Adams, 2007; Düvel et al., 

2010; Peng et al., 2002), and they indicate that mTOR controls a transcriptional program 

encoding the machinery for importing and processing the substrates of protein synthesis, 

complementing its function in regulating mRNA translation.

The coordinated repression of mRNAs with amino acid-related functions suggested a 

common mTOR-regulated transcription factor. To focus our search, we first sought to 

identify modules of consistently co-regulated mRNAs that are also subject to mTOR-

dependent control. We reasoned that the promoters of these mRNAs would be most enriched 

for a common regulatory element that could be robustly detected by bioinformatic analysis. 

Along these lines, we obtained transcriptome profiles of 1,037 cancer cell lines from the 

Cancer Cell Line Encyclopedia (CCLE), and we clustered mRNAs by similarities in their 

expression patterns (Pearson correlation) (Barretina et al., 2012) (Figure 1C; Table S2). We 

then scanned this clustered list using a 25-gene window, summing the mTOR-regulated 

changes in mRNA levels at each position. This approach identified a clear cluster of 30 

mRNAs (Figure 1C). Of these, 20 are included in the amino acid-related categories 
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identified in Figure 1B, including the following components of major amino acid transport 

systems: CAT1 (SLC7A1), a transporter of cationic amino acids; LAT1 (SLC7A5), a 

transporter for branched chain amino acids; and SLC3A2, a chaperone for multiple amino 

acid transporters, including SLC7A5. Many of the remaining ten genes also have clear 

amino acid-related functions (e.g., SLC6A9, glycine transporter; XPOT, tRNA nuclear 

export protein; and SESN2, a leucine sensor). This dominant functional signature suggests 

that these mRNAs are a tightly co-regulated subset of the larger mTOR-regulated 

transcriptional program of mRNAs with amino acid-related functions identified in Figure 

1B. Bioinformatic analysis of their promoter sequences revealed significant enrichment for 

binding sites of activating transcription factor 4 (ATF4) (Figure 1D). We confirmed that 

ATF4 is depleted following 24 hr of mTOR inhibition (Figure 1E).

Because 24 hr of mTOR inhibition has the potential to cause indirect effects, we tested 

whether ATF4 protein is depleted at earlier time points. ATF4 protein levels decreased 

within 30 min of mTOR inhibition, and it became undetectable by 4 hr (Figure 2A). 

Rapamycin, a specific inhibitor of mTORC1 at short time points (<8 hr), also depleted ATF4 

protein levels (Figure S1A). However, the magnitude of the depletion was slightly less than 

that caused by maximal concentrations of Torin 1, suggesting a role for rapamycin-resistant 

mTOR functions. mRNAs from the module identified in Figure 1D (SLC7A1, SLC7A5, 

SLC3A2, SESN2, and CHAC1), as well as an additional known ATF4 target that is depleted 

by mTOR inhibition (SLC7A11), were similarly reduced, although with varying kinetics 

(Figure 2B; Figure S1B) (Crawford et al., 2015; Harding et al., 2003; Sato et al., 2004; Ye et 

al., 2015). ATF4 has also been recently implicated in the control of mRNAs involved in 

purine biosynthesis (e.g., MTHFD2, PSAT1, and PHGDH) (Ben-Sahra et al., 2016). Many 

of these mRNAs were depleted in HEK293T cells by 24 hr (Table S1), although not as 

rapidly as amino acid (AA)-related transcripts (Figure S1C).

To better understand the contribution of ATF4 to mTOR regulation of mRNAs with AA-

related functions (AA-related: AA metabolism, transport, and tRNA aminoacylation from 

Figure 1B; Table S4), we used CRISPR/Cas9 to generate ATF4-null HEK293T cells (Figure 

2C) (Cong et al., 2013; Mali et al., 2013). RNA-seq was then used to analyze the 

transcriptional response to mTOR inhibition in ATF4-null and wild-type HEK293T cells 

(Figure 2D; Table S3). These results revealed that the loss of ATF4 significantly impaired 

the mTOR regulation of this class of mRNAs (Figure 2D). Many forms of cell stress, 

including endoplasmic reticulum (ER) stress, strongly induce ATF4 production (Walter and 

Ron, 2011). Because mTOR reduces the expression of these AA-related mRNAs by 

depleting ATF4, we reasoned that the induction of ER stress might increase their expression 

by increasing levels of ATF4 (Figure S1D). Surprisingly, the induction of ER stress with 

tunicamycin only mildly affected the expression of mTOR-regulated AA-related mRNAs 

while strongly increasing expression of established ER-stress mRNAs (Figure 2E; Table S4). 

Thus, basal levels of ATF4 appear to target different genes than those induced by ER stress, 

where levels of ATF4 are significantly elevated.

Closer inspection of mTOR-regulated mRNAs by qPCR showed some heterogeneity in their 

dependence on ATF4. Control of some transcripts (CHAC1, SLC7A11, and SESN2) was 

almost completely abolished in ATF4-null cells, while others (SLC7A5, SLC3A2, and 
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SLC7A1) retained varying degrees of sensitivity (Figure 2F). These data argue that some of 

these mRNAs are exclusive ATF4 targets, while others are redundantly controlled by 

transcription factors with overlapping specificity that are also mTOR regulated. As some of 

these encode major AA transporters, we also assessed the function of ATF4 in AA uptake. 

Loss of ATF4 reduced the uptake of a mixture of 15 AAs, establishing that decreased ATF4 

expression is sufficient to reduce basal AA uptake (Figure 2G). However, AA uptake 

remained sensitive to mTOR activity in ATF4-null cells, indicating that mTOR controls AA 

uptake through both ATF4-dependent and -independent mechanisms (Figure 2H). As these 

measurements were made using a partial mixture of AAs, the transport of specific AAs may 

be significantly more (or less) subject to ATF4-dependent control.

mTOR Controls ATF4 mRNA Stability

We next sought to understand how mTOR controls ATF4 expression. Analysis of HEK293T 

cells treated with Torin 1 revealed reductions in both ATF4 mRNA and protein but that the 

decline in protein precedes changes in mRNA levels by ~1 hr, consistent with recent work 

from Manning and colleagues (Figures 2A and 3A) (Ben-Sahra et al., 2016). This 

observation indicates that mTOR controls ATF4 expression through at least two distinct 

mechanisms, one targeting ATF4 mRNA and the other ATF4 protein. We first wondered 

whether mTOR controls ATF4 transcription. To test this possibility, HEK293T cells were 

pulse-labeled with 4-thiouridine (4sU), a nucleoside analog that is rapidly incorporated into 

newly synthesized mRNAs and can be derivatized after RNA isolation by thiol-specific 

biotinylation using MTS-biotin (Duffy et al., 2015). Analysis of 4sU-labeled mRNA showed 

reductions in the synthesis rates of ATF4 target mRNAs (SLC3A2, SLC7A1, and CHAC1) 

that mirrored the decrease in steady-state levels (Figure 3B). In contrast, the synthesis rate of 

ATF4 was reduced only by ~25%, indicating that transcriptional changes cannot account for 

the ~75% decrease in ATF4 mRNA levels following mTOR inhibition (Figure 3B).

To assess whether mTOR instead controls ATF4 mRNA stability, we generated doxycycline-

repressible (Dox-off) constructs encoding either ATF4 or, as a control, GFP. ATF4-null cells 

simultaneously expressing both reporters were pre-treated with vehicle (DMSO) or Torin 1 

and then with doxycycline to prevent further transcription. Analysis of reporter decay rates 

revealed a significant decrease in ATF4 mRNA half-life when mTOR was inhibited (Figure 

3C). mTOR inhibition also decreased the stability of the control (GFP) mRNA, although to a 

lesser degree than ATF4, indicating that mTOR signaling might have general effects on 

mRNA stability (Figure 3C). Indeed, ATF4 mRNA may be hyper-sensitive to an mTOR-

regulated mechanism that controls the stability of many mRNAs. Nonetheless, these results 

indicate that decreased mRNA stability is a significant component of mTOR regulation of 

ATF4 mRNA levels. We also note that ATF4 mRNA is a known target of nonsense-mediated 

decay (NMD) (Mendell et al., 2004). However, RNAi depletion of UPF1, a factor required 

for NMD, increased baseline ATF4 levels (and that of GAS5, a known target of NMD), but it 

failed to rescue mTOR-dependent regulation (Figure S2) (Smith and Steitz, 1998). We 

therefore conclude that mTOR inhibition primarily decreases ATF4 mRNA levels by 

increasing its rate of degradation through UPF1-independent mechanisms.
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mTOR Control of ATF4 Translation Requires Upstream Open Reading Frames but Is 
Independent of eIF2α Phosphorylation

mTOR also controls ATF4 protein levels through a mechanism that acts prior to changes in 

mRNA levels (Figures 2A and 3A). Previous studies found that proteasome inhibitors failed 

to prevent mTOR regulation of ATF4 levels, arguing against control of proteasome-

dependent degradation (Ben-Sahra et al., 2016). We found that ATF4 protein levels declined 

at similar rates in control or Torin 1-treated cells when protein synthesis was blocked with 

the translation inhibitor cycloheximide, confirming that ATF4 protein stability is unaffected 

by mTOR signaling (Figure 3D).

We next considered whether mTOR controls ATF4 translation. Translation of ATF4 is 

known to be regulated by a well-studied and complex mechanism that requires several 

upstream open reading frames (uORFs) in the ATF4 5′ UTR (two in mouse and three in 

human) (Lu et al., 2004; Vattem and Wek, 2004). The third uORF (uORF3) overlaps, out of 

frame, with the primary ORF (Figure 3E). Under normal growth conditions, uORF3 is 

translated with high efficiency, precluding the translation of the main ORF. Stress 

conditions, including ER stress and AA starvation, trigger a mechanism that causes 

ribosomes to skip uORF3 and instead initiate translation at the ORF encoding ATF4. We 

noticed, using ribosome profiling, that mTOR inhibition preferentially depleted ribosome 

density from the ATF4-encoding ORF (Figures 3E and 3F). Ribosome density was also 

reduced in uORF3, but this primarily reflected a decrease in ATF4 mRNA (~60% in this 

experiment) and not a significant reduction in translation efficiency (Figure 3F).

To test whether mTOR regulates ATF4 through the uORF selection mechanism, we 

constructed reporters programmed with either wild-type ATF4 5′ UTR or a version lacking 

the start codon for uORF3. These were inserted upstream of a sequence encoding YFP 

appended to a destabilized domain derived from Escherichia coli dihydrofolate reductase 

(ecDHFR) (Iwamoto et al., 2010). The YFP-ecDHFR fusion protein accumulates in cells 

only following the addition of the DHFR ligand, trimethoprim (TMP), allowing precise 

measurements of synthesis rates. Analysis of cells expressing these reporters confirmed that 

the ATF4 5′ UTR was sufficient to confer mTOR-regulated translation but that it required 

an intact uORF3 (Figure 3G; Figure S3A). We also introduced ATF4 alleles with wild-type 

or uORF3 mutant 5′ UTRs into ATF4-null cells. These constructs behaved similarly to the 

YFP-ecDHFR reporters, confirming a critical function for uORF3 in mTOR regulation of 

ATF4 (Figure 3H; Figure S3B).

Stress signals normally trigger ATF4 translation through phosphorylation of the translation 

factor eIF2α (Walter and Ron, 2011). How eIF2α phosphorylation controls ORF selection 

in the ATF4 5′ UTR is complex. To begin with, the small ribosomal subunit is recruited to 

mRNAs along with the ternary complex (TC), which consists of eIF2, GTP, and Met-

tRNA(i). Recognition of the start codon of uORF1 or uORF2 triggers hydrolysis of eIF2α-

bound GTP and dissociation of eIF2α-GDP from the ribosome. Translation re-initiation can 

occur at later ORFs but requires the 40S ribosome to bind new TC. High concentrations of 

TC preferentially drive initiation at the most proximal start codon (uORF3), while low 

concentrations cause preferential initiation at the distal start codon (the ATF4-encoding 

ORF). Phosphorylation of eIF2α reduces the cellular concentration of TC by trapping eIF2 
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in its GDP-bound state, thereby causing preferential initiation at the distal ORF encoding 

ATF4. We found that mTOR inhibition decreases eIF2α phosphorylation slightly (Figure 

2A), but that this appears to reflect a transient increase in aminoacylated tRNAs that 

accompanies the inhibition of translation and deactivates GCN2, an eIF2α kinase that is 

activated by AA starvation (Harding et al., 2000). In GCN2-null cells, mTOR inhibition 

continued to deplete ATF4 protein with no effect on eIF2α phosphorylation (Figure 3I). 

Additionally, Manning and colleagues found that mTOR still controls ATF4 protein levels 

even in cells where the Ser51 phosphorylation site on eIF2α is mutated to alanine (Ben-

Sahra et al., 2016). mTOR therefore controls ATF4 translation through a uORF-dependent 

mechanism that does not require eIF2α a phosphorylation, its normal trigger.

4E-BPs Are Required for mTOR-Regulated Inhibition of ATF4 Translation

An alternative explanation is that mTOR modulates the concentration of TC independently 

of eIF2α phosphorylation. mTOR controls general protein synthesis primarily through 4E-

BP-dependent regulation of eIF4F, which facilitates the initial and rate-limiting step of 

translation initiation. Inhibiting mTOR (and eIF4F) would thus decelerate the use of 

translation factors acting downstream of eIF4F, including the TC. The consequent increase 

in TC concentration would be expected to decrease ATF4 translation through the same ORF 

selection mechanism that is controlled by eIF2α phosphorylation.

To test this model, we monitored ATF4 translation in wild-type and 4E-BP-deficient mouse 

embryonic fibroblasts (MEFs) treated with Torin 1. Previous studies have shown that mTOR 

inhibition has little effect on general protein synthesis and eIF4F function in cells lacking 

4E-BPs (Dowling et al., 2010; Thoreen et al., 2012). Indeed, mTOR inhibition strongly 

depleted ATF4 protein levels in wild-type MEFs, but it caused negligible changes in 4E-BP-

deficient cells (Figure 4A). Overexpression of a dominant-negative 4E-BP1 allele (4E-

BP1-4A) in HEK293T cells similarly reduced ATF4 levels (Figure 4C). In contrast, mTOR 

inhibition reduced ATF4 mRNA levels in both wild-type and 4E-BP-deficient MEFs (Figure 

4B), indicating a 4E-BP-independent mechanism for controlling transcript levels that may 

become significant at later time points (>4 hr). ATF4 mRNA was slightly reduced by 4E-

BP1-4A overexpression in HEK293T cells, although this may be a secondary consequence 

of the relatively long (>24 hr) period of transgene induction required to achieve sufficient 

expression (Figure 4D). Conversely, overexpression of eIF4E significantly increased ATF4 

levels (Figure 4E). Excess eIF4E was unable to prevent mTOR-regulated depletion of ATF4 

(Figure S4A), but this likely reflects an inability to overcome the significantly greater 

abundance of 4E-BPs. While we cannot rule out contributions from additional mTOR-

regulated mechanisms, these data firmly argue that eIF4F is a central mediator of mTORC1-

dependent regulation of ATF4 translation.

We also wondered whether 4E-BPs were required for mTOR control of ATF4 target mRNAs 

analyzed in Figure 2F. Interestingly, measurements of these mRNAs in wild-type or 4E-BP-

deficient MEFs treated with mTOR inhibitors revealed that 4E-BPs were necessary for the 

full repression of some transcripts (CHAC1, SLC7A11, and SESN2), while completely 

dispensable for others (SLC7A5, SLC7A1, and SLC3A2) (Figure 4F). Additionally, the 

most 4E-BP-regulated mRNAs in MEFs were the same as those that mTOR controls 
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primarily through ATF4 in HEK293T cells (Figure 2F). These results are consistent with a 

model where mTOR controls ATF4 primarily through 4E-BPs but also a second 

transcription factor with overlapping specificity through a 4E-BP-independent mechanism. 

The variable dependence on 4E-BPs likely reflects the varying dependence on ATF4, an 

attribute that is apparently conserved between mouse and human.

ATF4 Translation Is Modulated by the Demand for Protein Synthesis

A paradox in our model is that the mTOR and eIF2α pathways are both controlled by AA 

availability, but they have opposite effects on ATF4 translation. In cells, AA starvation 

consistently increases ATF4 translation, arguing that the eIF2α-regulated mechanism is 

dominant over the mTOR-regulated one (Figure 4G). This is a logical response, since ATF4 

drives the transcription of AA transporters and tRNA synthetases needed to remedy the 

source of stress; but then, what is the function of mTOR control of ATF4? Unlike eIF2α, 

mTOR activity also responds to other nutrient signals, including growth factor availability, 

that impact the demand for protein synthesis (e.g., insulin). Indeed, serum starvation 

depleted ATF4 protein levels (Figure 4G), consistent with previous reports (Adams, 2007). 

Serum deprivation had no effect on ATF4 levels in MEFs lacking TSC2, an upstream 

negative regulator that transmits growth factor signals to mTORC1, confirming mTORC1 as 

the primary regulator of ATF4 levels in response to growth factor signals (Figure 4H). This 

response has a similar logic: serum starvation-induced growth arrest results in an excess of 

AAs because the demand for protein synthesis is reduced.

Based on these results, we propose that ATF4 is a central regulator of AA homeostasis under 

non-stress conditions where demand for protein synthesis—and consequently AAs—can 

nonetheless fluctuate (Figure 4I). Under this model, the unique uORF mechanism encoded 

in the ATF4 5′ UTR acts as a sensor of the balance between the cellular demand for protein 

synthesis and substrate availability. mTOR inhibition of eIF4F triggers this mechanism by 

drastically repressing the demand for protein synthesis. The increase in unused factors 

required for re-initiation (e.g., TC) mimics a decrease in eIF2α phosphorylation and reduces 

ATF4 translation through the same uORF-dependent mechanism. Finally, it is notable that 

several ATF4 targets (SESN2, 4E-BP1, and DDIT4/REDD1) are known components of the 

mTOR-signaling pathway (Walter and Ron, 2011; Yamaguchi et al., 2008; Ye et al., 2015). 

mTOR control of ATF4 may, therefore, regulate a feedback circuit that tunes the architecture 

of the pathway in response to its activity.

EXPERIMENTAL PROCEDURES

Materials

Reagents were obtained from the following sources: antibodies for ATF4, S6K, phospho-

T389-S6K, eIF2α, phospho-Ser51-eIF2α, 4E-BP1, GCN2, and UPF1 from Cell Signaling 

Technology; primary antibodies for eIF3b and horseradish peroxidase (HRP)-labeled 

secondary antibodies from Santa Cruz Biotechnology; IRDye secondary antibodies from LI-

COR Biosciences; 14C-labeled AA mixture (011014750) from MP Biomedicals; Trizol and 

DMEM from Life Technologies; heat-inactivated fetal bovine serum (FBS), recombinant 

4E-BP1, and 7mGDP from Sigma-Aldrich; RNase If, polynucleotide kinase, Proto-script II 
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reverse transcriptase, and streptavidin-coated magnetic beads from New England Biolabs; 

iTaq Universal SYBR Green Supermix and Bradford Protein Assay from Bio-Rad; MTSEA 

biotin-XX from Pierce/Thermo Fisher Scientific; RNeasy Plus Mini Kit from QIAGEN; and 

XtremeGENE 9 transfection reagent from Roche.

Cell Culture and Preparation of Cell Extracts

All HEK293T cells and MEFs were grown in high-glucose DMEM supplemented with 10% 

(v/v) heat-inactivated FBS and penicillin-streptomycin. 4E-BP1/2+/+ and 4E-BP1/2−/− MEFs 

were kindly provided by N. Sonenberg (McGill University) and GCN2+/+ and GCN2−/− 

MEFs by D. Ron (University of Cambridge). To prepare extracts, cells rinsed once with ice-

cold PBS were lysed in ice-cold lysis buffer (40 mM HEPES [pH 7.4], 2 mM EDTA, 10 mM 

pyrophosphate, 10 mM glycerophosphate, and 1.0% Triton X-100). The soluble fractions of 

cell lysates were isolated by centrifugation at 13,000 rpm for 10 min in a microcentrifuge. 

Protein concentrations were normalized using the Bradford Protein Assay. Isolated proteins 

were denatured by the addition of sample buffer and boiling for 2 min, followed by 

immunoblotting.

Mammalian Lentiviral shRNAs and cDNAs

The small hairpin RNA (shRNA) vector for human UPF1 was a gift from Joan Steitz, and it 

is based on the Sigma/TRC MISSION pLKO.1 vector (TRCN0000413098) but modified to 

confer blasticidin resistance. Lentivirus was prepared as described previously (Thoreen et 

al., 2012). The 4E-BP1-4A mutant was constructed by mutating T36, T47, S65, and T70 

residues of rat 4E-BP1 to alanines, which was then inserted into a Tet-On plasmid, as 

described previously (Thoreen et al., 2012). Similarly, wild-type or DuORF3 ATF4 was 

amplified from cDNA and inserted into a Tet-On version of this plasmid.

Generation of ATF4-Null HEK293T Cells

To generate ATF4-null HEK293T cells, the small guide RNA (sgRNA) sequence 

TCTCTTAGATGATTACCTGG was inserted into the px330 vector (Cong et al., 2013) and 

transfected into cells. Then 48 hr after transfection, cells were sorted via fluorescence-

activated cell sorting (FACS) into 96-well plates with no more than one cell per well, and 

they were allowed to form colonies. Colonies were screened for successful ATF4 deletion by 

immunoblotting.

RNA-Seq and Ribosome Profiling

RNA-seq libraries for HEK293T cells treated with Torin 1 or tunicamycin for 6 hr were 

prepared using the Clontech SMARTer Stranded Total RNA kit. RNA-seq and ribosome 

profiling sequencing libraries for HEK293T cells treated with Torin 1 for 24 hr were 

prepared similarly to previous reports (Ingolia et al., 2012; Thoreen et al., 2012), but with 

some modifications that are detailed in the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• mTORC1 transcriptionally regulates amino acid transporters and enzymes via 

ATF4

• mTORC1 controls ATF4 by regulating the translation and stability of its 

mRNA

• Control of ATF4 translation requires uORFs, but not changes in eIF2α 
phosphorylation

• mTORC1 control of ATF4 translation instead employs the 4E-BP translation 

repressors
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Figure 1. mTOR Inhibition Depletes mRNAs with Functions in AA Transport and Metabolism
(A) Global changes in mRNA levels following 24 hr of mTOR inhibition. HEK293T cells 

were treated with vehicle (DMSO) or 250 nM Torin 1 for 24 hr and analyzed by RNA-seq.

(B) mTOR inhibition reduces mRNAs with functions in AA metabolism and transport. Gene 

set enrichment analysis (GSEA) was used to analyze changes in mRNA levels from (A). 

Vertical lines beneath the x axis denote the members of each gene set. (AA Metabolic 

process, MSIGDB M11769; AA/Oligopeptide SLC Transporters, MSIGDB 19056; tRNA 

Aminoacylation, MSIGDB M456).

(C) Left panel: an mTOR-regulated gene module. CCLE expression data were clustered by 

Pearson correlation and shown as a heatmap (increases in red and decreases in blue). Middle 

panel: log2-fold changes in mRNA levels from (A) were summed in a 25-gene window and 

plotted at each position. Right panel: a zoomed-in view of the cluster indicated is shown. 

mRNAs repressed upon mTOR inhibition are highlighted in red.

(D) ATF4-binding motif from the JASPAR database of transcription factor-binding sites, 

identified by motif analysis of promoters of genes in (C) (see the Supplemental 

Experimental Procedures).

(E) Extracts from cells treated as in (A) were analyzed for the indicated proteins by 

immunoblotting.
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Figure 2. mTOR Inhibition Causes Rapid ATF4-Dependent Reductions in AA-Related mRNAs
(A) mTOR inhibition rapidly reduces ATF4 protein level. Extracts were prepared from 

HEK293T cells treated with vehicle (DMSO) or 250 nM Torin 1 for the indicated times and 

analyzed by immunoblotting.

(B) mTOR inhibition depletes ATF4 target mRNAs. qPCR analysis of RNA isolated from 

cells treated with vehicle (DMSO) or 250 nM Torin 1 for the indicated durations is shown. 

RNA levels were normalized to that of GAPDH (n = 3, error bars are SEM).

(C) ATF4−/− HEK293T cells generated using CRISPR/Cas9 lack ATF4 protein. Cell extracts 

were analyzed by immunoblotting for the indicated proteins.

(D) mTOR control of AA-related mRNAs in ATF4+/+ and ATF4−/− HEK293T cells. Left 

panel: changes in mRNA levels in the indicated cell lines treated with 250 nM Torin 1 for 6 

hr were analyzed by RNA-seq. Red, mRNAs that are mTOR-regulated in ATF4+/+ cells (q < 

0.1); blue, mTOR-repressed mRNAs (q < 0.1) encoding proteins with AA-related functions 

(transport, metabolism, and tRNA aminoacylation from Figure 1B) (n = 2). Right panel: 

boxplot shows change in expression of mTOR-repressed mRNAs with AA-related functions 

in ATF4+/+ and ATF4−/− HEK293T cells. Boxplots are displayed with standard definitions: 

upper and lower hinges are 25th and 75th percentile, respectively. The bar represents the 

median.

(E) Comparison of mRNA changes induced by Torin 1 and Tunicamycin (Tm). Left panel: 

changes in mRNA levels in HEK293T cells treated with either 250 nM Torin 1 or 1 μM 

tunicamycin for 6 hr were analyzed by RNA-seq. Blue, mTOR-regulated mRNAs (q < 0.1) 

with AA-related functions, as in (D); green, mRNAs induced by tunicamycin (q < 0.1) with 

ER stress-related functions (MSIGDB M10844) (n = 2). Right panel: boxplot shows change 

in expression of AA-related and ER-stress mRNAs in HEK293T cells treated with 250 nM 

Torin 1 or 1 μM tunicamycin for 6 hr (n = 2). Boxplots are displayed with standard 

definitions: upper and lower hinges are 25th and 75th percentile, respectively. The bar 

represents the median.
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(F) mTOR regulation of ATF4-target transcripts in ATF4−/− cells. RNA was isolated from 

ATF4+/+ and ATF4−/− HEK293T cells treated with vehicle (DMSO) or 250 nM Torin 1 for 4 

hr and analyzed by qPCR. Values for each mRNA are normalized to GAPDH and are 

relative to levels in untreated wild-type cells (n = 3, error bars are SD).

(G) Loss of ATF4 reduces AA uptake. Uptake of 14C-labeled AAs was measured in 

ATF4+/+, ATF4−/−, or ATF4−/− HEK293T cells expressing ectopic ATF4 by scintillation 

counting and normalized to DNA content. n = 3, error bars are SD, significance by t test.

(H) mTOR inhibition reduces AA uptake. ATF4+/+ and ATF4−/− HEK293T cells were 

treated with vehicle (DMSO) or 250 nM Torin 1 for 24 hr. AA uptake was assessed as in 

(G). n = 3, error bars are SD, significance by t test.
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Figure 3. mTOR Controls ATF4 Translation and mRNA Stability
(A) mTOR reduces ATF4 mRNA levels. RNA was isolated from cells treated with vehicle 

(DMSO) or 250 nM Torin 1 for the indicated times and analyzed by qPCR. RNA levels were 

normalized to GAPDH (n = 3, error bars are SD).

(B) mTOR activity has little effect on ATF4 transcription. HEK293T cells were treated with 

vehicle or 250 nM Torin 1 for 4 hr and then pulsed for 15 and 30 min with 100 μM 4sU. 

RNA was reacted with MTS-biotin, isolated by streptavidin-affinity purification, and 

analyzed by qPCR. Synthesis rates were determined by comparing 4sU labeling at 15 and 30 

min and compared to changes in steady-state mRNA levels (n = 3, error bars are SD).

(C) mTOR inhibition decreases the half-life of ATF4 mRNA. ATF4−/− HEK293T cells 

simultaneously expressing doxycycline-repressible constructs encoding ATF4 and GFP were 

pre-treated with vehicle or 250 nM Torin 1 for 30 min, and then 1 μg/mL doxycycline. 

mRNA was collected at 0 and 6 hr post-doxycycline addition and analyzed by qPCR. mRNA 

levels were normalized to GAPDH (n = 3, error bars are SD, but are too small to be visible).

(D) ATF4 protein stability is unaffected by mTOR inhibition. Extracts were prepared from 

HEK293T cells pre-treated with 100 μg/mL cycloheximide for 5 min and then with vehicle 

(DMSO) or 250 nM Torin 1 for the indicated times, and they were analyzed for the indicated 

proteins by immunoblotting (left panel) and quantified by normalizing levels of ATF4 to 

EIF3B (right panel) (n = 3, error bars are SD).

(E) mTOR inhibition preferentially decreases translation of the ATF4-coding ORF. Top 

panel: ribosome profiling data from HEK293T cells treated for 24 hr with vehicle (DMSO) 

or 250 nM Torin 1 are shown. Bar heights are reads per million (RPM) for each position in 
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the spliced ATF4 transcript, and they are the combined values of two replicate libraries. 

Bottom panel: organization of ORFs in the ATF4 mRNA is shown.

(F) mTOR-regulated change in the translation efficiency of ATF4 ORFs. Translation 

efficiencies of ATF4 uORF3 and main ORF (mORF) were calculated by normalizing 

ribosome-protected fragment (RPF) reads from (E) from non-overlapping segments of 

uORF3 or mORF to RNA levels in DMSO- and Torin 1-treated conditions (n = 2, error bars 

are SD, significance calculated by t test).

(G) Top panel: reporter design. 5′ UTRs are from wild-type human ATF4 (WT), ATF4 with 

start codon of uORF3 mutated to TAC (DuORF3), or ACTB. Bottom panel: cells were 

treated with 10 μM TMP to stabilize YFP concurrently with vehicle (DMSO) or 250 nM 

Torin 1, and they were monitored for fluorescence at the indicated times (n = 9, error bars 

are SEM).

(H) uORF3 is required for mTOR control of full-length ATF4. ATF4−/− HEK293T cells 

stably expressing dox-inducible WT or DuORF3 ATF4 were treated with 1.0 μg/mL (WT) 

or 0.5 μg/mL (ΔuORF3) doxycycline for 40 hr, and then with vehicle (DMSO) or 250 nM 

Torin 1 for 1 hr. Cell extracts were prepared and analyzed by immunoblotting for the 

indicated proteins.

(I) Gcn2 is required for mTOR control of eIF2α phosphorylation, but not ATF4 translation. 

Extracts were prepared from Gcn2+/+ or Gcn2−/− MEFs treated with vehicle (DMSO) or 250 

nM Torin 1 for 4 hr, and they were analyzed by immunoblotting for the indicated proteins.
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Figure 4. mTOR Controls ATF4 Translation through 4E-BPs
(A) 4E-BPs are required for mTOR control of ATF4. 4E-BP1/2 wild-type (WT), double 

knockout (DKO), or DKO MEFs stably expressing 4ebp1 (DKO + 4ebp1) were treated with 

vehicle (DMSO) or 250 nM Torin 1 for 4 hr. Cell extracts were analyzed by immunoblotting 

for the indicated proteins.

(B) mTOR control of ATF4 mRNA in MEFs is independent of 4E-BPs. RNA was isolated 

from wild-type or 4E-BP-deficient cells treated as in (A) and analyzed by qPCR for levels of 

ATF4 mRNA, normalized to RPS20 mRNA (n = 3, error bars are SD).

(C) 4E-BP1 is sufficient to deplete ATF4 protein in HEK293T cells. HEK293T cells stably 

expressing a doxycycline-inducible 4× Ala 4E-BP1 mutant were treated with dox for 48 hr. 

Cell extracts were analyzed by immunoblotting for the indicated proteins.

(D) 4E-BP1 reduces ATF4 mRNAs in HEK293T cells. RNA was isolated from cells treated 

as in (C) and analyzed by qPCR for ATF4 mRNA levels, normalizing it to GAPDH (n = 3, 

error bars are SD).

(E) Overexpression of EIF4E increases ATF4 protein levels. HEK293T cells stably 

transduced with dox-inducible EIF4E were treated with 0.1 or 1.0 μg/mL doxycycline for 24 

hr, and they were analyzed by immunoblotting for the indicated proteins.

(F) 4E-BPs are required for mTOR control of ATF4 target mRNAs in MEFs. RNA was 

isolated from 4E-BP1/2 WT or DKO MEFs treated with vehicle (DMSO) or 250 nM Torin 1 

and analyzed by qPCR for the indicated mRNAs. All mRNAs were normalized to Gapdh (n 

= 3, error bars are SD).
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(G) Growth factor and AA starvation have opposite effects on ATF4 protein levels. Left 

panel: WT MEFs were incubated in media with or without AAs + 10% dialyzed FBS for 4 

hr. Cell extracts were analyzed by immunoblotting for the indicated proteins. Right panel: 

WT MEFs were incubated in serum-free media for 24 hr and then stimulated with 500 nM 

insulin for 4 hr. Cell extracts were analyzed by immunoblotting for the indicated proteins.

(H) Depletion of ATF4 by serum deprivation is mTORC1 dependent. Cell extracts were 

prepared from Tsc2−/− MEFs serum-starved for 24 hr, and then stimulated with 500 nM 

insulin ± 250 nM Torin 1 and analyzed by immunoblotting for the indicated proteins.

(I) Model for cellular control of ATF4.
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