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Abstract

Purpose—This work proposes new low rank approximation approaches with significant memory 

savings for large scale MR fingerprinting (MRF) problems.

Theory and Methods—We introduce a compressed MRF with randomized SVD method to 

significantly reduce the memory requirement for calculating a low rank approximation of large 

sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF 

dictionaries in the randomized SVD space and fitting them to low-degree polynomials to generate 

high resolution MRF parameter maps. In vivo 1.5 and 3 Tesla brain scan data are used to validate 

the approaches.

Results—T1, T2 and off-resonance maps are in good agreement with that of the standard MRF 

approach. Moreover, the memory savings is up to 1000 times for the MRF-FISP sequence and 

more than 15 times for the MRF-bSSFP sequence.

Conclusion—The proposed compressed MRF with randomized SVD and dictionary fitting 

methods are memory efficient low rank approximation methods, which can benefit the usage of 

MRF in clinical settings. They also have great potentials in large scale MRF problems, such as 

problems considering multi-component MRF parameters or high resolution in the parameter 

space.
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Introduction

Recently, Ma et al. have developed a new quantitative magnetic resonance imaging 

technique, named Magnetic Resonance Fingerprinting (MRF) (1). Unlike conventional 
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qualitative MRI, it uses variable acquisition parameters to gather tissue information based on 

specific signal evolutions within each voxel. After the signal evolutions are collected and 

recorded, a pattern matching algorithm is used to identify different tissue type parameters 

against a pre-calculated dictionary using the Bloch equation simulations with different 

combinations of parameters of interest, such as T1, T2, and off-resonance. This novel 

approach has drawn great attention from the magnetic resonance imaging community for 

both technical developments and clinical applications (2–12).

One of the challenges this approach faces though is the large amounts of data it generates, 

especially when fine MRF dictionaries are needed or multiple components, e.g. chemical 

exchange effects (13) or additional fields (14, 15) are taken into account. The number of 

elements in MRF dictionaries can easily reach billions in these cases, making storing, 

loading, and processing MRF dictionaries extremely difficult even when using modern 

computers.

The MRF dictionaries generated, however, are highly redundant. Thanks to this property, a 

low rank matrix approximation can reduce the size of MRF dictionaries significantly. For 

example, McGivney, et al. (16) have recently shown that the pattern matching step in MRF 

can be sped up by a factor of 40 for the MRF-FISP dictionary (17) and a factor of 5 for the 

MRF-bSSFP dictionary (18), by employing the singular value decomposition (SVD) to 

compress the time frame domain of the MRF dictionaries. However, the major contributor to 

the size of an MRF dictionary is the tissue property dimension, which is typically much 

larger than the time frame dimension. This makes the SVD approach infeasible if high 

resolution or large multi-dimensional analyses need to be taken into account. To compute the 

SVD, the dictionary needs to be generated and loaded into the computer memory in the first 

place. Moreover, note that for a matrix of size m × n, (assuming m ≤ n), the computational 

complexity of calculating the SVD of the matrix is O(m2n) floating-point operations (flops) 

(19). Therefore, even if the dictionary could be loaded into the memory, it is too expensive to 

perform the SVD for large sized dictionaries.

Cauley, et al. (20) address this problem and further speed up the MRF matching process by 

introducing a fast group matching algorithm. It first separates the dictionary into certain 

number of groups whose elements are highly correlated within each group. The SVD is 

applied on each of the groups with much smaller sizes compared to the original dictionary to 

achieve temporal compression. Pattern matching is then performed against a pruned MRF 

dictionary instead of the full dictionary to obtain MRF parameter maps. Doneva, et al. (6) 

take a different approach and extend the idea of the coherence property of MRF dictionaries 

to more general MRF signals. In particular, they apply the SVD to the calibration MRF 

signals fully sampled at the center of the k-space. Given a set of undersampled data, the 

missing k-space data are recovered iteratively based on the assumption that the complete 

temporal-spatial k-space data live in the subspace spanned by only a few left singular 

vectors. The MRF parameter maps are then obtained through standard pattern matching 

against an MRF dictionary. These methods, however, still rely on a full MRF dictionary.

In this paper, we propose low rank approximation methods to compress MRF dictionaries 

on-the-fly and achieve high resolution MRF maps from coarse MRF dictionaries, resulting 
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in significant reduction in the memory requirement and great improvement in efficiency for 

high resolution MRF. Specifically, we adopt and implement the idea of randomized SVD 

(21) to generate a low rank approximation to the large sized dictionary. Only one tissue 

property signal evolution is calculated at a time to update the randomized SVD process, and 

can be discarded immediately after the update. Therefore, only the singular values and 

singular vectors are stored to form the low rank approximation to the MRF dictionaries. 

However, it can still be prohibitive to perform randomized SVD if the size of the tissue 

property dimension is too large. To address this problem, we further reduce the requirement 

on the resolution of MRF dictionaries in the tissue property dimension by introducing 

polynomial fitting into the randomized SVD space of the MRF dictionaries and refining the 

MRF lattice. This in return enables us to approximate arbitrary high resolution MRF maps 

using a coarse MRF dictionary with little memory consumption.

Theory

We present in this section the details of our randomized SVD approach to generate a low 

rank approximation to MRF dictionaries without the need to store the entire dictionary. We 

further give details of the dictionary fitting method to generate accurate MRF maps with 

only a coarse dictionary.

A. Compressed MRF with Randomized SVD

Randomized SVD (rSVD) is a technique developed recently as an alternative to the classical 

SVD for low rank matrix approximation when performing the SVD is not feasible for 

massive data sets. It is also more efficient and robust than the SVD (20). For a given matrix 

A, the key idea of low rank matrix approximation is to find a rank k matrix Q whose 

columns are orthonormal and capture the action of A as much as possible. In other words, 

one wants to find Q such that ||A − QQ*A||2 ≈ σk+1, where σk+1 is the (k+1)-th singular 

value of A in descending order in magnitude. Note that the best possible rank k 

approximation to matrix A is  . Finding Q, however, is not a trivial 

task, especially when A is massive, which leads to the employment of random embedding 

techniques. The celebrated Johnson-Lindenstrauss Lemma (22), which is also one of the 

foundations for compressed sensing, has shown that the pairwise Euclidean distances are 

preserved when points in a high dimensional space are mapped into an appropriate lower 

dimensional space. Therefore, by embedding A into a k dimensional space via a random 

mapping Ω, and performing a QR factorization, a low rank approximation can be obtained 

via the SVD, which leads to the randomized SVD.

The detailed procedure of our compressed MRF with randomized SVD (rSVD-MRF) 

method can be described as follows. Consider an MRF dictionary D ∈ ℂm×n, with m the 

number of time frames and n the number of tissue type parameters. Let Ω ∈ ℂn×k be a 

Gaussian matrix whose entries are drawn from an i.i.d. normal distribution with mean 0 and 

variance 1, where k is the low rank desired. We embed the tissue type dimension n into a 

much lower dimension k by Y = (DD*)qDΩ with the power iteration index q = 0,1,2, …, 

where (…)* denotes the conjugate transpose operator, and perform a QR factorization Y = 

QR. Next, form the matrix B = Q*D and compute its SVD B = ÛSV*. Finally, to obtain an 
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approximation of the left singular vectors, compute the matrix U = QÛ. We then obtain a 

rank k approximation to the dictionary D ≈ USV*, where the dimensions of U, S, and V are 

m × k, k × k, and n × k respectively. The choice of the power iteration index q depends on 

the rate of decay of the magnitude of the singular values of the MRF dictionary. When the 

spectrum of the dictionary matrix is flat, choosing a nonzero q helps reduce the interference 

of the singular vectors associated with small singular values in calculation, resulting in 

smaller approximation error. Specifically, the approximation error can be characterized as 

(20)

where ⌊·⌋ denotes the floor operator. The larger the value of q is, the smaller is the 

approximation error. Now for some test signal x, the pattern matching can be calculated via 

D*x ≈ max(VS*)(U*x). The corresponding tissue property values can then be obtained by 

examining the index of the maximum against the tissue property value table used for the 

simulation of the MRF dictionary. Note that in real implementation, one does not need to 

pre-compute and store the entire dictionary D. Only one tissue property entry at a time is 

calculated and processed on-the-fly to update Y and B for the calculation of U, S, and V, 

whose sizes are much smaller than that of the dictionary D, resulting in a significant 

reduction in the computer memory required. The details of the implementation of our rSVD-

MRF method are shown in Figure 1.

B. MRF Dictionary Fitting

One may notice that, although the size of the data processed through rSVD-MRF is reduced 

significantly compared to the classical SVD, the tissue property dimension n still imposes a 

limitation. When n is very large, even storing and processing the right singular vector matrix 

V can be prohibitive. To address this problem, we introduce here one of many possible 

solutions by fitting a coarse MRF dictionary with polynomials in its low rank randomized 

SVD space.

Without loss of generality, let us consider an MRF-FISP dictionary D ∈ ℂm×n with m being 

the number of time frames and n being the number of T1, T2 combinations. Let D ≈ USV* 

be a rank k randomized SVD approximation of the dictionary D. The row space of D is 

projected into a k-dimensional space by X = U*D. We then fit a degree d polynomial 

hypersurface to the projected data, where the choice of d depends on k and n. Specifically, 

the number of dependent variables n should be no less than the number of independent 

variables including cross terms, which can be calculated as . By connecting all the 

data points with the same T1 or T2 values together along the fitted polynomial hypersurface, 

a T1, T2 mesh grid can be obtained. The fitted polynomial curves between each pair of 

adjacent grid points can be further refined evenly t times, resulting in a finer grid for each 
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individual T1 and T2 value. See Figure 2 for an intuitive illustration with rank k = 3, degree 

of polynomial d = 5, and fineness index t = 4.

For a reconstructed voxel signal evolution x obtained from an MRF-FISP sequence scan, the 

signal evolution is first projected to the k-dimensional randomized SVD space by x̂ = U*x. 

The projected signal evolution x̂ is then matched against all the T1, T2 fine grid points 

obtained above using maximal correlation to identify the largest two coarse values 

(corresponding to the coarse dictionary) for each tissue property parameter. Next, we 

examine the two fitted and refined adjacent T1 curves between the two fitted adjacent T2 

curves and find on each T1 curve the point with the largest correlation with x̂. Record the 

indices of these two points on the two T1 curves as i and j with i,j = 1, …, p+1, where is the 

number of partitions on each curve. Then the T2 value corresponding to x can be estimated 

as

with , where T2,1 and T2,2 are the T2 values corresponding to the two T2 curves. 

The T1 value corresponding to x can be estimated similarly.

Thanks to the random embedding of the randomized SVD, MRF dictionary fitting can 

approximate fine MRF parameter maps well enough as long as the original dictionary is not 

too coarse so as to avoid a wrong initial guess. It can also be easily generalized to the case 

where dictionaries consist of more tissue property parameters.

Methods

A. Compressed MRF with Randomized SVD

To demonstrate that our rSVD-MRF method works independently of the MRF sequence 

parameters and sampling pattern used, we use two types of MRF sequences, an MRF-FISP 

sequence with accelerated spiral readout and an MRF-bSSFP sequence with fully sampled 

multi-shot Cartesian readout, to evaluate the performance of the method. Specifically, we 

use these two MRF sequences to scan in vivo human-brain data and simulate MRF 

dictionaries. Note that these two MRF sequences have different parameters, which results in 

completely different behaviors in the spectrum of the MRF dictionaries.

The full MRF-FISP dictionary simulated contains 3,000 time frames and 5,970 different 

tissue property combinations with T1 values ranging from 10ms to 2,950ms and T2 values 

ranging from 2ms to 500ms with the constraint T2 ≤ T1 as shown in Table 1. A healthy 

volunteer was scanned on a Siemens Skyra 3T scanner (Siemens Healthcare, Erlangen, 

Germany) with a 20-channel head receiver coil array for 45 seconds using the MRF-FISP 

sequence and spiral sampling pattern with an acceleration factor of 48 (one out of 48 spiral 

interleaves per repetition MRF-FISP acquisition), a matrix size of 256 × 256, and a field of 

view (FOV) of 30 × 30cm2. The collected spiral data for each coil were reconstructed using 

the non-uniform fast Fourier transform (NUFFT) (23) with an independently measured 

spiral trajectory to correct the gradient imperfection (24). Reconstructed images from all 
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individual coils were then combined using the adaptive coil combination method (25), and 

scaled to the coil sensitivity map to compensate for the image intensity variation due to coil 

sensitivity (26). The T1 and T2 maps using rSVD-MRF can now be obtained following 

Figure 1, and the full T1 and T2 maps can be obtained through standard MRF pattern 

matching as the ground truth for comparison. We choose in this case the low rank index k = 

30, and the power iteration index q = 0, since it has been shown in the literature that the 

singular values for MRF-FISP dictionaries decay rapidly (16).

The full MRF-bSSFP dictionary we use contains 500 time frames, 3,312 different tissue 

property combinations with T1 values ranging from 20ms to 5,900ms, T2 values ranging 

from 5ms to 2,900ms with the constraint T2 ≤ T1, as shown in Table 2, and off-resonance 

frequencies ranging from −300Hz to 300Hz with a step size of 4Hz. A healthy volunteer was 

scanned on a Siemens Espree 1.5T scanner (Siemens Healthcare, Erlangen, Germany) with a 

4-channel head receiver coil array for 20 minutes using the MRF-bSSFP sequence with the 

conventional multi-shot Cartesian sampling pattern with no acceleration, a matrix size of 

128 × 128 and a field-of-view of 25 × 25cm2. The collected data for each coil were 

reconstructed using standard inverse fast Fourier transform (FFT). The reconstructed images 

from individual coils were then combined together and compensated for coil sensitivity. It 

has been shown in (16) that the singular values of MRF-bSSFP dictionaries stay relatively 

flat. Therefore, we choose the low rank index k = 100. In addition, we compare the 

performance of rSVD-MRF by varying the power iteration index q.

To demonstrate the efficiency of our randomized SVD approach, we further test its memory 

consumption for both MRF sequences and compare with the conventional MRF with the 

SVD approach (16) in MATLAB 2015b (The MathWorks, Natick, MA) with the assistance 

of the memory profiler function on a Windows 10 system with an Intel Xeon 2.6 GHz CPU 

(Intel Corporation, Santa Clara, CA) and 64 Gb of memory.

B. Dictionary Fitting

To evaluated the performance of our proposed low rank approximation approach using 

dictionary polynomial fitting combined with randomized SVD, we use the MRF-FISP 

sequence to simulate two MRF dictionaries, one coarse and one fine, and collect in vivo 

human-brain data from a healthy volunteer for comparison. We fit a polynomial to the coarse 

dictionary and compare the T1, T2 maps with the results obtained from the fine dictionary.

The coarse MRF-FISP dictionary is simulated according to the Bloch equations for 3,000 

time frames with T1 values varying from 20ms to 1,940ms with a step size of 80ms and T2 

values varying from 10ms to 170ms with a step size of 40ms with the restriction T2 ≤ T1, 

resulting in a dictionary of size 3,000 × 119. The fine MRF-FISP dictionary has the same 

number of time frames and the same T1, T2 ranges but with a 4 times finer step size. The 

step sizes for T1 and T2 values are 20ms and 10ms respectively, resulting in a dictionary of 

size 3,000 × 1,585. The in vivo brain scan of a healthy volunteer was obtained on a Siemens 

Skyra 3T scanner (Siemens Healthcare, Erlangen, Germany) with a 20-channel head receiver 

coil array using the MRF-FISP sequence and spiral sampling pattern with an acceleration 

factor of 48 (one out of 48 spiral interleaves per repetition MRF-FISP acquisition), a matrix 

size of 256 × 256, and a FOV of 30 × 30cm2. The collected spiral data for each coil were 
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reconstructed using the NUFFT with an independently measured spiral trajectory for 

gradient imperfection correction. Reconstructed images from all individual coils were then 

combined and compensated for coil sensitivity variation. In addition, to apply polynomial 

fitting with randomized SVD, we set the rank of approximation for the randomized SVD to 

k = 3, the power iteration index to q = 0, the degree of the fitting polynomial to d = 5, and 

the fineness index to t = 4. Note that rank k and degree of polynomial d can be varied, as 

long as they satisfy the condition  from the Theory section. Moreover, we set t 
= 4 since the benchmark fine dictionary is 4 times finer than the coarse dictionary. The T1 

and T2 maps can then be calculated following the procedure described in the Theory section 

above and compared against the rSVD-MRF results using both the coarse dictionary and the 

fine dictionary.

Note that informed consent was obtained before each scan and all experiments were 

approved by our institutional review board (IRB).

Results

Figure 3 shows the results of applying the rSVD-MRF with power iteration index q = 0 to a 

scanned healthy volunteer brain dataset with an MRF-FISP dictionary with full resolution. 

Specifically, the reconstructed T1, T2 parameter maps and the difference maps using the 

direct MRF method and the rSVD-MRF method with rank k = 10 and k = 30 using the 

MRF-FISP sequence are displayed. The range of the T1 values displayed is 10ms to 2,500ms 

(anything beyond 2,500ms is displayed as 2,500ms), while the range of the T2 value 

displayed is 2ms to 250ms for a better visualization (anything beyond 250ms is displayed as 

250ms). In addition, the difference maps for both T1 and T2 values are scaled up 10 times. 

The difference maps clearly demonstrate that the T1 and T2 maps from rSVD-MRF are in 

good agreement with the ground truth MRF maps, even though we have only used 1% (30 

out of 3,000) of the principal components. Explicitly, the relative error (the ratio between the 

Frobenius norm of the difference map and that of the ground truth map) between the T1 

maps from rSVD-MRF and the ground truth is only 0.58%; while the relative error between 

the T2 maps is 1.09%. On the other hand, the performance of rSVD-MRF starts to break 

down if one pushes too much. For instance, when we choose rank k = 10, the relative error 

increases to 5% for T1 maps, and to 11.66% for T2 maps.

We further show in Figure 3(f) the comparison of the reconstruction fidelity of T1 and T2 

maps using rSVD and the conventional SVD method. Both methods are compared with the 

ground truth MRF maps without compression with rank k varying from 5 to 50. The results 

from the rSVD method is averaged over 100 runs with standard deviation plotted. One can 

see from the plots that the relative error curves for both T1 and T2 maps using rSVD agree 

with the relative error curves using SVD when rank k is not chosen too small.

The results of applying the rSVD-MRF method with no power iteration (q = 0) to the in vivo 

brain data of a healthy volunteer and the MRF dictionary using the MRF-bSSFP sequence 

are shown in Figure 4. Here we show the T1, T2, and off-resonance maps computed using 

both conventional MRF and the rSVD-MRF method with no power iteration. The left 
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column of images corresponds to the T1, T2 and off-resonance maps using the conventional 

MRF. The middle column of images contains the T1, T2 and off-resonance maps using the 

rSVD-MRF method with no power iteration. The last column of images are the difference 

maps between the two approaches. For better visualization, the T1 values between 20ms and 

5,000ms are displayed and the T1 difference map is scaled up 10 times; the T2 values 

between 5ms and 250ms are displayed and the T2 difference map is scaled up 2.5 times; the 

off-resonance values between −100Hz and 100Hz are displayed. Although we have taken 

20% of the principal components (100 out of 500), the difference maps exhibit a larger 

residual as compared to the FISP results due to the slower decay of the singular values in the 

bSSFP dictionary.

To remediate this problem, we set the power iteration index q = 2. We notice that using q = 2 

provides a better approximation performance compared to the case q = 0, without 

introducing too much computational overhead. The T1 and T2 maps can now be obtained 

following Figure 1 and compared against the results obtained from the standard MRF 

approach, as shown in Figure 5. Again, the maps for the standard MRF are shown in the first 

column, the maps for the rSVD-MRF are shown in the second column, and the difference 

maps are shown in the last column. By comparing the difference maps, the residuals are 

much smaller than that of the case when there is no power iteration involved. This 

demonstrates that the approximation error can be diminished significantly by incorporating a 

nonzero power iteration index when the singular value decay is not fast enough. Typically, 

setting the power iteration index q = 2 is enough, as we have seen no significant 

improvement in in vivo experiments when setting q = 3 and higher.

To demonstrate the advantage of the rSVD-MRF method, the memory consumption details 

calculated from the memory profiler of MATLAB are shown in Table 3. The memory 

savings for calculating the SVD approximation to the MRF-FISP dictionary is almost 1,000 

times using our rSVD-MRF method against the standard MRF with SVD approach. For the 

MRF-bSSFP calculation using rSVD-MRF, we still get decent memory savings around 15 

times compared to the MRF using SVD with or without power iteration, although not as 

significant as the MRF-FISP case.

We next demonstrate the possibility of constructing accurate tissue property maps from 

coarse MRF dictionaries combining rSVD-MRF with polynomial fitting. Figure 2 shows a 

3D visualization of the projected randomized SVD space of the coarse MRF-FISP dictionary 

with rank k = 3, fitted with a degree d = 5 polynomial, and fineness index t = 4. The cyan 

and red curves represent different T1 and T2 values respectively, and the circles represent 

fitted values along each curve, partitioning each T1, T2 coarse grid into 4 segments. The 

figure shows that the polynomial surface fits the projected coarse dictionary perfectly with 

fitting statistics R2 = 1 and adjusted R2=0.99.

The MRF results with different dictionaries are shown in Figure 6 and Figure 7. In Figure 6, 

the T1 and T2 maps of the scanned human brain are obtained via the projected fine 

dictionary, the projected coarse dictionary, the projected coarse dictionary interpolated with 

piecewise linear functions, and the projected coarse dictionary fitted with a degree 5 

polynomial respectively. We see a clear quality degradation when the dictionary is coarse. In 
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particular, note that the T2 map obtained from the coarse dictionary shows significant loss of 

detail and exhibits a flat image appearance. This, however, is remediated by fitting a 

polynomial to the coarse dictionary lattice. The results are more clearly displayed in the 

difference maps in Figure 7, where the T1, T2 difference maps between the coarse and fine 

dictionaries approaches, the piecewise linear interpolated and the fine dictionary approaches, 

and the fitted and fine dictionary approaches are shown in the left, middle, and right columns 

respectively. The T1, T2 map differences between the coarse dictionary and the 4 times finer 

dictionary are significantly diminished by polynomial fitting in the rank 3 randomized SVD 

space. Specially, the relative error decreases from 3.68% to 2.06% for the T1 map, and from 

14.37% to 7.40% for the T2 map. One may also notice that the piecewise linear interpolation 

method also beats the coarse dictionary approach. Its performance, however, is not as good 

as that of the polynomial fitting approach. In particular, the T2 map obtained from piecewise 

linear interpolation still exhibits certain degree of flat pattern in the white matter region.

Discussion and Conclusions

This work studies new low rank approximation approaches, namely, compressed MRF with 

randomized SVD (rSVD-MRF) and dictionary fitting with polynomials in the MRF 

framework. It provides useful tools for large sized MRF problems when fine MRF 

dictionaries are needed or multi-component such as chemical exchange effects are 

considered, where calculating the dictionaries or applying conventional compression 

methods such as the SVD is infeasible. Specifically, instead of calculating and compressing 

the whole MRF dictionary, and then throw away most of the components that are not 

important to obtain a low rank approximation, rSVD-MRF calculates only one tissue 

property signal evolution at a time to update the low rank approximant to the MRF 

dictionary, and discards it afterwards. This results in up to 1,000 times memory savings for 

calculating MRF dictionaries, which makes it possible to handle large sized MRF problems 

that had been previously prohibitive.

Furthermore, when combined with polynomial fitting in the low rank randomized SVD 

space, it enables us to fit the low rank approximation of a coarse MRF dictionary to certain 

degree polynomials and generate arbitrary fine resolution MRF maps close to the maps from 

a fine MRF dictionary. This in return can further reduce the memory requirement for 

generating high resolution MRF maps, as well as speed up the whole process. Moreover, it is 

possible to provide more accurate maps than the given fine dictionary because of the 

smoothness of polynomial fitting and the arbitrary number of partitions one can make within 

each coarse grid. This idea could essentially remove dictionary resolution as a limitation in 

MRF. Note that although we have only demonstrated the two-component case for T1 and T2 

values, it can be easily extended to problems with more components. Therefore, we see great 

potential in this approach being applied to multi-parameter large scale MRF problems, such 

as MRF-X (13) for multi-component chemical exchange effects.
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Figure 1. 
The compressed MRF with randomized SVD algorithm.
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Figure 2. 
Visualization of the projected 3D randomized SVD space of the coarse MRF-FISP 

dictionary, fitted with a degree 5 polynomial. The 3 axes are the 3 singular vectors used for 

approximation. Each cyan curve represents a unique T1 value and each red curve represents 

a unique T2 value. The cyan and red circles represent the fitted values along different T1 and 

T2 curves, partitioning evenly each T1, T2 coarse level segment into 4 parts.
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Figure 3. 
Performance of rSVD-MRF on MRF-FISP sequence. Top: T1 maps. Bottom: T2 maps. 

Column (a): MRF maps without compression. Column (b): MRF maps using rSVD-MRF 

with k = 10. Column (c): MRF maps using rSVD-MRF with k = 30. Column (d): difference 

maps between columns (a) and (b). Column (e): difference maps between columns (a) and 

(c). Column (f): Reconstruction fidelity comparison between SVD and rSVD, both against 

MRF maps without compression.
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Figure 4. 
Performance of randomized SVD on MRF-bSSFP sequence with rank k = 100 and power 

iteration index q = 0. Top to bottom: T1 maps, T2 maps, and off-resonance maps. Column 

(a): MRF maps without compression. Column (b): MRF maps with randomized SVD with k 
= 100 and q = 0. Column (c): difference maps between the two cases.
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Figure 5. 
Performance of randomized SVD on MRF-bSSFP sequence with rank k = 100 and power 

iteration index q = 2. Top to bottom: T1 maps, T2 maps, and off-resonance maps. Column 

(a): MRF maps without compression. Column (b): MRF maps with randomized SVD with k 
= 100 and q = 2. Column (c): difference maps between the two cases.
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Figure 6. 
T1, T2 maps of a brain data against different MRF-FISP dictionaries. First row: T1 maps. 

Second row: T2 maps. Column (a): MRF with compressed fine dictionary. Column (b): MRF 

with compressed coarse dictionary. Column (c): MRF with piecewise linear interpolated 

compressed coarse dictionary. Column (d): MRF with polynomial fitted compressed coarse 

dictionary.
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Figure 7. 
T1, T2 difference maps of a brain data between different MRF-FISP dictionaries. First row: 

T1 map differences. Second row: T2 map differences. Column (a): difference maps between 

the coarse dictionary and the fine dictionary. Column (b): difference maps between the 

piecewise linear interpolated coarse dictionary and the fine dictionary. Column (c): 

difference maps between the polynomial fitted coarse dictionary and the fine dictionary. 

Note the scaling factor changes in both T1 and T2 cases.
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Table 1

Ranges and step sizes for T1 and T2 in the MRF-FISP dictionary. All values in milliseconds (ms).

FISP Range Step Size

T1

[10, 85] 5

[90, 990] 10

[1000, 1480] 20

[1500, 2000] 50

[2050, 2950] 100

T2

[2, 8] 2

[10, 145] 5

[150, 190] 10

[200, 500] 50
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Table 2

Ranges and step sizes for T1 and T2 for the MRF-bSSFP dictionary. All values in milliseconds (ms).

bSSFP Range Step Size

T1

[20, 1980] 20

[2000, 5900] 300

T2

[5, 95] 5

[100, 400] 50

[500, 2900] 200
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Table 3

Memory consumption for calculating dictionaries with randomized SVD and direct SVD approach.

Direct Calculation rSVD-MRF (q=0) rSVD-MRF (q=2)

MRF-FISP 1,028.8Mb 1.6Mb N/A

MRF-bSSFP 11,571Mb 764Mb 769.5Mb
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