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Abstract

The transporter associated with antigen processing 2 (TAP2) is involved in the development of 

multidrug resistance and the etiology of immunological diseases. In this study, we investigated 

whether the expression of TAP2 can be perturbed by single nucleotide polymorphisms (SNPs) 

located in 3′-untranslated region (3′-UTR) of the gene via interactions with microRNAs. Using a 

series of in silico assays, we selected the candidate microRNAs (miRNAs) with the potential to 

interact with functional SNPs of TAP2. The SNP rs241456—located in the 3′-UTR of TAP2—

resides in a potential binding site for hsa-miR-1270 and hsa-miR-620. HEK 293 cells, from a 

human kidney cell line, were used to characterize the extent of binding of miRNAs to each 

polymorphic allele of the SNP by a luciferase reporter gene assay. RNA electrophoretic mobility 

shift assays were used to evaluate the interaction between the miRNAs and each allele sequence of 

the SNP. We found that hsa-miR-1270 inhibited luciferase activity by binding to the T allele of the 

SNP in an allele-specific manner. A negative correlation was also found between the expression of 

hsa-miR-1270 and the T allele of the SNP in kidney tissues. Our findings support the hypothesis 

that hsa-miR-1270 suppresses the production of TAP2 by binding to this SNP in the 3′-UTR of 

this gene.
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INTRODUCTION

The transporter associated with antigen processing 2 (TAP2), or the ATP-binding cassette 

subfamily B member 3 (ABCB3), is located in the major histocompatibility complex II 

(MHC-II) locus of chromosome 6 and is 8–12 kb in size (Trowsdale et al., 1991). Drug 

resistance, usually leading to unsuccessful treatment, is a major challenge for the treatment 

of cancer patients. Multidrug resistance for anticancer drugs has been associated with the 

overexpression of TAP2 (Lage et al., 2001). For instance, the overexpression of TAP2-

mediated drug resistance in breast cancer and ovarian cancer has been reported (Park et al., 

2006; Ricciardelli et al., 2013). On the other hand, as a transporter, TAP2 also plays a vital 

role in the delivery of some antigenic peptides to the surface of cytotoxic T lymphocytes. 

Loss of function of the gene results in a loss of expression of MHC class I molecules on the 

cell surface due to the absence of appropriate antigenic peptides (Cerundolo et al., 1990; 

Hosken and Bevan, 1990). Some abnormal cells may escape immune surveillance due to 

loss of the expression of MHC class I molecules (Zeidler et al., 1997; Lankat-Buttgereit and 

Tampe, 2002). Despite these intriguing observations, the regulation of TAP2 gene expression 

has not been fully investigated.

Epigenetic modifications can produce changes in the expression of genes, without changes 

in the DNA sequences. There are three major mechanisms for epigenetic regulation: DNA 

methylation, histone acetylation, and noncoding RNA modulation. For example, DNA 

methylation can inhibit the expression of TAP1 in cervical intrae-pithelial neoplasia (CIN) 

tissue. Decreased expression of TAP2 at the protein level has also been observed in CIN, 

although abnormal DNA methylation in the promoter region of the gene was not detected 

(Hasim et al., 2012). Histone deacetylases (HDACs) can catalyze histone deacetylation, 

which typically decreases the expression of genes (Buchwald et al., 2009). Histone 

deacetylase inhibitors (HDACi) are in clinical use as a new class of anti-cancer drugs. 

Trichostatin A (TSA), a type of HDACi used to treat carcinoma patients, can increase the 

expression of TAP2 (Setiadi et al., 2008) through epigenetic modulation. Genetic variants of 

TAP2 have also been examined for their associations with a number of diseases (Ishihara et 

al., 1997; Kumagai et al., 1997; Kuzushita et al., 1999). Only a few studies have examined 

the relationship between microRNAs (miRNAs) and TAP2 (Albanese et al., 2016).

The functional consequences of SNPs located in the 3′-untranslated regions (3′-UTRs) of 

genes have received attention. Genetic variation in the 3′-UTR can affect gene expression by 

interfering with miRNA binding (Popp et al., 2016). The miRNAs, a group of noncoding 

RNAs with a length of 20–24 nucleotides, can bind to the target sequences of genes to 

silence the gene expression (Saito et al., 2014). MiRNAs usually suppress the gene 

expression by targeting partially complementary sequences located in the 3′-UTR or coding 

region of mRNA transcripts. SNPs residing in putative miRNA binding sites located in the 

3′-UTR of the TAP2 gene are predicted to have a functional effect when examined using 
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publically available prediction models (Wei et al., 2012). However, functionality of those 

sites requires empirical confirmation.

Our previous studies demonstrated that miRNAs can modulate the expression of genes 

encoding drug metabolizing enzymes and transporters (Yu et al., 2010, 2015a, 2015b, 2015c; 

Jin et al., 2016; Chen et al., 2017; Wang et al., 2017; Zeng et al., 2017). In this study, we 

hypothesized that a SNP in the 3′-UTR of TAP2 interferes with miRNA binding, thus 

inhibiting the expression of the gene. We applied in silico assays to select a putative 

functional SNP and the corresponding miRNAs involved in the interaction. The SNP- 

rs241456 (C>T), located at 3′-UTR of TAP2, was shown to be a potential binding site for 

hsa-miR-620 or hsa-miR-1270. Furthermore, TAP2 mRNA levels are correlated negatively 

with the expression of these miRNAs in brain tissues (Wei et al., 2012). Thus, we selected 

the rs241456, hsa-miR-620 and hsa-miR-1270 for this study. Because altered TAP2 

expression is involved in renal disorders, such as renal cell carcinoma, and rejection of renal 

transplantation (Chevrier et al., 1995; Hodson et al., 2003; George and Mittal, 2011), we 

conducted our analyses in the kidney tissues. We also found that hsa-miR-1270 can bind to 

the T allele of rs241456 SNP in an allele-specific manner. In addition, the T allele was 

negatively correlated with the hsa-miR-1270 expression in kidney tissues. Data from in vitro 

experiments suggested that hsa-miR-1270 decreases the expression of TAP2 through 

interacting with the T allele of rs241456 in the 3′-UTR of TAP2.

METHODS AND MATERIALS

Normal Kidney Samples

Normal kidney samples were obtained from the University of Arkansas for Medical 

Sciences Tissue Bank under Internal Review Board Exemption 4.

In Silico Analysis

The PolymiRTS database 3.0 (http://compbio.uthsc.edu/miRSNP) was screened for common 

SNPs (minor allele frequency, MAF>0.1) within potential miRNA target sites in the 3′-UTR 

of the TAP2 transcript (Refseq: NM_000544). Pairwise linkage disequilibrium (LD) analysis 

was performed based on the 1000 Genomes data for the CEU population using the SNP 

Annotation and Proxy (SNAP) tool (http://www.broadinstitute.org/mpg/snap). The RNA 

hybrid program (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid) was employed to 

calculate the minimum free energy (MFE) of hybridization between miRNAs and their 

potential target sequences. The SNP (rs241456) was selected for further analysis.

In Silico Analysis of the Allele-Specific Correlation Between TAP2 Expression and Hsa-
miR-1270

TAP2 gene expression, hsa-miR-1270 expression and B allele frequency (BAF) values of 

rs241456 were downloaded from the dataset of GSE49280 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49280). We defined rs241456 with BAF 

> 0.65 as the genotype CC (n = 21), rs241456 with BAF < 0.35 as the genotype TT (n = 7) 

and rs241456 with 0.35 ≤ BAF ≤ 0.65 as the genotype CT (n = 5). The correlation between 
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TAP2 expression and hsa-miR-1270 expression in both CC and CT/TT genotypes was 

analyzed using Graph-Pad Prism (https://www.graphpad.com/scientific-software/prism/).

Luciferase Reporter Gene Assay

We modified the pGL3-Control vector (Promega, Madison, WI) by adding the Universal 

USER Cassette (New England Biolabs, Ipswich, MA) according to our previous research 

(Yu et al., 2015a). The cloning primers TAP2-C-F: 5′AATCATTATC 

CCCAACCCTATGAGGT-3′, and TAP2-C-R: 

5′GTTGGGGATAATGATTAAAAACGAT-3′ were used to amplify the core region of 

TAP2 3′-UTR spanning the putative binding sites of hsa-miR-1270 and hsa-miR-620. The 

USER enzyme (New England Biolabs) was used to digest the PCR products. The digested 

products were then subcloned into the modified pGL3-Control vector. The prepared plasmid 

was designated as TAG2-C-CU. Using the site-directed mutagenesis, we constructed TAG -

T-CU that contains the rs241456 T allele sequence by using TAP2-T-F: 5′-AATCATTATC 

TCCAACCCTA TGAGGT-3′, and TAP2-T-R: 5′-GTTGGAGATAATGAT 

TAAAAACGAT-3′ primers. The authenticity of constructed plasmid was confirmed by 

DNA sequencing.

HEK 293 cells (ATCC, Manassas, VA), a human kidney cell line, were used for the 

luciferase reporter gene assay. The cells were cultured in Dulbecco’s Modified Eagle 

medium with 10% fetal bovine serum (FBS) at 378C in a humidified 5% CO2 atmosphere 

and 4 × 104 cells were seeded per well in 96-multiwell plates. After the cells reached 70%–

80% confluence, we used Lipofectamine 2000 reagent (Life Technologies, Carlsbad, CA) to 

transfect the prepared TAP2-C-CU orTAP2-T-CU (100 ng), 50 nmol/L hsa-miR-1270 

mimics, hsa-miR-620 mimics, or an miRNA negative control (Thermo Scientific, 

Tewksbury, MA) into the cells. Three independent transfection experiments were performed, 

and each transfection was carried out in triplicate.

RNA Electrophoretic Mobility Shift Assays (RNA EMSAs)

RNA EMSAs were carried out by the Light Shift Chemiluminescent RNA EMSA Kit 

(Thermo Scientific) as described previously (Popp et al., 2016). The infrared dye-D800 

labeled miRNA oligonucleotide probes used for hsa-miR-1270 and hsa-miR-620 were 

D800-MIR1270 (rCrUrGrGrArGrArUrArUrGrGrArArGrArGrCrUrGrUrGrU), and D800-

MIR620 (rArUrGrGrArGrArUrArGrArUrArUrAr GrArArArU), respectively. The 

sequences of infrared dye-D700 labeled probes containing the C allele or the T allele of 

rs241456 are D700-TAP2-T (mAmAmUmCmAm 

UmUmAmUmCmUmCmCmAmAmCmCmCmUmAmUm GmAmGmGmU) and D700-

TAP2-C (mAmAmUmCm AmUmUmAmUmCmCmCmCmAmAmCmCmCmUmAm 

UmGmAmGmmU), respectively. All the probes were purchased from Integrated DNA 

Technologies.

Briefly, after heating the oligonucleotides for 5 min at 808C, they were placed on ice for 5 

min, and then incubated at 258C for 20 min. The oligonucleotides were mixed with 1× 

REMSA binding buffer, 5% glycerol, 200 mMKCl, 100 mM MgCl2, and 200 nmol synthetic 

miRNA and/or cognate mRNA oligonucleotides to a 20 µL basic reaction mixture. Bound 
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complexes and/or unbound probes were separated on an 8% polyacrylamide gel 

electrophoresis (PAGE) that was carried out at 4°C for 2.5 h. The resulted images for 

binding assays were then viewed by an Odyssey CLx Infrared Imaging System (LI-COR 

Biosciences, Lincoln, NE).

RNA Extraction and Quantitative Reverse-Transcription PCR (qRT-PCR)

The qRT-PCR was performed as described previously (Yu et al., 2015b). Briefly, the 

miRNeasy Mini Kit (Qiagen, Valencia, CA) was used to extract total RNA from 63 normal 

kidney tissues (43 males, 20 females, with a mean age of 60.4 ± 11.3years). The cDNA was 

prepared using a QuantiTect Reverse Transcription Kit (Qiagen) and an NCode™ miRNA 

First-Strand cDNA Synthesis Kit (Life Technologies). An ABI Prism7900 Sequence 

Detection System (Applied Biosystems) was used to detect the expression of TAP2 and hsa-

miR-1270 with the SYBR Green method by QuantiFast SYBR1 Green RT-PCR Kit 

(Qiagen). The primers for the TAP2 gene are TAP2-F: 5′-

ACGGCTGAGCTCGGATACCAC-3′ and TAP2-R: 5′-CC TCGGCCCCAAAACTGC-3′. 

The primers for the GAPDH gene are GAPDH-F: 5′-GAA ATCCCATCACCATCTTC-

CAGG-3′ and GAPDH-R: 5′-GAGCCCCAGCCT TCTC CATG-3′. The primers for hsa-

miR-1270 and U6 were miR214-F: 5′-CTGGAGATATGGAAGAGCTGTGT-3′ and U6-F: 

5′-CTCGCTTCGGCAGCACA-3′, and U6-R: 5′-AACGCTTCACGA ATT TGCGT-3′, 

respectively. The fold changes of TAP2 or hsa-miR-1270 expression were calculated relative 

to expression of GAPDH or U6 small nuclear RNA respectively, using the comparative CT 

method (2−ΔΔCT).

Statistical Analyses

The correlations between the mRNA levels of each allele of the SNP for TAP2 and the levels 

of the hsa-miR-1270 were analyzed by Spearman correlation in human kidney tissues. 

Student’s t tests were used to compare results from luciferase reporter gene assays between 

subgroups. The differences were considered significant at a P value <0.05. Statistical 

analyses were performed using SPSS software (SPSS 17.0; SPSS, Inc., USA).

RESULTS

In Silico Prediction and Selection of Potentially Functional SNPs

The PolymiRTS database was screened for common SNPs (MAF > 0.1) within potential 

miRNA target sites in the TAP2 3′-UTR. Six common SNPs were identified as miRNA 

target site SNPs (Table I). All the SNPs are in strong linkage disequilibrium (LD) (r2> 0.8). 

Particularly, rs241454 T>C and rs241456 C>T were in a complete LD (r2 = 1.0) with the 

other five SNPs (Fig. 1). As shown in Table I, a total of 33 miRNAs were predicted to 

interact with the six SNPs. To determine if a specific SNP can affect miRNA binding, the 

minimum free energy (MFE) was calculated for the common and variant alleles of each of 

these SNPs. The difference of MFE (ΔMFE) indicated the change of binding affinity 

between the miRNA and the mRNA transcript. Remarkable changes in MFE were observed 

for common and variant transcripts. The variant “T” allele of rs241456 significantly 

increased the MFE of binding for hsa-miR-1270 and hsa-miR-620, as compared to the 
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common “C” allele. Therefore, hsa-miR-1270 and hsa-miR-620 were selected for 

examination of their ability to interact with rs241456 C > T.

Allele-Specific Expression of TAP2 and Hsa-miR-1270 Using Silico Analysis

Using the GSE49280 dateset, we did not find an allele specific correlation between CC 

(Pearson’s correlation, r = −0.112 and P = 0.630) or CT/TT genotypes (Pearson’s 

correlation, r = −0.459 and P = 0.134) of TAP2 transcripts with the expression of hsa-

miR-1270 (Fig. 2). However, the trend of “allele specific” correlation suggested the need of 

correlation analysis using human kidney tissues (see results below).

Allele-Specific Suppression of TAP2 by Hsa-miR-1270

Using the RNA hybrid program to predicted free energy between the sequence of C-allele or 

T-allele and hsa-miR-1270 or hsa-miR-620, we found that the T-allele sequence exhibited a 

lower free energy for binding than the C allele sequence by both hsa-miR-1270 (−26.7 kcal/ 

mol vs −16.8 kcal/mol) and hsa-miR-620 (−19.2 kcal/ mol vs −14.3 kcal/mol) (Fig. 3A,B). 

The results suggested that hsa-miR-1270 or hsa-miR-620 binds more readily to the T allele 

sequence than that of C allele. Next, the rs241456 T or C allele sequence and the hsa-

miR-1270, hsa-miR-620 mimics, or the miRNA negative control, were transfected to HEK 

293 cells, respectively. The reporter gene assays showed that the expression of the T-allele 

harboring luciferase was efficiently suppressed by hsa-miR-1270 compared with the miRNA 

negative control (25.7%, 1.1 vs 1.48). However, the C allele harboring luciferase was not 

suppressed by hsa-miR-1270 and neither allele was suppressed by hsa-miR-620 (Fig. 3C).

Allele-Specific Interaction between TAP2 mRNA and Hsa-miR-1270

To determine if the miRNA molecule indeed interacts with its targeted mRNA sequence, and 

if it recognizes the cognate mRNA in an allele specific manner, we conducted 

mRNA:miRNA EMSA experiments. A complex was formed by adding the hsa-miR-1270 

and mRNA oligonucleotides containing rs241456 T allele sequence (Fig. 4, Lane 7) in vitro 

using RNA EMSA, but no such a complex was observed from the interaction of hsa-

miR-1270 and rs241456 C allele sequence (Lane 8). In addition, we did not detect any 

complexes formed between the C-allele or T-allele oligonucleotides and hsa-miR-620 

(Lanes 5 and, 6). The result indicated an interaction between miR-1270 and the T allele 

(rs241456) at 3′-UTR of the TAP2 transcript.

Correlation between the Expression of Hsa-miR-1270 and TAllele or C Allele of TAP2 
Transcripts in Human Kidney Tissues

Tissue expression correlation analysis was conducted to confirm the biological relevance of 

miR-1270 in the regulation of TAP2 in human tissues. As shown in Figure 5B, significant 

negative correlations between hsa-miR-1270 levels and the T allele of TAP2 mRNA 

expression were found in kidney tissues (r = −0.276; P = 0.018). However, the C allele of 

TAP2 mRNA was not correlated (r = −0.111; P = 0.468) with the hsa-miR-1270 level in the 

same tissues (Fig. 5A). Although the inverse correlation between hsa-miR-1270 levels and 

the expression of T allele in TAP2 mRNA transcripts is modest owing to the heterogeneity 

of human samples achieved from an environmentally diversified population, together with 
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the results of RNA-EMSA and luciferase assays, we showed that hsa-miR-1270 can regulate 

the expression of TAP2 by targeting the cognitive sequence containing the T allele of 

rs241456.

DISCUSSION

The interindividual variability in the expression of genes encoding drug-metabolizing 

enzymes and transporters was documented (Ning et al., 2008; Yang et al., 2013), and it may 

influence drug absorption, metabolism, and pharmacokinetics, and play an important role in 

drug efficacy, safety, and adverse drug reactions (Evans and Relling, 1999; Spear et al., 

2001; Wilkinson, 2005). Genetic changes of transporter genes associated with some diseases 

have also been demonstrated (Dietrich and Geier, 2014) and can be clinically significant 

(Brambila-Tapia, 2013; De Iuliis et al., 2015). An SNP is a common genetic variation in the 

germline and they have been extensively studied due to an important role in the pathology of 

diseases (Bodmer and Bonilla, 2008). Recently, the functional effects of genetic variations in 

3′-UTR of the genes have received attention (Ning et al., 2014; Relling and Evans, 2015). 

Epigenetic regulation is an important mechanism for modifying gene expression (Wang et 

al., 2015, 2016). As an important part of epigenetics, miRNAs play a vital role in regulation 

of transporter gene expression through binding the 3′-UTR of genes (Koturbash et al., 2015; 

Wan et al., 2015; Engstrom et al., 2016; Kap et al., 2016).

In this study, we selected hsa-miR-1270 and hsa-miR-620 as candidate miRNAs to elucidate 

the interactions between the miRNA and a functional SNP in the 3′-UTR of TAP2 using in 
silico analysis. Employing luciferase reporter gene assays, we found that hsa-miR-1270 can 

reduce luciferase gene activity in an allele-specific manner in vitro. RNA EMSA also 

showed complex formation of hsa-miR-1270 and the T allele of rs241456 but not with the C 

allele. The expression of hsa-miR-1270 and different alleles of rs241456 of TAP2 in kidney 

tissues were detected. The expression levels of hsa-miR-1270 were negatively correlated 

with the C allele of rs241456 of TAP2 mRNA levels using the Spearman correlation analysis 

(r = −0.276), but not the T allele. These results show that hsa-miR-1270 negatively regulates 

TAP2 expression in an allele-specific manner in kidney tissues. Due to large interindividual 

variability in the expression of both TAP2 and miR-1270, and the small human samples 

available for use in this study, the correlation between the expression of the T allele at TAP2 

(rs241456) and miR-1270 is not strong, but does indicate a trend of negativity. It is a 

common phenomenon that the correlations between miRNAs and their cognate mRNAs in 

human samples are possibly confounded due to the complexity of gene regulation and the 

diversity of genetic and environmental background among human populations(Yu et al., 

2010, 2015a, 2015b, 2015c; Jin et al., 2016; Chen et al., 2017; Wang et al., 2017; Zeng et al., 

2017).

Genetic variation in the coding region of TAP2 has been associated with tuberculosis (TB) 

infection in some population-based studies (Rajalingam et al., 1997; Gomez et al., 2006; 

Roh et al., 2015; Thu et al., 2016). However, there are some differences in the results 

reported for those studies. The reasons for discordant results may be the heterogeneity 

between different cohorts or weak genetic effects. We speculated that other unknown factors 

could play vital roles in regulating gene expression. For example, the expression of TAP2 
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can be reduced by Epstein– Barr virus (EBV) miRNAs through targeting its transcript 

(Albanese et al., 2016). We examined the hypothesis that the rs241456 SNP had functional 

consequences on miR-NAs targeting. We identified two miRNAs that could potentially bind 

to the SNP-harboring site using in silico analysis. Calculations demonstrated that the free 

energy of the two miRNAs binding the T allele is less than that of the C allele of the 

rs241456 SNP. The results indicate that the T allele binds more readily to the two miRNAs 

due to a more favorable free energy profile (less than 220 kcal/mol) (Yu et al., 2015c). Using 

luciferase assays, we further confirmed the inhibition of T allele expression in the TPA2 

gene, based on the promise that any change greater than 15%–35% should be detected at the 

enzyme activity or protein production levels (Chen et al., 2017; Wang et al., 2017; Zeng et 

al., 2017).

Alterations of the expression of TAP2 can result in important impacts on human health. The 

ATP-binding cassette transporter, a heterodimer of TAP1 and TAP2, mainly translocates 

peptides from the cytosol to MHC class I and then presents the trimeric MHC complex to 

the cell-surface of immune cells including T lymphocytes and natural killer cells. Decreased 

TAP accumulation results in surface HLA accumulation, thus impairing immune functions 

(Karttunen et al., 2001). A study suggested that alterations in TAP2 stoichiometry could 

change MHC processing properties in decidual stromal cells, thus interfering with maternal–

fetal interactions during pregnancy (Mika and Lynch, 2016). On the other hand, ATP-

binding cassette transporters are involved in xenobiotic metabolism. In concordance to the 

observation that upregulation of multiple drug resistance gene expression is associated with 

breast cancer patients’ resistance to neoadjuvant chemotherapy, the deletion of TAP2 

expression is favorable for patients to respond to neoadjuvant chemotherapy (Litviakov et 

al., 2016). In addition, with a bacterial model, Lerebours et al. (2016) demonstrated that the 

alteration of TAP2 expression could change the metal accumulation level and survival ratio 

in E. coli cells, indicating the significance of TAP2 in metal detoxification.

It should be helpful to understand what degree of TAP2 inhibition would lead to a 

biologically significant outcome. Are there logical positive and negative controls that can 

help set the boundaries? Answering this question is extremely challenging, because 

interindividual variability in the expression of genes encoding human drug metabolizing 

enzymes and transporters (DMETs) is dependent on multifactorial components, including 

genetic, epigenetic, environmental factors, and individual’s health status (Koturbash et al., 

2015). As to what degree a miRNA can modulate DMET expression, our previous studies 

(for more than 10 DMETs and corresponding miRNAs) and literature results suggested a 

level of ~15%–35% inhibition could be achieved by miRNAs in the expression of DMETs. 

The small amount of inhibition in DMETs could be biologically significant in drug efficacy 

and safety if the magnitude of miRNA inhibition is intensified by drug–drug interaction, 

gene–gene, and gene-environmental interaction (Koturbash et al., 2015; Chen et al., 2017; 

Wang et al., 2017; Zeng et al., 2017).

RNA-ESMA is an effective way to observe the interaction between a miRNA and its target 

sequences in vitro (Yu et al., 2015c). In this work, the binding complex can be detected 

between the T allele of rs241456 SNP and hsa-miR-1270, but not for the C allele and the 

miRNA. The allele-specific manner of binding has been extensively studied by several 
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researchers. For instance, hsa-miR-548s and hsa-miR-4480 suppressed the expression of 

IL-17A in an allele-specific manner in age-related macular degeneration (AMD) (Popp et 

al., 2016). This is consistent with our results that miRNA can inhibit target gene expression 

through binding the SNP in an allele-specific manner.

Mutations and/or polymorphism within TAP2 could alter the efficacy of the immune 

response and contribute to the etiology of renal cell carcinoma (Hodson et al., 2003). We 

detected the expression of each allele of rs241456 for TAP2 and hsa-miR-1270. Spearman 

correlation analysis showed hsa-miR-1270 was negatively correlated with mRNA levels of 

the T allele in TAP2, but not the C allele. These results indicate that miRNA plays an 

important role in regulating gene expression. Importantly, the overexpression of TAP2 has 

been demonstrated to associate with drug resistance in some cancers. In MCF7/ AdVp300 

cells, a drug resistance breast cancer cell line, the expression of TAP2 was elevated 2.1-fold, 

compared to the parental MCF7 (Liu et al., 2005). It was also reported that the expression of 

TAP2 was significantly increased in recurrent malignant ovarian tissues compared to benign 

tissues (Auner et al., 2010). In this study, hsa-miR-1270 can inhibit the expression of TAP2 

in an allele-dependent manner, specifically with a higher inhibitory efficiency towards the T 

allele of the SNP rs241456, which may help to explain the individual variability of drug 

metabolisms and drug resistances for some drugs that are transported by TAP2.

In conclusion, based on the current results, rs241456 is a functional SNP in TAP2 and the 

different alleles of the SNP can alter the ability of hsa-miR-1270 to bind and degrade TAP2 

mRNA in vitro. However, as the transcripts of TAP2 can be targeted by many miRNAs, our 

study does not exclude the possibility that other miRNAs binding to the gene decreases 

expression of TAP2. There are several limitations with this study. For example, the allele 

frequency at the population level is not known. Nevertheless, our study provides new insight 

into the role of miRNAs in the modulation of TAP2, which may impact the design of 

personalized medicine strategies for patients based upon genotype.
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Fig. 1. 
Linkage disequilibrium (LD) map of the TAP2 3′-UTR showing the degree of linkage 

disequilibrium between the six genotyped SNPs. The LD plot is displayed using an r2 black 

and white color scheme. Black: r2 = 1; white: r2 = 0; shades of grey: 0 < r2 <1.
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Fig. 2. 
Correlation between the expression of CC and CT/TT genotypes of TAP2 and hsa-miR-1270 

expression. The expression levels of (A) CC (n = 21) genotype (r = −0.112, P = 0.630) and 

(B) CT (n = 5)/TT (n = 7) genotype (r = −0.459, P = 0.134) of TAP2 were not statistically 

significantly correlated with hsa-miR-1270 expression levels in the dataset of GSE49280 

using Pearson’s correlation analysis.
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Fig. 3. 
The hsa-miR-1270 suppressed reporter gene expression in an allele special manner. (A) 

Targeting prediction of hsa-miR- 620 to the 3′-UTR of TAP2 based on rs241456 allele. The 

free energy for binding of the miRNA to the T allele is stronger than the C allele. (B) 

Targeting prediction of hsa-miR-1270 to the 3′ -UTR of TAP2 based on rs241456 allele. 

The free energy for binding of the miRNA to the T allele is stronger than the C allele. (C) In 

HEK 293 cells, using luciferase reporter assay to detect the effect of each allele of rs241456. 

After HEK 293 cells were transiently transfected with a plasmid containing either the T or C 

allele for rs241456 together with hsa-miR-1270 mimics, hsa-miR-620 mimics, or an 
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miRNA-negative control (NC). Renilla luciferase was measured as an internal control for the 

transfection efficiency, and firefly luciferase was measured to compare the gene expression 

levels. All experiments were carried out in triplicate. *P <0.05.
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Fig. 4. 
Interaction of hsa-miR-1270 with different allele sequence of rs142456. Lanes 1–4 show the 

mobility of the labeled nucleotides. Lanes 5–6 show the mobility of hsa-miR-620 with each 

allele of rs241456 in TAP2. Lanes 7–8 show the mobility of hsa-miR- 1270 with each allele 

of rs241456 in TAP2. Arrow indicated the complex of hsa-miR1270 and T allele of the 

SNP241456 in yellow.
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Fig. 5. 
Correlation between the expression of hsa-miR-1270 and each allele of rs241456 for TAP2 

transcripts. The levels of hsa-miR-1270 was negatively correlated with the mRNA levels for 

T allele of rs241456 in TAP2 (r = −0.111, 63 normal kidney samples) but not for C allele of 

rs241456 (r = −0.276) using Spearman correlation analysis.
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