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Abstract

Genome-wide association studies (GWAS) are now routinely imputed for untyped SNPs based on 

various powerful statistical algorithms for imputation trained on reference datasets. The use of 

predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score 

test for genetic association. In this paper, we investigate how to best handle imputed SNPs in 

various modern complex tests for genetic associations incorporating gene-environment 

interactions. We focus on case-control association studies where inference for an underlying 

logistic regression model can be performed using alternative methods that rely on varying degree 

on an assumption of gene-environment independence in the underlying population. As 

increasingly large scale GWAS are being performed through consortia effort where it is preferable 

to share only summary-level information across studies, we also describe simple mechanisms for 

implementing score-tests based on standard meta-analysis of “one-step” maximum-likelihood 

estimates across studies. Applications of the methods in simulation studies and a dataset from 

genome-wide association study of lung cancer illustrate ability of the proposed methods to 

maintain type-I error rates for the underlying testing procedures. For analysis of imputed SNPs, 

similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for 

modeling of gene-environment interactions under the assumption of gene-environment 

independence. Methods are made available for public use through CGEN R software package.

*Correspondence to: Nilanjan Chatterjee, nilanjan@jhu.edu. Tel: 1-410-955-3067. 
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The proposed method has been implemented in open source software, available at https://www.bioconductor.org/packages/release/
bioc/html/CGEN.html.
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Introduction

Genome-wide association studies (GWAS) are now routinely imputed for untyped SNPs 

with powerful imputation algorithms (Howie, Donnelly, & Marchini, 2009; Browning, & 

Browning, 2009; Li, Willer, Ding, Scheet, & Abecasis, 2010; O’Connell et al., 2016; Loh, 

Palamara, & Price, 2016) up to various reference panels such as the HapMap (The 

International HapMap Consortium, 2005), 1000 Genomes (The 1000 Genomes Project 

Consortium, 2010, 2012, 2015a; 2015b) and the Haplotype Reference Consortium 

(McCarthy et al., 2016). Standard association tests for imputed SNPs are performed using 

the predicted allele count as the underlying dosage variable of the association model. Many 

earlier fine mapping studies based on the HapMap panel have successfully used imputation 

for better characterization of common susceptibility SNPs within regions initially discovered 

through typed SNPs. More recently, imputation based on the 1000 Genome reference panel 

in existing GWAS for several traits have led to the discovery of new susceptibility loci 

containing uncommon or rare susceptibility variants (Guerreiro et al., 2013; Wang et al., 

2014; Horikoshi et al., 2015).

The use of expected allele count for imputed SNPs as the dosage variable is known to 

produce valid score-test for genetic association (Marchini, & Howie, 2010). In this paper, we 

investigate how to best handle imputed SNPs in various modern complex tests for genetic 

associations incorporating gene-environment interactions. In particular, we focus on case-

control association studies where inference for an underlying logistic regression model can 

be performed using various alternative methods that rely on an assumption of gene-

environment independence to varying degree. As increasingly large scale GWAS are being 

performed through consortia effort where it is preferable to share only summary-level 

information across studies, we also explore how these methods could be implemented in the 

context of meta-analysis. We study type-I error and power of alternative methods using 

extensive simulation studies. An application of the methods is illustrated through a re-

analysis of the National Cancer Institute GWAS of lung cancer that has been imputed by the 

1000 Genome reference panel.

Methods

Options for Joint-Test of Association for Genotyped SNPs

We assume the main goal of our study is to test association of disease-status (D) with 

genotype status (G) of marker SNPs in the presence of a set of environmental risk factors 

(X) that are known to be associated with the disease. We consider logistic regression to 

specify the disease-risk model in the form
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(1)

where an interaction term between G and X is incorporated to allow the effect of the genetic 

factor, as measured in the odds-ratio scale, to vary by the level of the environmental factors. 

Commonly, SNP genotypes (G) are coded as allele count assuming a linear-trend model for 

association with the underlying trait. More generally, genotype could be coded according to 

dominant, recessive or two degree-of-freedom saturated model. A joint-test for genetic 

association under the above model corresponds to a global null hypothesis in the form

For genotyped SNPs, a multi degrees-of-freedom joint-test of association and interaction has 

been studied earlier (Kraft, Yen, Stram, Morrison, & Gauderman, 2007). Typically, the 

analysis is performed based on standard prospective logistic regression analysis of case-

control data.

Alternatively the analysis can be performed based on a retrospective-likelihood (Chatterjee, 

& Carroll, 2005) that allows enhancement of power by exploitation of an assumption of 

gene-environment independence in the underlying population. Under gene-environment 

independence assumption, a case-only analysis can also be performed for inference on the 

logistic regression interaction parameter (Piegorsch, Wienberg, & Taylor, 1994), but it is not 

suitable for joint-testing of genetic association and interaction. The use of gene-environment 

independence assumption, however, can lead to serious bias in both the joint- and 

interaction-tests when the underlying assumption of gene-environment independence is 

violated (Albert, Ratnasinghe, Tangrea, & Wacholder, 2001; Mukherjee et al., 2008; 

Mukherjee, Ahn, Gruber, & Chatterjee, 2012). The assumption of gene-environment 

independence is likely to be valid for studies of exogeneous exposures, such as exposure to 

environmental pollutants, universally for all genetic markers across the genome. However, 

for studies of endogenous exposures, such as a nutrient biomarker or body mass index, the 

assumption is likely to be violated for a fraction of the GWAS markers which are associated 

with the exposures themselves (Ahn et al., 2010; Locke et al., 2015). Further, the assumption 

of gene-environment independence could be violated due to effects of population 

stratification and possible effect of family history on lifestyle factors, such as diet and 

physical activity (Thomas, 2000; Umbach & Weinberg, 2000; Chatterjee, Kalaylioglu, & 

Carroll, 2005).

A third alternative for joint-testing of association and interaction is to use an empirical-

Bayes (EB) type inferential procedure (Mukherjee, & Chatterjee (2008), Chen, Chatterjee, & 

Carroll (2009)) that allows data adaptive shrinkage between estimates obtained from the 

prospective and retrospective likelihoods to strike a balance between efficiency and bias 

incurred by gene-environment independence assumption. Extensive simulation studies have 

shown that methods that exploit gene-environment independence assumption, such as 
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retrospective- or EB- method, have substantial potential to improve power for gene-

environment case-control studies compared to standrd prospective logistic regression 

(Mukherjee et al., 2008; Mukherjee et al., 2012). The risk of false positives due to gene-

environment correlation is generally low in many realistic situations and can be further 

minimized using the data adaptive EB or various types of two-stage procedures (Cornelis et 

al., 2012; Mukherjee et al., 2012).

Derivation of Score-Tests

A major advantage of score-test, compared to Wald- or Likelihood-ratio test (LRT), is that it 

only requires imputation under the null model of no association and thus can easily 

incorporate expected dosage returned by popular imputation algorithms. Further for the 

analysis of less common and rare variants, score-tests may have more robust properties than 

Wald test or LRT as the number of cases or/and controls can be sparse in variant genotype 

categories.

Suppose that data consist of (Du, Xu, Gu,), u = 1,…,n where Du, Xu, and Gu, respectively, 

denote the disease status, environmental exposure, and SNP-genotype status for subject u. 

The n subjects consist of n0 controls and n1 cases. Let Z = (1, X) and W = (G,G * X) denote 

a partitioning of the design matrix associated with the “nuisance” parameters, η = (α, βx), 

and the parameters of interest, θ = (βg, βgx), respectively, for the underlying logistic 

regression model.

Prospective (PT) Method

The standard prospective likelihood of case-control data is derived as

Under the prospective-likelihood, the score-function for θ is given by

Under the null hypothesis of no association,

(2)

The maximum likelihood estimator (MLE) of the nuisance parameters η under the null 

model can be estimated by fitting the null model
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(3)

The multivariate score-test-statistic can be computed as

where  is the variance-covariance matrix for the score-vector accounting for uncertainty 

associated with estimation of the nuisance parameters. One can estimate  using the 

efficient information matrix in a model-based fashion or using the empirical variance-

covariance matrix of the associated influence function to achieve robustness against mis-

specification of the null model.

Retrospective (RT) Method

The retrospective likelihood for case-control data is given by

It has been long known that inference for the parameters of interest under underlying logistic 

regression model is equivalent under the retrospective and prospective likelihoods for case-

control data when no assumption is made about joint distribution of the underlying risk-

factors, i.e. G and X in our example (Prentice, & Pyke, 1979). However, if an assumption of 

gene-environment independence is invoked, then more efficient inference is possible under 

the retrospective likelihood. In particular, Chatterjee and Carroll (2005) have previously 

shown that under the assumption of gene-environment independence, but without any further 

restriction on the distribution of X, inference under the retrospective likelihood can be made 

using a “profile-likelihood” of the form

where the conditioning R=1 is introduced to indicate the selection mechanisms of subjects 

into the sample under the case-control sampling scheme. Derivation of  requires 

specification of population genotype frequencies, either using two parameters under a 

general multinomial model or using a single parameter under the assumption of Hardy 

Weinberg Equilibrium (HWE). Thus, for the retrospective likelihood, we expand the 

nuisance parameter vector as η* = (η, γ) so that the nuisance parameters include both 

parameters of the disease-risk and genotype frequency models.
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The score-function for association parameters of interest for the retrospective likelihood can 

be derived as

where  denotes expectation with respect to the joint probability distribution of D and G 
given X and R=1. Under the null,

which differs from the corresponding score-vector (equation (2)) derived under the 

prospective likelihood only in the way the expectation is derived in the second term. In 

particular, under the retrospective likelihood, the expectation term is evaluated under the 

assumption of gene-environment independence while the prospective likelihood does not 

require any such assumption. Under the null hypothesis, the parameters of the null model (3) 

can be estimated using standard prospective logistic analysis since the MLE under the 

retrospective- and prospective- likelihoods are the same as we allow the distrbution of non-

genetic risk-factors to be completely unspecified. Further, under null, MLE associated with 

genotype frequency model γ can be obtained from the pooled sample of the cases and 

controls. The multivariate-score test can now be derived under the retrospective likelihood 

following the same-steps as that for described for the propsective likelihood (see 

Supplementary Methods Section 1.2 for complete details).

EB Procedure

Implementation of the original EB procedure requires parameter estimates from the 

prospective- and retrospective-likelihood methods. The estimate itself cannot be directly 

derived from a likelihood and thus derivation of a score-test for this procedure is not 

straightforward. As an alternative, we propose a “score-type” test that could maintain some 

of the advatnages of the score-tests as described earlier and yet allow combining inference 

from the prospective- and retrospective-likelihoods in a data adaptive fashion to balance 

between bias and efficiency. We first note that any score-test can be written in the form of a 

Wald-like test-statistic

where θ̂0 = (VSθ0,η)−1 Sθ0,η can be viewed as a one-step MLE starting from the null 

parameter value θ0 = 0 and Vθ̂0 is the variance of θ̂ 0. Thus, taking advantage of the above 

Wald-like representation of score-test, we propose an EB score-type test in the form
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where the corresponding EB estimates and associated variance-covariance matrix are 

obtained by combining the one-step MLE estimates derived from the prospective- and 

retrospective- likelihood (see Supplementary Methods Section 1.3) using formulae 

analogous to those described for the original EB procedure (Mukherjee, & Chatterjee, 2008).

Derivation of the PT, RT, and EB methods under a more general setting that allows 

accounting for additional covariates in the model is given in Supplementary Methods.

Handling Imputed Genotype Data

Once the forms of the score-tests are derived with observed genotyped data, handling 

imputed genotype data for all the procedures is relatively straightforward as it simply 

involves replacing Gu by Ĝu, the expected value of genotype dosage taking into account 

predicted probabilities of different genotype values returned by the imputation algorithm. It 

is noteworthy how imputed genotype data are handled differentially in the prospective- and 

retrospective- score functions. Under the prospective-likelihood, the score-function for 

imputed genotype data takes the form

where the imputed genotype-dosage variable contributes to both terms of the left hand side 

of the equation. In contrast, under the retrospective-likelihood, the score function for 

imputed genotype data takes the form

where the imputed genotype-dosage variable contributes only to the first term of the 

equation. The genotype frequency parameters, required in derivation of the retrospective-

score function, can be estimated from imputed genotype data based on overall predicted 

genotype counts observed in the pooled sample of cases and controls. Derivations of 

efficient-information matrices and empirical variance-covariance matrices for the score-

vectors follow the same steps as those for observed genotype data for each of the respective 

procedures. Finally, the derivation of the one-step MLEs and score-type test using the EB 

procedure follows the same steps as those described for observed genotype data.
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Meta-analysis

We can implement a meta analysis based on the covariance estimator under UML, CML, 

and EB framework as follows. For each study k,  and  are obtained based on the one-

step MLE approach described above. We can construct the test statistic in the form of

where  and . A meta analysis could be 

applied on untyped SNPs as well as typed SNPs.

Results

Analysis of NCI GWAS for Lung Cancer

We analyzed data from genome-wide association study of lung cancer generated at the 

National Cancer Institute. The dataset included 5713 cases and 5736 controls from four 

different study sites (Table 1). The samples were originally genotyped using a combination 

of Illumina GWAS platforms and were imputed using the 1000 Genomes Phase 2 reference 

panel using IMPUTE2 software (Howie et al., 2009). The details of the studies can be found 

in several previous publications (Landi et al., 2009). We evaluated the performance of the 

different methods in evaluating joint association of lung cancer with SNP-genotypes and 

genotype-by-smoking interactions. We derived score test under a logistic regression model 

where SNP genotypes were coded assuming additive effects. For modeling the effect of 

smoking status, recorded as current, former or never, we used two dummy variables. The 

resulting joint tests for association and interaction had three degrees of freedom. We also 

examined the two degree-of-freedom score-tests associated with only the interaction 

parameters of the model, but the underlying p-values were derived under the global null 

hypotheses of absence of both association and interactions.

Figure 1 shows the quantile-quantile (Q-Q) plots for the interaction-only tests for the 

application of the PT, RT, and EB methods (left panel) and the joint- tests under the PT, RT, 

and EB methods together with the test for main effect of G of the model without interaction 

(right panel), which were restricted to the analysis of ~5.3 million SNPs such that MAF > 

0.05, the imputation quality reported to have info measure IA ≥ 0.5, and the p-values from all 

the seven tests are available. As the patterns are generally similar for the model-based and 

empirical variance estimators, we only show results using the former method. In general, the 

Q-Q plot associated with the interaction-only tests aligns close to the diagonal line 

indicating that all the methods are maintaining type-I error well. The Q-Q plot neither shows 

any strong upward curvature near low p-values that could be indicative of the presence of 

many strong interactions in the data. The list of SNPs which achieved strong level of 

statistical significance (p-value < 10−6) is presented in Supplementary Table S1.

In contrast, the Q-Q plots for the main-effect-only and joint tests of association and 

interaction clearly show a strong upward curvature near the tail of the distribution. This 
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pattern is largely driven by SNPs in the chromosome 15q25.1 region which are previously 

shown to be strongly associated with the risk of lung cancer (See Supplementary Figure S1 

for plots after removal of this region). SNPs in this region, which contains multiple nicotine 

receptor genes, have been shown to be associated with both risk of lung cancer (Amos et al., 

2008; Thorgeirsson et al., 2008) and smoking intensity (Thorgeirsson et al., 2008; Saccone 

et al., 2010). However, no SNPs in this region has been reported to be associated with 

smoking status even in studies with extremely large samples size (n>100K) though 

possibility of fairly weak association cannot be ruled out (The Tobacco and Genetics 

Consortium, 2010). Thus it is interesting that in this region (x-axis p-value < 10−4), the RT 

and EB method, both of which exploit an assumption of independence of genotype and 

smoking status, consistently produce lower p-values for the SNPs than those from the main-

effect only test and the joint-test under the PT method. It appears that, in this data, although 

gene-environment interactions by themselves are not identifiable at a high significance level, 

proper accounting for these effects using efficient methods are enhancing the detection of 

underlying signals captured by the joint test.

We also analyzed the four studies within the NCI GWAS (PLCO, EAGLE, CPS and ATBC) 

separately and then conducted a meta-analysis using the one-step maximum likelihood 

estimate of the parameters. The results are highly consistent compared to the pooled analysis 

of all the data. In particular, the Q-Q plots for interaction-only and joint tests look similar 

across the two types of analysis (See Supplementary Figure S2).

We also evaluated the performance of different methods including SNPs with lower MAF 

(MAF=0.01–0.05). In this setting, we observe that the Q-Q plots for the methods that used 

sandwich variance-covariance estimators were highly inflated indicating systematic problem 

with type-I error rate control. The problem could be traced to small sample bias of the 

sandwich standard errors because of small number of non-smoking cases (i.e., 355 non-

smoking cases) who also carried variant genotype for rare SNPs in our study. When we 

combined non-smokers and former-smokers together to a single category, the bias went 

away (data not shown).

Simulation Studies

We generated data on a binary environmental exposure variable which is assumed to follow 

Bernoulli (0.5) and be independently distributed from G. We simulated SNP genotype (G) 

assuming HWE and minor allele frequency (MAF) value of 0.3 or 0.05. Given the values of 

G and X, we generated the binary disease outcomes for individuals from the logistic 

regression model (1). We chose βx = log(1.5) or βx = log(2) to allow the association of X 
with D to be either modest or strong, respectively. For evaluation of type-I error, we assumed 

no genetic association, i.e. both βg = 0 and βgx = 0. For evaluation of power, we set βg = 

log(1.2) and βg = log(1) or log(1.05). In all simulations β0 was set such that an overall 

disease rate in the underlying population is about 5%. For evaluating type-I error and power, 

we simulated 500,000 and 1,000 datasets, respectively, with each set consisting of 5,000 

controls and 5,000 cases.

To evaluate validity and power of the methods when the SNP of interest may not be 

genotyped, we simulated haplotypes which consist of the SNP of interest and neighboring 
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SNPs in linkage disequilibrium (Table 2). In one setting (left panel), the variant of interest 

was common (MAF=0.3) and could be imputed with high accuracy (R2 = 0.8) based on 

genotypes of the neighboring SNPs (See Stram (2004) for R3). In the other setting (right 

panel), the variant of interest was less common (MAF= 0.05) and could be predicted with 

moderate accuracy (R2 = 0.5) based on the genotype status of the neighboring SNPs. 

Assuming HWE in the general population, multi-locus genotypes of individuals were 

generated from simulted haplotypes. We analytically evaluated the conditional probability 

for genotype at the SNP of interest for each configuration of genotypes at the neighboring 

SNPs. For simulating “imputed dosage” for the SNP of interest, we simulated the genotype 

data for the neigboring SNPs first and then assigned predicted genotype probabilities for the 

SNP of interest using the known conditional probabilities. For analysis of each simulated 

data, we pretended that only the predicted probabilities, and not the actual genotypes, were 

available at the SNP of interest. We implemented each of the PT, RT, and EB score tests 

using either a model-based or an empirical variance-covariance estimator. However, in 

evaluation of the EB procedure, due to the lack of a model-based formula, the covariance 

between prospective and retrospective estimators was always evaluated based on empirical 

covariance of the underlying influenced functions. For each method, we evaluated the 

performance of both the joint- and interaction-only tests. In general, simulation studies show 

that the proposed methods perform well in maintaining type-I error both at modertate (α = 

0.05) and stringent (α = 0.0001) significance levels (Figure 2). In some scenarios, the RT 

method, when implemented with the sandwich variance estimator, showed a slight inflation 

over the nominal significance level. Across all the scenarios, the EB method was 

conservative, a pattern that has been reported earlier for analysis of typed SNPs and has been 

traced to the use of a conservative variance estimator (Mukherjee et al., 2012). Employing 

the PT, RT, and EB methods on typed SNPs shows consistent results (Supplementary Figure 

S3).

Simulation studies of power (Table 3) suggest that relative performance of three different 

methods was similar for untyped SNPs as has been reported for typed SNPs in earlier studies 

(Mukherjee et al., 2012). In particular, the RT method had the maximum power, the PT 

method has the minimum power and the EB procedure performed in between. All methods 

lost power to a similar degree for the analysis of untyped SNPs compared to the analysis of 

the same SNP had it been typed. The use of model-based versus sandwich variance 

estimators did not have much effect in power for any of the methods (Supplementary Table 

S2).

Discussion

In summary, we propose various types of score tests for genetic association and gene-

environment interactions for analysis of case-control studies with imputed genotype data. 

Validity of simple “plug in” methods, which imputes unobserved genotypes with predicted 

dosages, has been well investigated in the past in context of prospective likelihood where 

inference is made conditional on genotype data (see e.g. Kraft, Cox, Paynter, Hunter, & De 

Vivo, 2005; Kraft, & Stram, 2007). Definition and validity of such plug-in methods, 

however, has been much less clear in the context of retrospective likelihood where joint 

distribution of genotype and phenotype is modeled conditional on covariates and sampling 
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mechanisms. In this article, through systematic derivation of score-tests, we show how 

imputed data should be handled in a distinct manner in the prospective vs retrospective 

likelihoods. Moreover, through an innovative use of one-step maximum-likelihood 

estimation, we derive a score-test and a corresponding plug-in method for handling imputed 

genotype in the context of the Empirical-Bayes method that cannot be associated with an 

underlying likelihood. Proposed methods allow valid analysis of imputed SNPs in case-

control studies of gene-environment interaction using alternative strategies that have been 

earlier available only for genotyped SNPs

The prospective and retrospective score-tests are derived directly from the underlying 

likelihoods for case-control studies. We derived the score-test for the EB procedure using 

underlying one-step maximum-likelihood estimates of parameters obtained from the 

prospective- and retrospective-likelihoods. The one-step MLEs can also be used to perform 

multivariate meta-analysis of the parameters across studies and then derive various test-

statistics based on meta-analyzed parameter estimates and their variance-covariance 

matrices. In our implementation of all the methods in the R software package CGEN 

(https://www.bioconductor.org/packages/release/bioc/html/CGEN.html) we allow returning 

of the one-step MLEs to facilitate meta-analysis.

Both analysis of simulated and real datasets suggest that the proposed methods can generally 

control type-I error rates, but small sample bias could arise in the presence of sparse 

genotype-by-exposure cells, especially if sandwich variance estimators are used in some of 

these methods. Simulation studies of power show that the relative performances of the PT, 

RT, and EB procedure are quite similar for the analysis of untyped and typed SNPs. 

Although not studied directly, it can be anticipated that in the presence of gene-environment 

correlation in the population, the relative performance of these methods for their ability to 

control type-I error would also be similar as has been reported in earlier studies (Mukherjee 

et al., 2012) for typed SNPs.

Although all the methods are valid for both continuous and categorical exposures, our 

numerical studies only involve categorical exposures. Future studies are needed to 

investigate performance of the proposed methods in the presence of continuous exposure and 

model mis-specification. It has been noted before that if the model for association of the 

disease with a continuous exposure is mis-specified, then the test for genetic associations 

and interaction could be biased due to underestimation of variance of target parameters 

under the mis-specified model (Tchetgen, & Kraft, 2011). In the past decade, a variety of 

methods (Murcray, Lewinger, & Gauderman, 2009; Hsu et al., 2012; Gauderman, Zhang, 

Morrison, & Lewinger, 2013) have been developed for efficient analysis of gene-

environment interactions in case-control studies exploiting the assumption of gene-

environment independence to a varying degree. While we focus on only two of these 

methods, namely retrospective likelihood and EB, further studies are needed for other 

methods for proper handling of imputed genotypes. Finally, we focus on tests for genetic 

association and interactions using single genetic markers. Further studies are also merited 

about how these methods could be extended for derivation of gene-level aggregate tests of 

genetic associations and interactions.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quantile-quantile plots for the interaction-only, joint tests and tests for main effect of G in 

the analysis of National Cancer Institute Lung Cancer GWAS. Tests for associations are 

performed between risk of lung cancer and each of approximately 5.3 million common 

SNPs accounting for interactions with smoking status (never, former, and current) of the 

individuals. Each curve pertains to SNPs such that MAF > 0.05, the imputation quality 

reported to have info measure IA ≥ 0.5, and the p-values from all the seven tests are 

available. GWAS, genome-wide association studies; SNP, single nucleotide polymorphism; 

MAF, minor allele frequency; PT, prospective; RT, restrospective; EB, empirical Bayes.
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Figure 2. 
Simulation results for type-I error for different procedures for testing untyped SNPs. The 

nominal significance levels are 0.05 and 0.0001. Top panels: Joint test, bottom panels: 

Interaction-only test. For the nominal significance levels as 0.0001, the values at y-axis are 

scaled such that they need to be divided by 100000. Red and orange pertain to information-

based variance estimator and sandwich variance estimator, respectively. MAF, minor allele 

frequency; PT, prospective; RT, restrospective; EB, empirical Bayes.
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Table 2

Haplotypes and their frequencies used for conducting simulation studies in scenario where underlying causal 

SNP is untyped and is assumed to be imputed based on neighboring genotyped SNPs. “U” and “T” indicate 

the untyped and typed SNP positions, respectively.

MAF*=0.3, R2 = 0.8# MAF*=0.05, R2 = 0.5#

UTTTT Frequency UTTTT Frequency

10011 0.2530 00111 0.3800

10101 0.0128 01110 0.2350

10111 0.0342 01111 0.2900

00101 0.2374 11001 0.0456

00111 0.2233 11111 0.0044

01110 0.2393 00001 0.0450

MAF, minor allele frequency.

*
Minor allele frequency of the untyped causal SNP.

#
Obtained by fitting multivariate regression of genotype at the causal SNP on the genotypes of the neghboring SNPs.
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