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Abstract

PURPOSE—Demonstrate an optimized multi-inversion EPI technique to accelerate quantitative 

T1 mapping by judicious selection of inversion times for each slice.

METHODS—Slice ordering is optimized to maximize discrimination between tissues with 

different T1 values. The optimized slice orderings are tested in the ISMRM/NIST phantom and 

compared to an unoptimized 21-measurement acquisition. The utility of the method is 

demonstrated in a healthy subject in vivo at 3T and validated with a gold-standard inversion-

recovery sequence. The in vivo precision of our technique was tested by repeated scans of the 

same subject within a scan session and across scan sessions occurring 28 days apart.

RESULTS—Phantom measurements yielded good agreement (R2 = 0.99) between the T1 

estimates from the proposed optimized protocol, reference values from the NIST phantom and 

gold-standard inversion-recovery values, as well as a negligible estimation bias that was slightly 

lower than that from the unoptimized 21-measurement protocol (0.74 ms vs. 19 ms). The range of 

values for the scan-rescan coefficient of variation was 0.86–0.93 (within-session) and 0.83–0.92 

(across-sessions) across all scan durations tested.

CONCLUSION—Optimized slice orderings allow faster quantitative T1 mapping. The optimized 

sequence yielded accurate and precise T1 maps.
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Introduction

Two-dimensional inversion recovery (IR) pulse sequences are commonly used for 

quantitative T1 mapping. To estimate T1, each image slice is acquired with multiple 
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inversion time (TI) values and the measured image intensities are then fitted to a model to 

extract the underlying quantitative T1 recovery value at each voxel. Although reliable, this 

T1 mapping procedure suffers from lengthy acquisition durations that prevent its use in 

routine clinical scans. To increase efficiency, rather than acquiring only one slice per IR 

faster alternatives acquire multiple slices sequentially following each non-spatially-selective 

inversion pulse such that each of the slices is acquired at different TI [1–3]. The temporal 

ordering of the slices is permuted from one IR period to the next, such that during the 

repeated inversion recoveries each slice is measured with a distinct ordering of TI values. 

This multiple-slice scheme provides increased signal in each measured slice relative to the 

Look-Locker approach [4–6] in which the same slice is excited and acquired multiple times 

during the IR to sample multiple TI values with the disadvantage that there is little time for 

signal recovery (longitudinal relaxation) in the slice between excitations. In the multiple-

slice scheme, the repetition time (TR) for any given slice may vary from one IR period to the 

next, and in general for fast acquisitions TR is too short for complete longitudinal recovery 

(in some cases TR < T1), therefore fitting the T1 value using a closed-form model can be 

challenging [7,8]. Instead, the resulting image intensities for a given slice can be matched to 

a dictionary of signal recovery curves pre-computed using the Bloch simulation of the 

specific pulse sequence for a variety of possible T1 values [9].

The image acquisition during the IR can be accomplished with different image encoding 

schemes but the echo-planar-imaging (EPI) sequence offers compelling benefits. In addition 

to a rapid acquisition, EPI is the most commonly used acquisition technique for functional 

MRI (fMRI) [10], as well as diffusion and perfusion MRI [11], which are typically acquired 

alongside separate anatomical reference scans to localize regions of interest. Because EPI is 

vulnerable to geometric distortion due to its low phase encoding bandwidth [12], the EPI 

data must be distortion corrected to achieve an accurate geometric alignment to anatomical 

reference images obtained with standard pulse sequences such as magnetization-prepared 

rapid gradient echo (MPRAGE), for example [13,14]. The limited accuracy of distortion 

correction has driven recent interest in EPI based anatomical reference data using the same 

phase encoding bandwidth used in the functional (or diffusion/perfusion) acquisition to 

perfectly match the geometric distortion of the two datasets [15–20].

In previous work [9] we described a multi-inversion EPI sequence to provide a quantitative 

T1 map that is distortion-matched to EPI-based fMRI data. To ensure accurate reconstruction 

of the multiple different T1 values present in the human brain, multiple measurements were 

acquired across multiple IR periods and the slice order permuted by a constant ‘skip-factor’ 

between each measurement, with the skip-factor defined as the offset from a linear ordering 

of N slices, i.e. the number of slices permuted or “skipped” at the beginning of the IR period 

and acquired at the end. Unfortunately, given the broad range of T1 values in the human 

brain, a large number of measurements are needed to acquire the required broad range of TI 

values in each slice for accurate T1 mapping, resulting in prolonged scan time for a single 

volume (up to 3 minutes). Moreover, the choice of skip-factor is arbitrary and not optimized 

for the anatomy of interest.

Instead, in this work we use concepts originally developed for flip angle and TR schedule 

optimization in MR Fingerprinting [21–25] to select the optimal slice ordering, namely one 
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that produces the set of distinct TI values sampled by each slice that maximizes the 

discrimination between different tissue types for a presumed range of tissue T1 values. We 

demonstrate that this optimization allows reducing the required number of measurements 

without adversely affecting the quantitative accuracy and precision of the T1 maps obtained. 

Our method is demonstrated in phantom data and in an in vivo dataset from a healthy subject 

scanned at 3T.

Theory

Reconstruction dictionary design

We briefly review here the design of the reconstruction dictionary. The reader is referred to 

Ref. [9] for further details. Let TIj,k be the inversion time undergone by a slice j in 

measurement k in a given slice ordering scheme. Since the acquisition time of each slice is 

constant, the inversion times can be converted into a specific slice order by dividing by the 

acquisition time per slice. The evolution of the signal intensity S in each voxel within a 

given slice j can be modeled as a vector d(T1)=[S(TIj,1), S(TIj,2), …] where the dependence 

of the signal on the tissue’s underlying T1 value is generated by the varying inversion times 

experienced by that slice. Given a set of TIj,k values, the signal intensity evolution for tissues 

with different T1 values can be calculated using Bloch equation simulations assuming mono-

exponential relaxation, zero transverse magnetization and ideal flip angles. After 

normalization of each vector, the calculated set of signal intensity vectors for the chosen 

range of T1 values can be assembled into a matrix D, with one column per T1 value, which 

forms the reconstruction dictionary. By finding the best matching dictionary entry to the 

voxel-wise data acquired from the scanner using a pattern-matching algorithm, such as the 

vector dot product, the corresponding T1 value can be identified and assigned to the voxel.

Slice Ordering Optimization

Let N be the number of slices and K be the number of measurements. Optimizing the 

constant skip-factor slice ordering x= [TI1,1, TI2,1,, … TIN,K] can be accomplished using 

concepts originally developed for MR Fingerprinting (MRF) schedule optimization [22–25]. 

In MRF schedule optimization, an optimization dictionary is defined by selecting a range of 

T1 values covering the anatomical range of interest representing different tissue types. The 

magnetization of each tissue is calculated using a Bloch simulation of the acquisition pulse 

sequence and stored as a column vector which, after normalization of each vector, can be 

assembled into a matrix H. The similarity between each vector in H and all others can be 

computed using the vector dot product. The diagonal elements of the dot product matrix 

HTH therefore measure the similarity between the signal from a tissue and itself whereas the 

off-diagonal elements record the similarity with all other tissues, and a low dot product 

within these off-diagonal elements indicates high discriminability. The schedule of 

acquisition parameters can then be varied to find the ones that maximize the discriminability 

between tissues.

In this work, rather than varying the schedule of acquisition parameters, the slice ordering is 

varied instead. Varying the slice order in a given measurement is equivalent to varying the TI 

values sampled by each slice, such that each slice samples the signal at a subset of TI times 
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out of the set of available TIs given by (TR/N)·(1, 2, …, N). Since the slice ordering affects 

all slices simultaneously the optimization dictionary must be expanded into a 3D matrix Hr 

where r ranges from 1 to N to account for the effect on all slices. The goal of the 

optimization, however, remains the same—maximizing the discriminability or, equivalently, 

minimizing the similarity between tissues. The problem can thus be recast as a search for the 

slice ordering that yields the lowest cost, defined here as the smallest sum of off-diagonal 

entries in each dot product matrix (HTH)r. To avoid focusing the optimization on certain 

slices at the expense of others, the optimization problem is formulated as a search for the 

slice ordering that minimizes the maximum cost across all slices:

(1)

This is equivalent to optimizing the discriminability of the ‘worst’ (maximum cost) slice, 

although it should be noted that the current ‘worst’ slice will change from iteration to 

iteration during the optimization as the search-space is explored.

Solving the optimization problem

Search-Space Reordering—Equation (1) represents an optimization over a set of 

permutations. Optimizing over permutations (i.e. the space of all possible orderings of a 

contiguous set of integers) is a challenging problem, and traditional optimization algorithms 

are not designed for optimizing over permutation space and are therefore ineffective. Genetic 

algorithms [26] may be used but require significant computational resources and processing 

time to converge to a solution. Instead, we apply a mapping to transform the unordered 

permutation search-space into an ordered vector space [27]. This mapping is performed by 

assigning an order to permutations; for example, an ordering can be defined for permutations 

of the ordered set of n integers a = {a1, a2, …, an} through mapping to a new ordered set of 

integers b = {b1, b2, …, bn} defined such that bi equals the number of elements of the set a 
preceding the location of aj = i that are greater than i [28]. As an example (taken from [28]), 

if {a1, a2, …, a8} = {5, 6, 1, 3, 2, 4, 8, 7} then {b1, b2, …, b8} = {2, 3, 2, 2, 0, 0, 1, 0}. This 

mapping enables the use of faster algorithms that operate on vector spaces [29].

Dynamic Hill Climbing—Equation (1) can be solved using the Dynamic Hill Climbing 

(DHC) algorithm [28]. The algorithm consists of searching the hyperspace for the point 

(slice ordering) that has the lowest cost as defined by Equation (1). The algorithm is 

initialized with a slice ordering defined with a constant skip-factor between measurements 

(Fig. 1a) used in previous work [9]. This ensures that any slice ordering found will improve 

upon the constant skip-factor slice ordering. The algorithm explores the search-space by 

defining a random probing vector which is added to the initial point. If the new point 

improves on the current cost, the probing vector length is increased, otherwise it is 

decreased. This process is repeated until the probing vector length is below a certain 

threshold at which point the algorithm moves to the next iteration. The point with the lowest 

cost found corresponds to the optimal slice ordering (Fig. 1b) with the greatest 

discriminability (Figs. 1c, d).
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Methods

Optimization Cost

Optimized orderings for protocols consisting of 100 slices were generated by defining an 

optimization-dictionary with T1 values in the range 100–5000 ms in intervals of 50 ms. Slice 

orderings were generated with 4, 5, 8, 10 and 16 measurements and their optimization costs 

(i.e. their discrimination) were compared. An additional, 21-measurement ordering with a 

constant skip-factor 3 was used for comparison with our previously published protocol [9]. 

Similar length slice orderings were generated for 25 and 50 slices and their optimization 

costs compared as well. The optimization algorithm was allowed to run for 50,000 iterations 

to ensure adequate coverage of the search-space which required approximately 8–40 hours, 

depending on the slice ordering length and the number of measurements, on a 2.4 GHz Core 

i7 Dell laptop with 16 GB RAM and 256 GB hard drive.

MRI

Phantom Experiments—For phantom experiments, a 3T Tim Trio (Siemens Healthcare, 

Erlangen, Germany) whole-body scanner was used with the manufacturer’s body coil for 

transmit and 12-channel head array coil for receive. The TR/TI/TE/BW was set to 6690 

ms/13 ms/27 ms/2170 Hz/pixel. The resolution was set to 1.2×1.2×1.2 mm3 with a matrix of 

192×192. An acceleration factor of R=4 was used along with FLEET autocalibration [30,31] 

prior to acquisition and the images were reconstructed online using the GRAPPA [32] 

method. A non-spatially selective adiabatic inversion pulse [33] ensured adequate inversion 

of the spins in the presence of spatial nonuniformity of transmit efficiency (due to dielectric 

effects).

In Vivo Human Experiments—For human experiments, the same TR/TI/TE/R/BW and 

resolution were used as in the Phantom Experiments section above but with a 32-channel 

head array for reception. Total scan time for the 4/5/8/10/16 and 21 measurements was 

33/40/60/74/114 and 147 s, respectively. For the same spatial coverage, a 1×1×1 mm3 

isotropic acquisition would require an additional 6–8 seconds for each scan. Although fat 

suppression is commonly used in EPI experiments to avoid chemical shift artifacts, in this 

work fat suppression was disabled in all in vivo experiments to avoid biasing the T1 

quantification (see below for explanation of the fat suppression bias).

Estimation of T1 values

All data were estimated by calculating the voxel-wise dot-product between the acquired data 

and the entries of the pre-computed dictionary of signal magnetizations and selecting the 

best match. The dictionary comprised of T1 values in the range of 1–5000 ms in intervals of 

1 ms.

Phantom

The accuracy and precision of the optimized slice orderings was assessed using the 

International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of 

Standards and Technology (NIST) multi-compartment phantom with calibrated T1 and T2 

values similar to those of the human brain [34]. The phantom was scanned with the 8-
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measurement slice ordering and the resulting T1 maps compared to both the true phantom 

values (characterized by NIST and calculated using the gold-standard NMR spectroscopy IR 

sequence) and the un-optimized 21-measurement protocol. Two phantom compartments with 

the shortest T1 values (< 30 ms) were excluded from the measurements since their T1 were 

comparable with the TE of the EPI sequence.

To rule out any scanner-specific biases, we also validated the true phantom values using the 

recommended inversion recovery method based on a non-selective IR spin-echo (IR-SE) EPI 

acquisition. The TR was set to 18 s and TE set to 21 ms. The minimum TI available for this 

sequence was 21 ms. A logarithmically spaced sampling of 36 TI values was used to ensure 

accurate fitting of the short T1 compartments. Total scan time for the 36 inversion times was 

~65 minutes. The magnitude-valued images were fitted to the 3-point inversion-recovery 

signal equation [8] using the Levenberg-Marquadt algorithm ( lsqcurvefit function) in 

Matlab (Mathworks, Natick, MA).

Fat Suppression—Since fat suppression pulses may affect the T1 quantification through 

e.g. magnetization transfer [9,35], the acquisition was repeated both with and without fat 

suppression pulses for the 8-measurement length. The frequency profile of the fat 

suppression pulse used on the scanner was computed using a custom-made Bloch equation 

simulator written in Matlab to determine its potential impact on the water signal (through 

inadvertent excitation of the water peak).

Slice-specific optimization cost—Because the optimization algorithm uses a single 

global metric to converge to an optimal slice ordering, once the algorithm converges 

different slices can have different optimization costs. The resulting slice-specific cost of the 

optimized 8-measurement protocol was therefore compared to that of the unoptimized 21-

measurement protocol.

In Vivo Human

A healthy 29-year-old male subject was recruited for this study and provided informed 

consent prior to the experiment in accordance with our institution’s Human Research 

Committee.

Validation—The T1 map obtained with our method was validated in vivo in a single slice 

using the same recommended IR-SE EPI sequence and protocol described in the Phantom 
section above. Total scan time for this one slice sampled at 36 inversion times was ~65 

minutes. Three regions corresponding to grey matter, white matter and cerebrospinal fluid 

(CSF) were selected from each image and the agreement between the mean T1 values of 

each region assessed.

Reproducibility—A mask was created to remove all signals extraneous to the head by 

summing the signal from the 21-measurement protocol and thresholding the resulting 

volume. The masked T1 maps from the initial and subsequent scans were co-registered in 

Matlab ( imregister function) and used to calculate the correlation coefficient for 

different measurement lengths as a measure of the reproducibility/precision of the estimated 

in vivo T1 values. The correlation coefficient was calculated including the CSF from the 
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whole brain. However, we also calculated the correlation coefficient with the CSF removed 

by thresholding the T1 maps to remove all voxels with T1 > 2000 ms.

Following co-registration, spatial variations in the reproducibility were measured for the 8 

measurement acquisition by calculating the slice-specific correlation coefficient.

Results

Optimization cost

The (HTH)r matrix from a representative slice for a 100-slice unoptimized 21-measurement 

protocol is shown in Fig. 1c in comparison to an optimized 8-measurement protocol (Fig. 

1d). The off-diagonal elements in the optimized matrix are approximately ~5% smaller on 

average than those of the unoptimized matrix, which indicates improved discriminability in 

the optimized case.

The relationship between the cost of the optimization function and the number of 

measurements (acquisition length) is shown in Fig. 2 for example orderings with 25, 50 and 

100 slices. The optimization cost for slice orderings with fewer slices was correspondingly 

smaller, as expected, given the smaller slice-ordering search-space. Importantly, for a given 

number of slices, the cost of the unoptimized 21-measurement protocol was higher than that 

of the optimized protocols with a smaller number of measurements.

Phantom

The accuracy of the proposed approach was assessed by estimating T1 values in the 

calibrated ISMRM/NIST phantom. The measured and true T1 values for the optimized 8-

measurement and unoptimized 21-measurement acquisition are shown in Fig. 3. The 

measured T1 values were derived from the average T1 value estimated from within each 

compartment. Compartments with T1 values similar to the TE of the EPI (T1 < 30 ms) 

showed significant error in both protocols, as expected, and were not included in the 

calculations of the comparison metrics. Such short T1 values may not be estimable with the 

current EPI read-out. The Pearson correlation coefficient R was calculated for each 

acquisition, resulting in an R2 value for both acquisition methods tested of 0.99. However, 

the linear fit shows a small offset of 0.74 ms for the 8-measurement protocol, and for the 21-

measurement protocol an offset of 19 ms was calculated indicating a negligible estimation 

bias associated with this protocol. Unlike the identical R2 values, the root mean-squared-

error (RMSE) for the 8-measurement protocol was 31 ms which was lower than the 40 ms 

calculated for the 21-measurement protocol. The estimation absolute error, defined as |

Estimated – True|, as a function of the reference T1 values for each protocol was also 

calculated and is shown in in Figs. 3c, d. The mean error across all compartments (excluding 

the short T1 compartments) was found to be 25 ms for the optimized 8-measurement 

acquisition and 33 ms for the unoptimized 21-measurment acquisition. Despite the ~3-fold 

reduction in scan time, the 8-measurement protocol showed excellent agreement with the 

true phantom values. The measured and true T1 values for the IR-SE EPI sequence are 

shown in Fig. 4. In contrast to the 8-measurement protocol, which correctly reconstructed 

compartments with T1 values as short as 30 ms, the IR-SE EPI sequence showed significant 
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errors for compartments with T1 values shorter than 100 ms which were therefore not 

included in the R2 or RMSE calculations. However, the remaining compartments showed 

excellent agreement to the true phantom values (R2=0.99), a negligible estimation bias (an 

offset of 1.7 ms) and an RMSE of 12 ms demonstrating that any scanner-specific biases are 

minimal.

Fat Suppression—The presence of the fat suppression pulse increased the error in the 

measured T1 values (see Figs. 5a, b), particularly for long T1 compartments. Specifically, the 

RMSE for the 8-measurement protocol was 76 ms for acquisitions with fat suppressions but 

31 ms for those without fat suppression. Although the fat suppression pulse is centered on 

the frequency corresponding to the lipid chemical shift, the simulated frequency profile (Fig. 

5c) showed that ~2% of the water signal is also excited (and subsequently dephased) for 

each slice-selective excitation.

Slice-specific optimization cost—The optimization cost of each slice for an 8-

measurement acquisition is shown in Fig. 6a and that of the 21-measurement protocol in Fig. 

6b. Because each slice is assigned a distinct acquisition schedule and thus a distinct 

collection of TI values, each slice in the acquisition has a somewhat different cost in the 

final schedule generated from the optimization. The slice optimization cost can thus provide 

a metric for a priori confidence in, or for predicting the expected accuracy of, the T1 

estimates and a guide to judge whether the optimization process, which may terminate 

within a local minimum, should be allowed to continue in order to further reduce estimation 

error. (See below in Discussion for a consideration of the potential uses for this ability to 

predict estimation error.)

Since each slice also samples a distinct set of TI values, for each 100-slice protocol we 

calculated the range of TI values (defined as the maximum TI minus the minimum TI) for 

each slice, then summarized the effect of the number of measurements on the range of TI 

values by the mean and standard deviation of the range across all slices. The results of this 

calculation are presented in Supporting Table 1. For the optimized slice orderings, as 

expected the mean TI value range increases with increasing number of measurements, while 

the standard deviation decreases. The mean range of TI values was similar for the optimized 

8-measurement protocol and the unoptimized 21-measurement protocol, but the standard 

deviation of the range of TI values was lower in nearly all of the optimized protocols 

compared to the unoptimized 21-measurement protocol, indicating that the ranges of TI 

values sampled in the optimized protocols were more consistent across slices.

In Vivo Human Brain

Reconstructed T1 maps for the 8-measurement protocol of the 100-slice case are shown in 

Fig. 7 for three different example slices along with a histogram of each slice’s calculated T1 

values. The various peaks visible the histograms (Figs. 7d–f) correspond to literature values 

of T1 at 3T [36] of the white matter (~900 ms), gray matter (~1600 ms) and CSF (~4000 ms) 

tissues further validating the proposed method. Gaps in the histograms of the different slices 

are in part a result of anatomical features (e.g. scalp, CSF) that are less prevalent in some 

slices leading to low voxel counts for the corresponding T1 values, as well as slice-
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dependent fitting inaccuracies described in the Calculating Expected T1 Mapping Accuracy 
from the Dictionary Discrimination section below. A comparison of the same slice for the 

100, 50 and 25 slices case for 4, 8 and 21 measurements is shown in Fig. 8 (remaining 

measurements are shown in Supporting Figure 1). The T1 maps of the entire volume for all 

measurement lengths tested are shown in Supporting Figures S2–S7. The proton density 

(PD) weighted S0 maps obtained with the optimized 8 measurement in comparison to those 

of the unoptimized 21 measurement protocol are shown in Supporting Figure S8 and 

demonstrate the close similarity between the two maps estimated using the optimized and 

unoptimized protocols.

Validation—The T1 map from a single slice estimated by the recommended IR-SE 

sequence is shown in Fig. 9 in comparison to that obtained with the proposed method. The 

mean±std grey matter/white matter/CSF T1 values from the recommended IR-SE sequence 

were 767±16.0/1130±47.0/4120±264 ms and showed good agreement to the 

767±74.0/1160±96.0/3830± 299 ms estimated with the proposed 8-measurement protocol. 

We also attempted to register the single-slice T1 map from the recommended IR-SE 

sequence to the same-session T1-EPI data, and within this slice found an R2 value of 0.64 

across all voxels. The R2 value for the same comparison based on the NIST/ISMRM 

phantom was 0.99 over a similar range of T1 values, suggesting some loss of agreement due 

to participant motion and misalignment.

Reproducibility—The variation in the correlation coefficient as a function of the number 

of measurements is shown in Fig. 10a for the across- and within-session acquisitions. The 

CSF was included in this calculation since its removal had a negligible effect on the 

correlation coefficient. The within-session correlation coefficient is, on average, ~2% higher 

than the across-session coefficient, likely due to the smaller shift in head position between 

within-session scans compared to across-session scans—because there is a slice-specific T1 

estimation error, differential head motion between scans will reduce the precision of the 

estimate. Both coefficients show an increase in the correlation coefficient with increasing 

number of measurements, reaching a value of ~0.90 for the within-session 8-measurement 

protocol used in this study. The within-session correlation coefficient for the 21-

measurement protocol was an outlier at ~0.88, which is slightly lower than expected given 

the ~0.91 across-session coefficient; this is likely due to the abrupt subject motion observed 

before this run.

The spatial variation in the within-session slice-specific correlation coefficient for the 8 

measurements acquisition is shown in Fig. 10b. As expected, slices outside the brain 

containing little tissue yielded the minimum correlation of ~0.43. In contrast, slices in the 

center of the brain showed the greatest reproducibility with a correlation coefficient of 

~0.96.

Discussion

We have demonstrated that optimization of the slice ordering can maximize discrimination 

between different tissues to allow accurate reconstruction of the quantitative T1 maps despite 

reduced scan time. The accelerated 8-measurement protocol EPI acquisition allows 
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distortion-matched whole-brain quantitative T1 mapping in approximately 60 s. Several 

factors may, however, affect the quality of the derived maps, as described below.

Reconstruction Dictionary

Since the signal in each voxel is matched to the pre-computed dictionary, factors that affect 

the generated dictionary entries may introduce bias into the reconstructed T1 maps. In 

particular, the dictionary construction assumed an ideal 180° inversion pulse and zero 

transverse magnetization which may not hold in reality due to spatial variations in the B1
+ 

transmit field. These concerns are mitigated, however, by the use of adiabatic inversion 

pulses that are largely immune to B1
+ inhomogeneity. Note that errors in the excitation flip 

angle do not affect the recovery rate hence do not influence the T1 value estimation and are 

therefore accounted for by the dictionary normalization. The slice-selective excitation pulses 

used in our multiple-slice acquisition may introduce biases as well due to off-resonance 

effects on neighboring slices, such as incidental magnetization transfer [8,37]. However the 

variable slice ordering (Fig. 1b) may impart additional robustness to this form of bias as well 

since the time between excitation of a given slice and the measurement of its neighboring 

slices, which determines the amount of inadvertent magnetization transfer from the slice-

selective excitation pulses, will be different from one inversion recovery period to the next 

and may therefore average out provided a sufficient number measurements. The minimal 

bias seen in the reconstructed T1 maps for the optimized protocol (less than 1 ms), as shown 

in Fig. 3, validates the assumptions made in the dictionary construction but it is nevertheless 

possible that other sources of bias remain.

Optimization Algorithm

A set of N slices allows a factorial of N (i.e., N!) possible permutations of the ordering. The 

immensity of the search-space for N > 10 precluded a brute-force search for the globally 

optimal slice ordering and required the use of optimization algorithms. However, this 

problem can be formulated as a variation of the Travelling Salesman Problem [38], a 

problem that has been intensively studied for which multiple heuristics and algorithms exist 

[39–41]. In this study we used a hill climbing algorithm to search for a local optimum 

because of its simplicity and speed. However, more sophisticated algorithms are likely to 

provide a more globally optimal solution and are the subject of ongoing research.

In general, fewer slices will entail a smaller search-space making it more likely for the 

optimization algorithm to find an ordering with lower cost, as shown in Fig. 2. This suggests 

that incorporating slice-acceleration techniques such as Simultaneous Multi-Slice (SMS) 

EPI [42–44], as has been previously proposed for IR-EPI [17,18], which effectively reduces 

the number of slices, may provide lower cost and therefore higher accuracy assuming the 

acquisition has a sufficient signal-to-noise ratio (SNR). Of note, the acquisition of multiple 

slices incurs no SNR penalty for SMS EPI acquisitions other than g-factor reconstruction 

noise [45]. However, it is important to recall that the size of the search-space is defined by 

the product of the effective number of slices and the number of measurements, both of 

which constitute degrees of freedom for the protocol optimization. Since the algorithm is 

based on a local search it is possible for it to converge to a local minimum, which may be 

more likely if either the effective number of slices or the number of measurements is large. 
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Put simply, for a given number of slices, finding the optimal ordering for acquisitions with 

larger number of measurements will be more difficult. For Simultaneous Multi-Slice 

acquisitions, while the image reconstruction can generate a larger number of slices than 

conventional EPI methods, the effective number of slices is not increased, and therefore, 

e.g., a 126-slice acquisition with conventional EPI is expected to typically have higher cost 

and increased estimation error than an equivalent 126-slice acquisition collected with 

Simultaneous Multi-Slice techniques. This extension of our approach to Simultaneous 

Multi-Slice acquisitions will be explored in future work.

Calculating Expected T1 Mapping Accuracy from the Dictionary Discrimination

In its current implementation, the optimization routine searches for a slice ordering that 

minimizes a single objective: the maximum cost across all slices. The slice ordering thus 

obtained, while optimal in a global sense, may yield a solution with a variable cost for every 

individual slice. Indeed, plotting the cost for each slice in an optimized 8-measurement 

acquisition shows significant variation between the discrimination of each individual slice 

(Fig. 6a). A similar, albeit smoother, variation exists in the slice-specific cost of the 21-

measurement acquisition (Fig. 6b) with a constant skip-factor scheme. Consequently, the 

dictionary matching reconstruction in certain slices will be more robust to errors than in 

other slices. This is evident in the histograms shown in Fig. 7d–f where the estimation error 

leads to gaps in the voxel count of certain T1 values. Nevertheless, as demonstrated by the 

phantom experiments (Fig. 5), this error is small and zero-mean across slices and, 

importantly, can be predicted from each slice’s optimization cost (Fig. 6). Additionally, it 

should be noted that slice orderings with a high cost can still yield accurate T1 maps 

provided the SNR is sufficiently high to allow distinguishing similar signal evolutions. 

Nevertheless, for a given SNR level, the optimization cost can be used as an a priori measure 

of the expected quality of the estimated T1 map for the given slice, and the optimization can 

be further iterated as needed to minimize the cost for the particular slice. Alternatively, 

multi-objective optimization techniques can be used [46,47] to find a slice ordering that 

minimizes the cost for all slices simultaneously.

Effect of Fat Saturation

The imperfect frequency profile of the fat saturation pulse used resulted in undesired 

excitation and dephasing of ~2% of the total water signal for every slice-selective excitation 

given the non-spatially selective nature of the pulse. This effect explains the results shown in 

Fig. 5, where the cumulative effect of the fat suppression pulse is particularly pronounced 

for phantom compartments with long T1 given their long recovery time. This effect could be 

modeled and incorporated into the Bloch simulation during the dictionary generation in 

order to account for this effect in the phantom data, however inadvertent magnetization 

transfer from tissue macromolecules could still contribute to biasing T1 values in vivo, as 

previously discussed [48]. Because these magnetization transfer effects are presumably 

constant over time and accumulate linearly during each IR period, it is possible to model 

these effects as well [9], however to simplify the modeling in this work we opted to forgo 

the fat saturation pulse, resulting in small amounts of chemical shift artifact in the data.
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Potential Future Applications

Quantitative T1 mapping is important in numerous applications. Dynamic contrast enhanced 

(DCE) MRI is commonly used for with pharmacokinetic models to calculate permeability 

parameters of tumors and other lesions [49]. Because of the lengthy acquisition times, T1-

weighted images are used in practice rather than the quantitative T1 maps. Since T1-

weighted images are susceptible to confounding factors and bias, this can have a deleterious 

effect on the accuracy of the perfusion maps obtained. Fast quantitative T1 mapping 

provided by the proposed method would remove this source of error and yield more accurate 

tissue permeability maps.

Conclusion

We have demonstrated a method for optimizing the inversion times used in multi-inversion 

EPI. The optimized inversion times provide similar precision and accuracy in less time, 

allowing a ~3-fold reduction in the scan time needed to obtain the quantitative tissue maps 

as shown in phantom and in a healthy human subject scanned at 3T.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example orderings and corresponding dot-product matrices HTH. (a) The slice ordering for 

100 slices corresponding to an optimized acquisition with skip-factor=3. The temporal order 

of the slice acquisition matches the anatomical order, but with each IR period the starting 

slice index is incremented by 3 such that in the first IR period the acquisition starts with 

slice 0, in the second IR period the acquisition starts with slice 3, and so on. (b) The slice 

orderings for 100 slices corresponding to an optimized acquisition in which the ordering is 

computed to maximize discriminability of the signal evolution across distinct tissues. (c) 

The dot-product matrix HTH for a representative slice corresponding to the unoptimized 

case. The high values off the diagonal indicate poor discriminability. (d) The dot product 

matrix HTH for the same slice corresponding to the optimized case shown in panel (b). 

Lower values off the diagonals of ~5% on average indicate improved discriminability.
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Fig. 2. 
Cost of the optimization objective function for increasing number of measurements 

(acquisition duration) for example slice orderings with 100 (black circles), 50 (red crosses) 

and 25 (blue triangles) slices. Note that a smaller number of slices resulted in lower cost (i.e. 

superior discrimination) due to the smaller search-space.
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Fig. 3. 
T1 estimation accuracy evaluated in the calibrated ISMRM/NIST phantom. Shown is a 

comparison between the true and measured compartment T1 values for an optimized 8-

measurement protocol (a) and an unoptimized 21-measurement protocol (b). The dashed line 

in each plot is the identity line whereas the red line is the least-squares fit line. The error 

bars represent the standard deviation of the measured T1 values within the compartment. 

Note the larger bias in the 21-measurement protocol. The estimation error as a function of 

the reference phantom T1 values are shown in (c) for the 8-measurement protocol and in (d) 

for the 21-measurement protocol.

Cohen and Polimeni Page 17

Magn Reson Med. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison of the ISMRM/NIST calculated phantom T1 values to those of a non-selective 

IR-SE EPI sequence. The true and measured compartment T1 values are shown along with 

the identity line (dashed line) and the least-squares fit line (red line). Note that 

compartments with T1s smaller than 100 ms showed significant error and were not included 

in the comparison.
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Fig. 5. 
True and measured compartment T1 values calculated from calibrated ISMRM/NIST 

phantom data for the optimized 8-measurement protocol without (a) and with (b) the 

presence of a fat suppression pulse. The dashed line is the identity line whereas the red line 

is the least-squares fit line. The fat saturation pulse (c) centered on the lipids chemical shift 

nevertheless excites ~2% of the water signal for every slice-selective excitation pulse. The 

deviation from the identity line is larger in the fat suppression case.
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Fig. 6. 
Optimization cost of each slice for an 8-measurement acquisition (a) and an unoptimized 21-

measurement acquisition (b). Higher cost indicates lower discrimination between different 

T1 values that may lead to increased error in the reconstructed T1 maps.
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Fig. 7. 
Example quantitative T1 maps within the brain for three sample slices (a–c) out of the 

optimized 8-measurement 100-slice acquisition. The color scale indicates the T1 value in 

units of ms. The histogram of T1 values for each slice shown in (d–f) shows distinct peaks 

corresponding to the white matter, gray matter, and CSF.
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Fig. 8. 
Reconstructed T1 maps for a representative slice for 4,8 and 21 measurements for the 100, 

50 and 25 slices case.

Cohen and Polimeni Page 22

Magn Reson Med. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
In vivo T1 map from a single slice estimated with the recommended IR-SE sequence in 

comparison to the T1 map obtained with the 8-measurement optimized protocol for the same 

slice. The black circles indicate the locations of the grey matter, white matter and CSF 

regions used to compare the agreement between the two methods.
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Fig. 10. 
The scan-rescan correlation coefficient as a function of the number of measurements for the 

across- and within-session acquisitions (a). The optimized acquisitions show good 

repeatability despite a significantly shorter scan length. The within-session, slice-specific 

correlation coefficients for the 8 measurements protocols are shown in (b) to illustrate the 

spatial variation of the correlation coefficient.
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