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Abstract

Background—There are notable changes in the numbers of white blood cells (WBCs) after
stroke, but the primary mediators of these changes are unclear. In this study we assessed the role
of the neuroendocrine and sympathetic nervous systems in stroke induced changes of WBCs
within distinct leukocyte subsets as well as the effect of these changes on stroke outcomes.

Methods—~Patients were recruited within 72 hrs after ischemic stroke; complete blood count with
differential was obtained at set time points. Relationships between leukocyte numbers, cortisol,
adrenocorticotrophic hormone (ACTH), interleukin (IL)-6 and metanephrines were assessed at 72
hrs after stroke. Associations between abnormal leukocyte counts at 72 hrs, post-stroke infection
and 3 month outcomes were determined.

Results—A total of 114 subjects were enrolled. Severe stroke was associated with leukocytosis,
neutrophilia, monocytosis, lymphopenia and eosinopenia. At 72 hrs after stroke, increased serum
cortisol was independently associated with neutrophilia and lymphopenia. Abnormal leukocyte
counts were not independently predictive of post-stroke infection, but lymphopenia was associated
with poor outcome (modified Rankin Score >3) at 3 months after stroke (OR = 22.86 [1.95,
267.65]; P=0.01).

Conclusions—Increased serum cortisol is independently associated with neutrophilia and
lymphopenia after stroke. Lymphopenia is not an independent predictor of infections but is
independently associated with worse outcome.
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A variety of immunologic perturbations occur after stroke, with one of the most notable
being that of changes in the numbers of white blood cells (WBCs) within different leukocyte
subsets. Data consistently show that stroke induces leukocytosis, which is predominantly
driven by an increase polymorphonuclear cells (PMNs), and to a lesser extent, an increase in
mononuclear cells.[1, 2] At the same time, there is a decrease in the number of lymphocytes,
and the degree of this decrease correlates with stroke severity.[1, 3-6] The decrease in
circulating lymphocytes is thought to be mediated by activation of the sympathetic nervous
system as well as by an increase in systemic glucocorticoids.[7] Adrenocorticotrophic
hormone (ACTH) is produced and secreted by the anterior pituitary gland and is responsible
for increasing the production and release of cortisol from the adrenal cortex. Following
stroke, however, the elevation in cortisol appears to be partly mediated by IL-6.[8]

A standard leukocyte differential also includes information about the number of eosinophils.
There are limited data regarding the contribution of eosinophils to stroke-related outcomes.
Recent studies suggest that lower eosinophil numbers after stroke are associated with an
increased risk of infection as well as worse outcomes.[9, 10] These studies, however, did not
control for stroke severity and have other methodological issues that limit interpretation of
the findings.

In this study we assessed the correlation between stroke severity, cell counts within distinct
leukocyte subsets, the risk of infection and functional outcome in patients with ischemic
stroke. Further, we tested the strength of the association between these cell counts and
systemic levels of cortisol, ACTH, IL-6 and metanephrines.

The patient cohort has been described elsewhere.[5, 11] Briefly, patients with ischemic
stroke admitted within 72 hours of symptom onset were enrolled in a prospective study
evaluating post-ischemic immune responses. Patients with immunodeficiency (HIV) or on
immunomodulatory treatments were excluded. The study was approved by the Institutional
Review Board; all patients or their surrogates provided informed consent.

Clinical Data

Stroke severity was determined by the National Institutes of Health Stroke Scale (NIHSS)
score and outcome by the modified Rankin Scale (mRS) at 3 months. Intervention was
defined as the use of intravenous alteplase or endovascular therapy. Poor outcome was
considered to be an mRS>3. Infarct volume was calculated on diffusion weighted MRI by a
neuroradiologist using the ABC/2 method.[12]

Laboratory Studies

WBC count and differential was determined by the clinical laboratory. Classification of
abnormal cell counts were based on the laboratory’s normative data as follows:
WBCs>10,000/uL, PMNs >7,000/uL, lymphocytes <1,000/uL, monocytes >800/uL and
eosinophils <50/uL (there is no universally accepted lower limit for eosinophils, this number
is thus somewhat arbitrary). The concentrations of ACTH and cortisol were also determined
by the clinical laboratory using standard methodologies. Interleukin (IL)-6, was measured
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with a cytometric bead-based system (Fluorokine MAP; R&D Systems); the lower limit of
detection was 1.1 pg/mL. Standard enzyme linked immunoassay (ELISA) was used to
determine plasma concentrations of plasma metanephrines (IBL-America; sensitivity = 14.9
pg/mL).

Descriptive data are presented as mean + standard deviation (sd) or median and interquartile
range (IQR); group comparisons were performed using ANOVA or the Kruskal-Wallis H test
as appropriate. Correlations are presented using Spearman’s rho. Categorical data are
compared by XZ. Logistic regression was used to assess the predictors of clinically abnormal
leukocyte counts, infection and poor outcome at 3 months after stroke onset. Biologically
plausible variables were included in the models. Significance was set at A<0.05.

A total of 114 patients were enrolled. There was a prolonged elevation in plasma cortisol in
patients with severe stroke (Figure 1a). More severe strokes were also associated with an
increase in WBCs (Figure 1b), PMNs Figure 1c) and monocytes Figure 1d) that last for at
least a week after stroke onset, as well as a more short-lived decrease in the numbers of
lymphocytes and eosinophils (Figure 1e and f). The correlations between ACTH, IL-6,
cortisol, metanephrines, WBCs and leukocyte subsets with stroke severity (NIHSS score,
infarct volume) at 72 hrs after stroke are shown in Figure 2. (The median value and
interquartile range are provided for each biomarker of stress/inflammation.) ACTH and IL-6
are both highly correlated with cortisol levels, which in turn are highly correlated to stroke
severity. In general, changes in PMNs and monocytes track together while changes in
lymphocytes and eosinophils track together, and all are highly correlated with both cortisol
and IL-6, but not ACTH. Metanephrines were inversely correlated with lymphocyte and
eosinophil numbers. “Clinically abnormal” cell counts are prevalent on the first day after
stroke, while at least 50% of patients with severe stroke continue to manifest abnormal
neutrophil and monocyte levels at day 3 after stroke (Table 1); laboratory defined
lymphopenia is less common than laboratory defined neutrophilia and monocytosis. Table 2
shows the predictors of “clinically abnormal” cell counts at 3 days after stroke. After
controlling for stroke severity (NIHSS and/or infarct volume), cortisol is the only
independent predictor of neutrophilia and lymphopenia.

Of the 114 patients enrolled in the study, 7 developed an infection in the first 3 days after
stroke and 1 died in the week after presentation. Of the remaining patients 106 patients, 22
(21%) developed an infection by day 15.[5] “Clinically abnormal” cells counts at day 3 were
not independently predictive of infection (Table 3). For the 94 patients for whom 3 month
follow-up was available, 20 (21%) had poor outcome (mRS>3), and lymphopenia at day 3
was independently predictive of poor outcome at day 90 after stroke (Table 3).

Discussion

Changes in leukocyte numbers after stroke are well described. Most studies, however, tend
to look at changes in cell counts as a continuous variable, yet the clinical implications of
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changes within the normal clinical range are unclear. For instance, it would seem unlikely
that a decrease in lymphocyte count from 1,500/uL to 1,400/uL (or 1,300/uL) would be
independently associated with a change in the risk of infection (or any other outcome). We
thus chose to evaluate changes in leukocyte counts categorically — within laboratory norms
or not. We also aimed to determine the most important factors associated with those changes
— including clinical stroke severity (NIHSS and infarct volume), serum cortisol and
metanephrines.

Clinical stroke severity and cortisol appear to be the primary driver of neutrophilia. The
relationship between glucocorticoids and neutrophilia has been appreciated for decades and
is thought to be secondary to a demargination of polymorphonuclear cells from the bone
marrow.[13, 14] Data also suggest that an increase in glucocorticoids leads to an increase in
monocyte counts, although the mechanism is not clear.[14, 15] We did not find an
independent link between cortisol and elevated monocyte counts in our study.

Cortisol was the most important mediator of lymphopenia in our patient cohort. We did not
find a relationship between plasma metanephrines and lymphocyte counts, while other
studies that found lymphocyte numbers to be less in patients with higher circulating
normetanephrines.[2, 16] That we did not find an independent effect of metanephrines on
lymphocyte numbers could be related to a different effect of metanephrines versus
normetanephrines on lymphocyte counts, different time points for metanephrines/
normetanephrine measurement in the studies, different patient populations being studied,
and/or different types of treatments received by patients in the immediate post-stroke period.
For instance, because lymphocytes express B, receptors[7, 17], it is possible that early use of
B-blockers might affect lymphocyte numbers (and function). Similar to our findings,
Mracsko and colleagues found that an increase in glucocorticoids was more important in
causing post-stroke lymphopenia than activation of the sympathetic nervous system in an
animal model of severe stroke.[7] And unlike the findings from other studies[2, 16]. we
found no link between plasma metanephrines and infection risk

A link between post-stroke lymphopenia and an increased risk of infection has been well
described.[1, 3-5] It is difficult, however, to separate the contribution of the severe stroke
that predisposes to infection (by virtue of aspiration or instrumentation), from the activation
of the sympathetic nervous system and neuroendocrine system that induce lymphopenia
(which are both driven by stroke severity), and the lymphopenia itself. We tried to determine
the most important contributors to infection in our patient cohort by building different
multivariate models, but could not demonstrate an independent effect of lymphopenia on
infection risk. Post-stroke infections are generally bacterial pneumonias (PNAS) and urinary
tract infections (UTIs).[5] Most data suggest that it is neutropenia, as opposed to
lymphopenia, that is associated with an increased risk of bacterial infections.[18] In patients
with lymphopenia due to therapeutic myelosuppression (for treatment of malignancy or
autoimmune disease) or acquired immunodeficiency (like HIV), it is unusual viral and
fungal infections (/e. opportunistic infections), not bacterial PNAs and UT]s, that are of
concern. Further, individuals treated chronically with natalizumab, an antibody that binds a4
and inhibits lymphocyte adhesion and migration to sites of inflammation, are not at
increased risk of bacterial infection.[19] And finally, a recent randomized controlled trial of
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natalizumab for treatment of acute ischemic stroke found no increase in infection in anti-a4
treated patients.[20] The relative numbers of CD4+ cells to other types of lymphocytes may
provide a more accurate assessment of infection risk, but in general, hospital acquired
bacterial infections would be seemingly unusual in patients who experience only a transient
decrease in lymphocyte counts. Lymphocyte function, as opposed to lymphocyte number,
might also be an important predictor of post-stroke infection[21], but because stroke severity
is intrinsically linked to lymphocyte dysfunction, it is again difficult to attribute any increase
in the risk of infection to lymphocyte dysfunction as opposed to those risks associated with
the severe stroke (/e. aspiration and instrumentation).

Surprisingly, we found that lymphopenia at day 3 after stroke was independently associated
with poor outcome at 3 months. To our knowledge, the association between post-stroke
lymphopenia and stroke outcome has not previously been reported. While lymphopenia may
be just a marker of stroke severity, the multivariate model should control for this association.
Lymphocytes are a heterogeneous group of cells that include T cells (CD4+ and CD8+), NK
cells and B cells; these cells may also function as Tyl, T2, TH17 or Treg cells. Data
suggest that regulatory T cells limit inflammation and might be important for stroke
recovery, so a decrease in these cell numbers could have long-term consequences.[22, 23]
The subclass of lymphocytes most affected by stroke is therefore likely to be of importance.

Eosinophils comprise less than 6% of white blood cells and have a very short life span (~36
hrs).[24] Eosinophils have been traditionally regarded as playing a role in combating
parasites and in mediating allergic reactions, but an expanded role of eosinophils in the
immune response is now appreciated.[25] These cells have the ability to respond to danger
signals and serve as antigen presenting cells. They may also be involved in tissue repair and
remodeling, as well as in modulation of the adaptive immune response. A rapid decrease in
eosinophil numbers can be induced by infusion of either glucocorticoids [26, 27] or
adrenaline.[28] The consequences of eosinopenia, which is variably defined, are unclear.
Eosinopenia is common in sepsis and is linked to worse outcome/increased mortality.[29—
31] Eosinopenia is also associated with worse outcome following traumatic ICH in children.
[32]

There are scant data regarding changes in eosinophils in stroke. In a relatively small study of
50 patients with ischemic stroke, Hug and colleagues found no changes in circulating
eosinophil counts.[1] Another study found that insular strokes were more likely to lead to a
decrease in eosinophils than non-insular strokes.[33] More recent publications show that
patients with lower eosinophil counts after stroke have more functional impairment [10] as
well as increased rates of infection and increased mortality.[9] While these studies were
large, methodological issues (/e. failure to control for stroke severity) limit the interpretation
of the data. Given the effect of glucocorticoids and adrenaline on eosinophil counts[26-28],
it is not surprising that we saw decreases in eosinophil counts in subjects with severe strokes
(and higher cortisol levels).[26—28] And as for the situation with lymphopenia, parsing out
the relative contributions of eosinopenia to stroke outcome from that of the stroke severity
(and the hypercortisolemia and activation of the sympathetic nervous system which may the
eosinopenia), is difficult.
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In summary, we found that severe stroke is associated with neutrophilia and monocytosis as
well as lymphopenia and eosinopenia. Cortisol was more important than metanephrines in
driving these changes in WBC counts after stroke. We also identified transient eosinopenia
to be a common sequela of severe stroke. Our data call into question an independent role for
lymphopenia in the risk of post-stroke infection as well as the importance of the sympathetic
nervous system in driving lymphopenia or predisposing to post-stroke infection. Finally,
lymphopenia appears to be an independent predictor of poor outcome, a finding that
deserves further evaluation.
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Figure 1.

Patients with severe stroke (NIHSS=17) experience a prolonged increase in cortisol (a) as
well as an increase in the overall numbers of white blood cells (b), neutrophils (d) and
monocytes (d). Severe strokes are also associated with a less prolonged decrease in the
numbers of lymphocytes (€) and eosinophils (f). Statistics are by ANOVA; *£<0.05,
*P<0.01.
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Figure 2.

Correlations between leukocyte numbers, cortisol and metanephrines with stroke severity
and biomarkers of inflammation/stress at 3 days after stroke. The median value (interquartile
range) for each variable at this time point is displayed. Correlations are by Spearman rank

order.
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