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Abstract
Introduction: Plasma concentrations of lipids (i.e., total cholesterol, high-density cholesterol, low-density cholesterol, and
triglycerides) are amenable to therapeutic intervention and remain important factors for assessing risk of cardiovascular
diseases. Some of the observed variability in serum lipid concentrations has been associated with genetic and epigenetic
variants among cohorts with European ancestry (EA). Serum lipid levels have also been associated with genetic variants in
multiethnic populations. Methods: The purpose of this study was to determine whether single-nucleotide polymorphisms
(SNPs) and DNA methylation (DNAm) differences contribute to lipid variation among African Americans ([AAs], N ¼ 739) in
the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Results: Previous meta-analyses identified 161 SNPs that
are associated with lipid traits in populations of EA. We evaluated these SNPs and 66 DNAm sites within the genes containing the
SNPs in the GENOA cohort using linear mixed-effects modeling. We did not identify any significant associations of SNPs or
DNAm with serum lipid levels. These results suggest that the SNPs identified as being significant for lipid levels through the EA
genome-wide association studies may not be significant across AA populations. Conclusions: Reductions in morbidity and
mortality due to variation in lipids among AAs may be achieved through a better understanding of the genetic and epigenetic
factors associated with serum lipid levels for early and appropriate screening. Further large-scale studies specifically within AA and
other non-EA populations are warranted.
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In the United States, African Americans (AAs), or those of

African ancestry, face significant disparities for multiple

chronic health conditions. When compared to those of Eur-

opean ancestry (EA), AAs fare worse over many indices asso-

ciated with cardiovascular disease including (1) highest

incidence and prevalence of hypertension, obesity, and dia-

betes; (2) highest death rates from heart disease and stroke;

and (3) shorter life expectancy (Meyer, Yoon, & Kaufmann,

2013). Individuals’ health outcomes and life expectancy are

strongly influenced by the characteristics of their environment

(Yoon, Bastian, Anderson, Collins, & Jaffe, 2014). Accord-

ingly, health disparities among AAs have been associated with

genomic underpinnings (Taylor, Sun, Hunt, & Kardia, 2010),

social inequalities (Taylor et al., 2012), disproportionate bur-

dens of pollution (Taylor, Wright, & Housman, 2016), and

unequal access to quality health care (Hynes & Lopez, 2012).

Serum lipid levels (i.e., total cholesterol [cholesterol], low-

density lipoprotein [LDL] cholesterol, high-density lipoprotein

[HDL] cholesterol, and triglycerides) differ between AAs and

their counterparts of EA (Wright, Housman, & Taylor, 2016).

AA individuals tend to have lower levels of triglycerides and

cholesterol and higher levels of HDL than EA individuals (de

Ferranti et al., 2016; Mozaffarian et al., 2015). Variations in

lipid levels between these groups may be attributed to genetic

or epigenetic differences. Although a number of genome-wide

association studies (GWAS) have identified independent

effects of risk alleles for hypertension and other chronic dis-

eases among AA populations, very few studies have used mul-

tiple omic methods together, such as single-nucleotide

polymorphisms (SNPs) and DNA methylation (DNAm), to
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explore the contribution of both genetic and environmentally

mediated (via DNAm) influences on phenotypic expression of

disease (Taylor, Wright, Crusto, & Sun, 2016).

In large-scale GWASs evaluating genetic variations that

contribute to the heritability of serum lipid levels in popula-

tions of EA (N ¼ 100,184; Teslovich et al., 2010) and mixed

ancestry (N ¼ 188,577; Willer et al., 2013), researchers iden-

tified 161 SNPs that are significantly associated with serum

lipid levels. In their replication GWAS study, Willer et al. also

identified significant associations between some of these 161

SNPs and various clinical outcomes including body mass index

(BMI), blood pressure, and Type 2 diabetes. Teslovich et al.,

however, in one of the original studies that assessed replicabil-

ity among other populations, found that a lower proportion of

these SNPs were associated with abnormal lipids in groups of

AA compared to groups of South and East Asian ancestry

groups. To date, no follow-up on the modest SNP replication

from the most recent GWAS studies of serum lipid levels in AA

cohorts has been published. These data are alarming as diseases

associated with altered lipids (e.g., stroke, heart disease, obe-

sity) disproportionately affect AAs, and lipids in AAs are less

likely to be responsive to therapy than they are in their counter-

parts of EA (Goff, 2006). Given that plasma concentrations of

lipids are amenable to therapeutic intervention and remain

among the most important factors for assessing risk of cardio-

vascular diseases, it is important to elucidate molecular

mechanisms that may contribute to variation among AA

cohorts (Teslovich et al., 2010; Willer et al., 2013).

Epigenetic differences may also be important risk factors for

lipid variations that contribute to multiple disease processes.

Cell types have unique epigenetic signatures that add further

programming information with strong consequences for cellu-

lar activity with downstream effects such as which proteins will

be produced (Jenuwein & Allis, 2001). Researchers conducting

epigenome-wide association studies in AA cohorts have iden-

tified DNAm differences associated with age (Smith et al.,

2014), sex (Sun et al., 2010), BMI (Demerath et al., 2015),

cigarette smoking (Joehanes et al., 2016; Klebaner et al.,

2016; Sun, Smith, et al., 2013; Taylor, Schwander, et al.,

2016), and inflammatory markers (Bomotti et al., 2013; Ligth-

art et al., 2016; Sun, Lazarus, et al., 2013). However, few

studies have evaluated the relationships between DNAm and

serum lipid levels among AAs. Of the studies that have been

published, none were designed to evaluate DNAm related to

lipids specifically within an AA cohort.

We hypothesized that interactions between genetic and epi-

genetic factors contribute to serum lipid variation among AAs.

In this study, we (1) examined the influence of 161 genetic loci

previously identified as being associated with lipids among

those of EA in an AA cohort from the Genetic Epidemiology

Network of Arteriopathy (GENOA) study, (2) examined the

influence of DNAm at the genes associated with those 161 loci

on lipids, and (3) integrated findings from (1) and (2) into a

multivariable model of the joint effects of lipid SNP variants,

DNAm, and clinical outcomes associated with variation in

serum lipid levels including evaluation of interactions.

Material and Method

Sample

We completed this secondary data analysis on a subset of

participants from the GENOA study. The GENOA study had

previously obtained institutional review board approval via the

University of Mississippi Medical Center and University of

Michigan. Data collection methods were completed in

accordance with the approved guidelines. GENOA is a

community-based prospective study that recruited participants

from sibships with two or more siblings who were diagnosed

with primary hypertension prior to age 60 and self-identified as

AA. All members of the sibship were invited to participate,

regardless of hypertension status. In Phase I (1995–2000),

1,854 AA participants from 683 sibships from the Jackson,

Mississippi, area were recruited. In Phase II (2000–2005),

1,482 of the initial subjects returned. Study visits were made

in the morning after an overnight fast. Each participant was

interviewed by trained study personnel to collect demographic

and medical history data as previously described (Daniels et al.,

2004). A peripheral blood sample was also collected at Phase

II, which was used to measure serum lipid and DNA methyla-

tion levels.

Measures

Demographic, anthropometric, and clinical measures. Complete

clinical data for variables of interest in participants who had

fasted for greater than 10 hr prior to peripheral blood sample

collection were available for 1,243 participants from Phase II.

Clinical variables included in this study were age, sex, pre-

scription lipid/cholesterol medication use (yes/no), current

cigarette smoker (yes/no), height (by wall stadiometer), weight

(by electronic balance), serum cholesterol (mg/dl), serum HDL

(mg/dl), serum LDL (mg/dl), and serum triglycerides (mg/dl).

Serum cholesterol, HDL, and triglycerides were measured by

standard enzymatic methods on a Hitachi 911 Chemistry Ana-

lyzer (Roche Diagnostics, Indianapolis, IN), and LDL choles-

terol levels were calculated using the Friedewald formula

(Friedewald, Levy, & Fredrickson, 1972).

Genotype measures. Of the 1,854 AA participants enrolled in

Phase I, genotyping data were available for 1,599 participants.

Participants were genotyped on the Affymetrix Genome-Wide

Human SNP Array 6.0 or the Illumina Human 1M-Duo Bead-

Chip. Samples were removed if they had a missing call rate

�0.05 or a value �6 standard deviations from the mean of the

first 10 genome-wide principal components (PCs) from the

genotype data. SNPs with a missing call rate �0.05 were

removed. Imputation for the Affymetrix-genotyped and

Illumina-genotyped samples was performed separately. For

each, samples were prephased using the Segmented HAPlotype

Estimation and Imputation Tool (SHAPEIT), Version v2.r,

using HapMap Phase II b37. Imputation was performed using

IMPUTE, Version 2. The imputation reference panels are from

the 1,000 Genomes Project’s Phase I integrated variant set
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release (v3) in NCBI build 37 (hg19) coordinates (released in

March 2012). Since the two genotyping platforms contain only

a small number of overlapping SNPs (*200,000), association

analyses were performed using imputed data only. We used the

aforementioned overlapping SNPs to calculate the genetic PCs

instead of a limited number of ancestry informative markers.

The top four genetic PCs were estimated and used in analyses

to control for population stratification.

Methylation measures. Peripheral blood leukocytes were isolated

from stored blood samples of 1,008 Phase II AA participants

and used to measure DNAm levels. The EZ DNA Methylation

Gold Kit (Zymo Research, Orange, CA) was used for bisulfite

conversion. The methylation assay was performed at the Mayo

Clinic Advanced Genomics Technology Center using

Illumina® Infinium HumanMethylation27 BeadChips and Illu-

mina BeadXpress reader. As a quality control, seven samples

were excluded from analysis due to poor bisulfite conversion

efficiency (intensity <4,000). An additional 28 samples were

removed because of poor background signals, leaving a total of

973 samples. The lumi package (Du, Kibbe, & Lin, 2008) in R

software (lumi package) was used for background adjustment,

color balance adjustment, and quantile normalization. Thirty

samples were removed because <95% of probes had a detection

p value <.01, and two were excluded because the predicted

gender based on DNA methylation did not match with the

reported gender, leaving a total of 941 samples. Analyses for

this study were conducted on participants who had completed

clinical, genotyping, and DNAm data (Figure 1, N ¼ 739).

Gene Selection

We selected a total of 161 index SNPs that were significantly

associated (p < 5 � 10�8) with at least one lipid trait (total

cholesterol, HDL, LDL, or triglycerides) from two large

GWAS meta-analyses among EA cohorts (Teslovich et al.,

2010; Willer et al., 2013). We then selected all DNAm sites

that were within genes that contained an index SNP (i.e., SNP

was within the gene or within 5 kB of the start or stop position

of the gene), for a total of 66 DNAm sites in 36 genes.

Statistical Methods

For all outcome and independent variables, we examined the

distributions of continuous measures. The serum HDL and tri-

glyceride levels were not normally distributed and were natural

log transformed prior to analysis to reduce the skewness and

kurtosis. GENOA SNP allele frequencies were compared to the

previous allele frequencies reported in EA GWAS studies look-

ing at lipids (Teslovich et al., 2010; Willer et al., 2013) and to

the 1,000 Genomes Project’s build 37 SNP allele frequencies

for Americans of African descent (African Ancestry in South-

west US (ASW), http://grch37.ensembl.org/Homo_sapiens/

Info/Index, Supplementary Table 1).

Then, we examined the 161 SNPs from previous lipid

GWAS studies completed in individuals with EA to determine

whether the findings were replicated in this AA cohort. We

completed a series of linear mixed-effects models for the four

outcome variables: total cholesterol, serum LDL, serum HDL,

and triglycerides. We analyzed minimal- (Model 1) and full-

adjustment (Model 2) models. Model 1 included age, sex, and

the top four genetic PCs to control for population stratification

and also included sibship modeled as a random effect. Model 2

also included BMI and lipid medication use. SNP genotypes

were dummy coded to represent the additive and dominance

deviation of each variation (i.e., for genotypes BB, Bb, and bb,

we created two dummy variables X1 and X2, where X1 ¼ 1, 0,

�1 and X2 ¼ 0, �1, 0; Falconer & Mackay, 1996) and were

tested for association with each lipid measure separately.

We also examined the association between each of the 66

DNAm sites and lipids (Supplementary Table 2). M values,

calculated as the log2 ratio of the intensities of methylated

probe versus unmethylated probe, were calculated for each

DNAm site. Positive M values mean that more molecules are

methylated than unmethylated, while negative M values mean

Excluded: 
Missing DNAm data 

(n = 347)

Study Data: 
Complete clinical, 

genotype & DNAm data 
(n = 739)

Excluded: 
Missing genotype data 

(n = 157)

Clinical and Genotype
Data: 

(n = 1086)

Excluded: 
Missing clinical data 

(n = 239)

Complete Clinical 
Data: 

(n = 1,243)

Excluded: 
Did not return for 

biomarker measurement 
(n = 372)

GENOA Sample 
Phase II: 
(n = 1,482)

GENOA Sample 
Phase I: 

(n = 1,854)

Figure 1. Data inclusion process. The analyses for this study were
conducted on individuals who had complete clinical, single-nucleotide
polymorphism (SNP), and DNA methylation (DNAm) data. GENOA
¼ Genetic Epidemiology Network of Arteriopathy study.
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the opposite (Du et al., 2010). We used the M value of DNA

methylation levels because the b value has a bounded range

from 0 to 1 that violates the Gaussian distribution assumption

(Du et al., 2010). We first adjusted each DNAm site for per-

ipheral blood cell heterogeneity using the Houseman correction

method and technical covariates (i.e., DNAm chip and posi-

tion; Houseman et al., 2012; Houseman, Molitor, & Marsit,

2014). We then used linear mixed effect models to analyze

each adjusted DNAm site, using Models 1 and 2 as outlined

above but also controlling for smoking status in both models.

To assess interaction effects, we carried forward SNP and

DNAm sites with p values <.1. We chose, a priori, to carryfor-

ward sites with a less stringent p value because if there is a

statistical interaction, a marginally significant main effect

would be expected. Second, we suspected we would not have

a high number of sites reaching significance with a false dis-

covery rate (FDR) <0.05 because our sample size is small

relative to previous GWAS studies. For genes that had both

an SNP and a DNAm value of p < .1, we evaluated interaction

effects using Model 2. All analyses were completed using R

statistical computing environment (https://www.r-project.org/).

To control for multiple comparisons, we determined significance

using an FDR of <0.05 (Benjamini & Hochberg, 1995).

Results

The sample was comprised of self-identified AA men and

women. Demographic data are listed in Table 1. Participants

were predominately female, older, obese, and had lipid levels

consistent with those previously described among AAs (Meyer

et al., 2013). Although there were statistically significant dif-

ferences in total cholesterol and HDL levels by sex, the differ-

ences were not of clinical significance (i.e., trait levels were not

pathologic in one group vs. nonpathologic in the other), nor

were there differences in SNP or DNAm findings (data not

shown) when analyses were run separately by sex. Results

presented here include both males and females within the same

cohort, controlling for sex statistically as a covariate, per mod-

els described above. We did not identify any significant asso-

ciations between the 161 SNPs and any of the four serum lipid

levels, nor between DNAm and serum lipid levels after con-

trolling for multiple comparisons (Table 2). Three SNP with

corresponding DNAm sites had nominal p values of <.1 within

the same gene (two with serum HDL and one with serum LDL)

and were carried forward for interaction analyses. We detected

no significant interaction effects among these SNPs and

DNAm sites (Table 3).

Discussion

It is well known that ancestry contributes to genetic risk of

disease. However, most studies evaluating genetic and epige-

netic risk of disease are primarily completed using cohorts with

EA. Similar to a study conducted by Deo and colleagues

(2009), who did not find any strong contribution to lipid levels

among AAs of genetic variants found to be associated with

Table 1. Participant Characteristics.

Variable M (SD)

Age, years 66.95 (7.34)
BMI, kg/m2 31.44 (6.46)
Total cholesterol, mg/dl 204.90 (41.44)
LDL, mg/dl 122.85 (38.63)
HDL, mg/dl 58.66 (18.22)
Triglycerides, mg/dl 116.95 (55.80)

n (%)
Sex, female 536 (72.5)
Smoker, yes 77 (10.4)
Lipid medication, yes 155 (21.0)
Clinically significant lipid levels

Total cholesterol > 240 mg/dl 138 (18.7)
LDL > 160 mg/dl 121 (16.4)
HDL < 40 mg/dl 98 (13.3)
Triglycerides >150 mg/dl 154 (20.8)

Note. N¼ 739. BMI¼ body mass index; HDL¼ serum high-density lipoprotein;
LDL ¼ serum low-density lipoprotein.

Table 2. Number of Significant SNPs and DNAm Sites in Sample by
Outcome.a

Outcome p < .1 p < .05 p < .01

Number of SNPs (%)
Total cholesterol

Model 1b 21 (13) 13 (8) 2 (1)
Model 2c 23 (14) 14 (9) 3 (2)

HDL
Model 1 14 (9) 7 (4) 2 (1)
Model 2 14 (9) 6 (4) 3 (2)

LDL
Model 1 17 (11) 11 (7) 1 (1)
Model 2 17 (11) 10 (6) 1 (1)

Triglycerides
Model 1 18 (11) 7 (4) 0 (0)
Model 2 16 (10) 8 (5) 0 (0)

Number of DNAm sites (%)d

Total cholesterol
Model 1 7 (11) 4 (6) 0 (0)
Model 2 8 (12) 4 (6) 1 (2)

HDL
Model 1 11 (17) 8 (12) 1 (2)
Model 2 11 (17) 6 (9) 2 (3)

LDL
Model 1 9 (14) 5 (8) 0 (0)
Model 2 10 (15) 6 (9) 0 (0)

Triglycerides
Model 1 3 (5) 1 (2) 0 (0)
Model 2 3 (5) 1 (2) 0 (0)

Note. DNAm ¼ DNA methylation; HDL ¼ high-density lipoprotein; LDL ¼
low-density lipoprotein; SNP ¼ single-nucleotide polymorphism.
aNone of the associations were significant when controlling for multiple testing
(false discovery rate [FDR] < 0.05). bModel 1 controls for age, sex, sibship, and
genetic principal components. cModel 2 controls for Model 1 covariates and
body mass index, lipid medication, and smoking. dDNAm sites were adjusted
for peripheral blood cell heterogeneity using the Houseman correction
method and technical covariates (DNAm chip and position).
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lipid levels in EA cohorts, we did not identify any significant

associations between the 161 SNPs significant to lipid levels

among the EA cohorts in our AA cohort. Deo and colleagues

suggest that additional fine mapping is necessary, specifically

within AA cohorts, because both global and local ancestries

may alter how strongly SNPs contribute to phenotypic varia-

tion. For example, they found that ancestry did have a signif-

icant association with serum levels of triglycerides and LDL,

but they could not identify any genes with strong associations

to explain the variation. They postulate that gene–gene epi-

static effects could explain some of the difficulty associating

specific genetic variants with variation in lipid levels between

ancestry groups. Conversely, Dumitrescu and colleagues

(2011) determined that approximately half of the SNPs identi-

fied in earlier studies among EA individuals could be general-

ized to an AA population. However, similar to Deo et al.’s

findings, Dumitrescu et al. conceded that the SNPs identified

and indexed in EA studies may only represent tagging SNPs

among individuals with EA and may not be functional variants

for lipids. If the SNPs identified in previous EA studies are not

of functional relevance, it could also explain some of the lim-

ited replicability of these findings observed in genetic studies

among AA cohorts. The differing patterns of linkage disequili-

brium that exist between ancestry backgrounds add credence to

the argument that additional genetic studies must be completed

specifically within non-EA cohorts.

Similar to our SNP findings, we did not detect any signifi-

cant association between DNAm and lipid levels within our

cohort. In a recent study using an EA cohort, Hedman et al.

(2017) observed associations of 33 DNAm sites with serum

lipid levels. In their initial analysis of DNAm data produced

using the Illumina 450 K array, the authors discovered an asso-

ciation with lipid levels at 193 DNAm sites. The number of

DNAm sites that remained significant after controlling for BMI

decreased to 80, nine of which were unique to the BMI-

adjusted analysis. Hedman and colleagues repeated the analy-

ses in three separate EA cohorts and determined that 33 DNAm

sites replicated across all cohorts. Similar to the studies analyz-

ing SNPs related to lipids, these researchers also found that

15% of the DNAm sites were associated with expression

changes in genes adjacent to where the differential methylation

occurred. They also noted that these results suggest that there

are underlying linkages between the genes and methylation

networks that contribute to lipid levels as opposed to a single

variant altering expression alone. The large sample size of the

study allowed for the team to capture some variants within

SNP and DNAm linked networks (i.e., cis-meQTL SNPs);

however, the study was not designed to evaluate these find-

ings among diverse populations. The results from our study

suggest that DNAm that may be associated with lipids among

AA cohorts may differ from that identified in studies of popu-

lations with EA.

We sought to identify potential explanations for the lack of

reproducibility between the EA GWAS studies and our AA

cohort. First, our cohort of 739 individuals may not have been

large enough to detect significant contributions of SNP or

DNAm variation to serum lipid variability. However, we did

not take a genome-wide approach to either the SNP or DNAm

analysis, greatly reducing the number of independent tests.

Nonetheless, even using a targeted approach, we did not

observe significant contributions to serum lipid levels by the

selected set of SNPs or corresponding DNAm sites. Second,

our minor allele frequencies differed from those of the original

studies, as would be expected. Of note, 20% (33/161 SNPs) of

the alleles significantly associated with lipid levels among EA

cohorts are not the same alleles among AAs in the 1,000 Gen-

omes Project or our GENOA cohort; meaning that the minor

allele in the EA population is the major allele in the AA pop-

ulation or vice versa. Additionally, 12% (20/161 SNPs) of the

alleles associated with lipid levels in the EA population are

present in less than 5% of AAs in our GENOA cohort, which

would make it difficult to detect an association in a small

cohort of 739 individuals (see Supplementary Table 1 for

detailed information of allele frequencies among EA and AA

cohorts). Lastly, our data set contains DNAm array data from

the 27 K array, which interrogates a fraction of the sites found

on the more recent Illumina 450 K and EPIC arrays. The sites

associated with lipid levels in the more recent study may not

have been included on the 27 K array or associated with the

SNP sites we evaluated.

Table 3. Results From SNP-DNAm Interaction Models for SNPs and
DNAm Sites From the Same Gene With p Value <.1 in Univariate
Association Analyses.

Trait, Gene, and Variants

SNP-Only
Modela

DNAm-Only
Modelb

SNP �
DNAm

Interaction
Model

b
p

Value b
p

value b
p

Value

HDL
ERGIC3

rs2277862 0.03 .06
cg00340102 0.02 .05
rs2277862 �

cg00340102
0.01 .56

ST3GAL4
rs11220462 0.08 .04
cg08203715 �0.02 .05
rs11220462 �

cg08203715
0.02 .49

LDL
RAB3GAP1
rs7570971 5.59 .09
cg12813922 �3.54 .03
rs7570971 �

cg12813922
2.85 .38

Note. DNAm ¼ DNA methylation; HDL ¼ high-density lipoprotein; LDL ¼
low-density lipoprotein; SNP ¼ single-nucleotide polymorphism.
aAdjusted models control for age, body mass index, ancestry, sibship, sex, lipid
medications, and smoking. bDNAm sites were adjusted for peripheral blood
cell heterogeneity using the Houseman correction method and technical cov-
ariates (DNAm chip and position).
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Conclusions

Although the results in this study were not statistically signif-

icant among the loci examined, they do provide a platform for

future work in this important area of inquiry among AAs dis-

proportionately affected by health disparities associated with

lipids. The approach we applied in this study may be used to

evaluate omic variation that contributes to cardiovascular dis-

ease via different mechanisms, such as angiotensinogen

expression. In fact, scientists conducting work in health dispa-

rities have noted the emergent need for increased testing and

screening among AAs for serum lipid levels (Wright et al.,

2016). Inclusivity approaches with diverse populations and

future multi-omic work is critical for understanding the phy-

siological and environmental factors influencing health dispa-

rities among AAs and other non-EA groups. Once the key omic

and environmental factors are identified, health providers will

be better equipped to develop and implement interventions that

are based on individuals’ unique needs. Nurses and nurse scien-

tists are well trained to examine health disparities using omic

approaches to improve health (Starkweather et al., 2017; Tay-

lor, Wright, Hickey, & Housman, 2017). Their unique skills in

clinical translational science would be well utilized in omics-

based care for reductions in health disparities. Future multi-

omic studies that take into account environmental and omic

data will help to identify variants in additional pathways that

could contribute to differences in disease risk among different

racial and ethnic groups.
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