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Summary

Genome-wide association studies (GWAS) for complex diseases have focused primarily on single 

trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk 

factors for coronary artery disease analyze genetic associations of plasma lipids such as total 

cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides separately. However, traits are 

often correlated and a joint analysis may yield increased statistical power for association over 

multiple univariate analyses. Recently several multivariate methods have been proposed which 

require individual-level data. Here, we develop metaUSAT, a novel unified association test of a 

single genetic variant with multiple traits that uses only summary statistics from existing GWAS. 

While the existing methods either perform well when most correlated traits are affected by the 

genetic variant in the same direction or are powerful when only a few of the correlated traits are 

associated, metaUSAT is designed to be robust to the association structure of correlated traits. 

metaUSAT does not require individual-level data and can test genetic associations of categorical 

and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple 

studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an 

approximate asymptotic p-value for association and is computationally efficient for 

implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains 

proper type-I error at low error levels. It has similar and sometimes greater power to detect 

association across a wide array of scenarios compared to existing methods, which are usually 

powerful for some specific association scenarios only. When applied to plasma lipids summary 

data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide 

significant loci beyond the ones identified by univariate analyses. Evidence from larger studies 

suggest that the variants additionally detected by our test are, indeed, associated with lipid levels 

in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a 

common disease or traits.
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Introduction

Meta-analysis of multiple independent studies is routinely performed to test genetic 

association of traits by aggregating information on a large number of individuals. Individual 

data are often not available due to restrictions on data sharing, and hence analysis using 

summary statistics proves useful. Combining association results from multiple samples of 

individuals increases statistical power to detect subtle genetic effects. For example, Willer et 

al. (2013) meta-analyzed lipid traits from 188, 577 individuals in 60 studies and detected 62 

genome-wide significant loci that were not previously associated with lipid levels in 

humans.

While statistical approaches for analysis of individual-level data have moved from the 

single-trait-single-marker paradigm (e.g., Kang et al., 2010) to multiple markers (e.g., Wu et 

al., 2011; Ray et al., 2015), multiple traits (e.g., Ferreira and Purcell, 2009; Ray et al., 2016), 

and multiple markers and traits (e.g., Basu et al., 2013; Wu and Pankow, 2016), standard 

approaches for meta-analysis have focused on the analysis of a single trait and a single 

marker. Many complex-disease-related traits are correlated. Joint analysis of traits borrows 

information across all traits and may increase power to detect genetic associations by 

increasing effective sample size (Diggle et al., 2002). For individual-level data, many articles 

have developed and advocated statistical methods for jointly analyzing correlated traits (see 

Zhou and Stephens, 2014; Majumdar et al., 2015; Ray and Basu, 2017). Porter and O’Reilly 

(2017) performed a comprehensive comparison of some of these multi-trait methods.

It is only recently that joint meta-analysis of multiple traits using summary statistics has 

received attention. Stephens (2013) proposed a unified framework for multiple-traits-single-

marker analysis using Bayesian model comparison and model averaging for multivariate 

regression. This framework allows for approximate testing and explaining genetic 

associations by using summary statistics. Zhu et al. (2015) proposed a general framework 

for integrating association evidence using GWAS summary statistics. Their framework can 

accommodate statistics of multiple continuous or categorical traits, correlated or 

independent, from a single study or multiple studies. Zhu et al. proposed two tests: SHom 

(which assumes equal genetic effect across all traits and studies) and SHet (which allows for 

trait heterogeneity). Kim et al. (2015) proposed an adaptive sum of powered score (aSPU) 

test, which lacks a closed form null distribution and depends on Monte Carlo simulations to 

evaluate p-values. Cichonska et al. (2016) proposed metaCCA that tests association of 

multiple traits with multiple markers using canonical correlation analysis (CCA) (Ferreira 

and Purcell, 2009) framework.

Here, we propose the novel multivariate meta-analysis approach metaUSAT, a unified score 

based association test for the meta-analysis of multiple traits with a single marker using 
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GWAS summary statistics. Current multivariate meta-analysis methods are powerful under 

certain association patterns (such as sparsity of signals, or homogeneity of signals), and 

there is a need for a robust association test. metaUSAT is based on the theoretical and 

empirical findings of Ray et al. (2016) regarding complimentary power performances of 

CCA/MANOVA (multivariate analysis of variance) and sum of squared score (SSU) tests 

(Pan, 2009) for individual-level data. Ray et al. (2016) demonstrated that MANOVA may 

lose significant power when the genetic marker is associated with all the traits, and any test 

statistic, such as SSU, that does not include the trait correlation structure can be more 

powerful in such a situation. On the other hand, MANOVA is usually more powerful than 

other tests when a subset of the correlated traits is associated. The true underlying 

association scenario (which varies from one genetic marker to another) is not known, and a 

fixed choice of association test may not be powerful enough. metaUSAT seeks to maximize 

power by adaptively combining the MANOVA and the SSU tests based solely on the 

univariate summary statistics. Although both metaMANOVA (the MANOVA test based on 

summary statistics) and the SSU tests are chi-squared distributed, metaUSAT does not have 

a closed form null distribution. However, it does not require compute intensive permutations 

to evaluate p-values; instead, we calculate an approximate p-value using a fast one-

dimensional numerical integral. metaUSAT retains the flavor of Zhu et al.’s statistics by 

accommodating summary statistics for continuous and/or binary traits, correlated and/or 

independent, from one or more studies, which may include overlapping samples. Using 

metaUSAT, one may perform meta-analysis of a single trait over multiple studies, or 

multiple traits over one or more studies.

Material & Methods

Model and Notation

Consider a single GWAS with data on n individuals, genotyped on p genetic variants, and 

measured for K traits. Let Yk be the n × 1 vector of values for the k-th trait and Y be the n × 

K matrix of all traits for all individuals. For a given SNP, let Xi = 0,1 or 2 be the number of 

copies of minor alleles for individual i andX be the n×1 vector of genotypes for all 

individuals. For simplicity, we assume there is no other covariate (note that this assumption 

can be relaxed easily). For the time being, we are interested in testing association between 

the SNP and the K correlated traits from a single study.

The usual approach is to test for association of each trait separately and report the summary 

statistics and the p-values for each trait based on the marginal/univariate model

(Equation 1)

for continuous traits, or marginal model

(Equation 2)
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for binary traits. For the k-th trait, βk is the genetic effect and our null hypothesis is H0,k : βk 

= 0. The Wald test statistic for H0,k is Zk = β̂k/ se( β̂k), where βk̂ is the maximum likelihood 

estimate (MLE) of βk and se( βk̂) is its standard error. Under H0,k, Zk has an asymptotic N(0, 

1) distribution. However, for k-th and l-th traits, Zk and Zl are not independently distributed 

if the trait correlation is non-zero. In fact, one can show that corr(Zk, Zl) ≈ corr(Yk, Yl) 

when the variability in the estimators of βk and βl are ignored (Zhu et al., 2015; Kim et al., 

2015).

To test the global null hypothesis of no association with any trait H0 : β1 = ... = βK = 0, one 

can use the summary statistics Z = (Z1, ...,ZK)′. Under H0, Z has an asymptotic multivariate 

normal distribution with mean 0 and covariance matrix R, where R is the K × K correlation 

matrix of the original traits. Details on estimating R are provided in a later subsection.

Existing Methods

Here we describe how summary statistics of the K traits for a given SNP can be used to test 

H0. Later, we describe how these methods can be used to conduct meta-analysis using 

summary statistics from multiple GWAS.

minP—The minimum p-value (minP) approach selects the most significant result among 

the K single trait association tests using the test statistic

(Equation 3)

Its asymptotic p-value accounting for correlated Z statistics (Conneely and Boehnke, 2007) 

is given by

where fZ(.) is the multivariate NK(0, R̂) density of Z, R̂ is the estimate of R and tminP is the 

observed minP statistic. Computation of pminP requires numerical integration, which can be 

implemented in R using pmvnorm() in the mvtnorm package (Genz et al., 2016).

metaMANOVA—An alternative is to carry out a joint analysis of all the Z statistics using a 

test similar to the multivariate score:

(Equation 4)

We will call this test metaMANOVA because of its similarity to MANOVA statistic in the 

context of testing multiple trait association with a SNP using individual-level data (Ray et 

al., 2016). Although multiple authors (Bolormaa et al., 2014; Pausch et al., 2016; He et al., 
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2016) employed this approach, metaMANOVA’s type I error and power have not been 

explored previously for stringent significance levels.

SHom and SHet—Zhu et al. (2015) proposed a meta-analysis test SHom (similar to O’Brien 

(1984)’s test for individual-level data):

(Equation 5)

where W is a diagonal matrix of weights for the Z-statistics. Zhu et al. (2015) took sample 

sizes for the weights. SHom achieves maximum power when the genetic effects for all traits 

are equal and in the same direction. Zhu et al. proposed a second statistic Sτ, which seeks to 

include only Z statistics corresponding to traits with non-zero genetic effects: 

, where, for a given τ 
> 0, Zτ is the sub-vector of Z satisfying |Zk| > τ and the sub-matrices Wτ, R̂τ, 1τ are defined 

similarly. For large enough τ, it is possible to have all |Zk| < τ. In this scenario, set Sτ = 0. 

Zhu et al. define the test statistic

(Equation 6)

The null distribution for SHet can be approximated by a gamma distribution and p-value 

estimated using simulations in Zhu et al.’s R program CPASSOC.

aSPU and SSU—Kim et al. (2015) defined the Sum of Powered Score (SPU) test as 

, where γ is a positive integer. They constructed multiple SPU(γ) tests, 

with γ values 1, 2, ...,8 or ∞, that put more weight on traits with larger Z statistics as γ 
increases. Kim et al. showed that SPU(1) = SHom. SPU(2), also known as the Sum of 

Squared Score (SSU) statistic, is approximately distributed as  under H0, where a, b, d 
can be estimated from R̂ (Pan, 2009). The aSPU test adaptively selects the SPU test with 

minimum p-value. The SPU(γ) statistics for γ > 2, and hence the aSPU statistic, do not have 

closed form null distributions and require Monte Carlo simulations to estimate p-values.

Proposed Method: metaUSAT

In the presence of individual-level data, Ray et al. (2016) proposed a unified score-based 

association test (USAT) to analyze association of multiple traits with a single SNP. USAT 

seeks to maximize power by adaptively combining SSU (well suited to scenarios when most 

or all traits have non-zero genetic affects) and MANOVA (well-suited to most scenarios 

unless most or all traits are associated). Here, we propose metaUSAT, a meta-analysis 

version of USAT, that can be calculated using univariate summary statistics. We consider the 

weighted statistic Tω = ωTmetaMANOVA + (1 − ω)TSSU, ω ∈ [0, 1], where TSSU = Z′Z is the 

SSU test statistic. Since TmetaMANOVA and TSSU have asymptotic chi-square distributions 
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under H0, for a given weight ω, Tω is approximately distributed as a linear combination of 

(potentially dependent) chi-squared variables. The p-value pω of Tω can be calculated using 

many algorithms (e.g., Davies, 1980; Liu et al., 2009). We define metaUSAT as the weighted 

combination with the most significant p-value:

(Equation 7)

We consider a grid of 11 equi-spaced values of ω from 0 to 1, and approximate the 

corresponding p-value using a fast one-dimensional numerical integral (see Supplementary 

S1).

Estimation of R and its Effect on metaUSAT

To estimate the trait correlation matrix R, we use the Z-statistics of the SNPs which are not 

associated with any of the K traits (i.e., SNPs with p-values greater than a pre-defined 

significance threshold, say 10−5, for any trait). Zhu et al. (2015) showed that under the null 

hypothesis of no association, the correlation matrix of the univariate summary statistics 

(obtained by calculating the sample correlation matrix R̂ of the Z’s over a large number of 

null SNPs) is the same as the trait correlation matrix. This result holds even in the presence 

of covariates in Equation 1 or Equation 2 (Liu and Lin, 2017).

It is noteworthy that the performance of metaUSAT and the other afore-mentioned summary 

statistic based tests depends on the estimation of R. In a GWAS, we expect most SNPs to be 

not associated with any trait, and these null SNPs can be conveniently used to estimate R. 

However, as pointed out by one reviewer, recent evidence from heavily studied complex 

traits such as height and schizophrenia seems to suggest that these traits are highly 

polygenic. Consequently, a large portion of the genome in linkage disequilibrium (LD) with 

the causal variants is also associated with the traits. For the joint analysis of such highly 

polygenic complex traits using summary statistics, the relation corr(Zk, Zl) ≈ corr(Yk, Yl) 

may not be valid and the estimate of R will be affected. The extent to which this 

misspecified R affects the validity of the tests depends on the strength of association (of the 

non-null SNPs used to estimate R) as well as on the structure of the test statistic. Our 

simulation experiments (see Supplementary S4) show that if non-null SNPs with low to 

moderate strengths of association are used to estimate R, the type I error estimates for 

metaUSAT and minP are largely unaffected while SHom, SHet and metaMANOVA may be 

heavily affected. It seems to us that test statistics that directly incorporate R (e.g., 

metaMANOVA) are heavily affected by its misspecification while test statistics 

incorporating R indirectly only through its null distribution (e.g., minP) are mostly 

unaffected. The validity of metaUSAT (a data-adaptive minimum p-value approach) is 

largely unaffected by misspecified estimate of R arising due to polygenicity of traits. It is 

important to mention that our conclusion is based on a limited simulation experiment. It is 

beyond the scope of this paper to explore this aspect in more detail.
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Extension to Meta-analysis of Multiple GWAS

Consider summary statistics Zjk for association with a given SNP for trait k (k = 1, 2, ...,K) 

from study j (j = 1, 2, ..., J). Some or all J studies may or may not have overlapping samples. 

Let Zj be the vector of K summary statistics for study j, Z be the JK×1 vector of summary 

statistics from all traits across all studies, and β be the corresponding JK×1 vector of effect 

sizes. We wish to test H0 : β = 0 against the two-sided alternative that at least one of the 

traits has non-zero genetic effect in at least one of the studies.

For k-th and l-th traits from two studies j and j′, Lin and Sullivan (2009) showed that 

, where njj′,kl is the number of overlapping 

samples, and njk & nj′l are the sample sizes in the two studies. When the studies are 

independent (njj′,kl = 0), summary statistics from the two studies are uncorrelated.

For the perfect overlap scenario (njj′,kl = njk = nj′l), the correlation of summary statistics is 

approximately same as the correlation of the traits (same as that of a single study with 

multiple traits). We estimate the JK × JK correlation matrix R from the JK Z-statistics for 

the SNPs that do not exceed a pre-defined significance threshold (say, p-value = 10−5) for 

any trait. The formulation of the Z statistic and the estimation of its correlation in this 

fashion addresses cryptic relatedness arising from overlapping samples in the studies (Zhu et 

al., 2015; Kim et al., 2015). Once Z and R are defined, we can use any of the existing 

methods and metaUSAT.

When meta-analyzing across studies, different studies may have varying sample sizes. Since 

sample sizes may vary widely across traits and/or studies, we suggest weighting the 

univariate summary statistics by the corresponding sample sizes. If njk is the sample size for 

trait k in study j, we use weighted statistics  to put more weights on statistics 

coming from larger studies. Note that this weighting scheme is incorporated in SHom 

(Equation 5) and SHet (Equation 6) statistics.

Simulation Experiments

We conduct simulation experiments to assess type I error and compare power of metaUSAT 

and the existing methods. For type I error simulations, we consider significance levels α = 

10−2, 10−3, . . . , 10−6, 5 × 10−7. For power simulations, we report empirical powers, based 

on corrected critical values, at level α = 10−4. All analyses used the estimated R based on 

summary statistics across null replicates.

Simulation 1: A single study—We generated single study of n = 1, 000 unrelated 

individuals, each measured for K = 5 or 10 traits and a bi-allelic SNP X with MAF 0.1 at 

Hardy-Weinberg equilibrium. For each individual, we simulate K phenotypes using a 

multivariate normal linear model: Y K×1 = β01K×1+XβK×1+εK×1 where β0 = 1 and the error 

ε is simulated from NK(0, σ2R(ρ)). We took R(ρ) as an exchangeable correlation matrix with 

pair-wise correlation ρ ∈ {0.2, 0.4, 0.6}. For type I error simulations, the genetic effects β 
are 0 for all K traits. For power simulations, we choose the genetic effect βk for an 

associated trait so that the SNP explains 0.5% of the trait variance (k = 1, 2, ...,K). This, 

alongwith the MAF of the SNP, determines the genetic effect sizes (see Basu et al., 2013, 
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‘Simulations’). We took positive direction of the effect size for all associated traits. The total 

variance of an associated trait is fixed at 10, which ensures that the variance due to SNP is 

0.05 while the residual variance is σ2 = 9.95. We wish to test H0 : β = 0.

Based on 108 null datasets, we estimate type I error of SHom, SHet, minP, metaMANOVA 

and metaUSAT as the proportion of null datasets that give p-value ≤α. Our literature search 

did not yield any article where type I errors of all these summary-statistic-based multivariate 

methods are studied at a level as low as 5×10−7. We do not consider aSPU for type I error 

analysis because it requires Monte Carlo simulations, making calculations for 108 datasets 

computationally undesirable. For comparing statistical powers of all methods (including 

aSPU), we simulate 104 non-null datasets assuming 20% to 100% of the traits are positively 

associated with the SNP. To avoid clutter, we are not including SSU (a special case of aSPU) 

in any of these comparisons.

Simulation 2: Two independent studies—We consider two independent studies of 1, 

000 independent individuals, each with measurements on a single SNP with MAF 0.1 and 4 

traits inspired by the METSIM lipids data on total cholesterol (TC), high-density lipoprotein 

(HDL), low-density lipoprotein (LDL) and triglycerides (TG). We use the trait correlation 

matrix Rmetsim (Figure S1(a)) to simulate the 4 traits using the model described in 

Simulation 1. We consider 5 association scenarios: (i) only TC is associated, (ii) TC and 

LDL are associated, (iii) TC, LDL and TG are associated, (iv) all 4 traits are associated, and 

(v) none of the traits is associated. As before, the SNP explains 0.5% of the trait variance 

when associated. We assume TC, LDL and TG have negative genetic effects while HDL has 

positive effect when associated. We simulate two study types: “homogeneous” and 

“heterogeneous”. For “homogeneous” studies, the association pattern of the traits is same 

across both studies. For “heterogeneous” studies, we assume association scenarios (i)-(iv) in 

the first study while the traits are not associated (scenario (v)) in the second study. Figure 

S1(c) shows the estimated correlation matrix. For type I error analysis, we assume scenario 

(v) for both studies and simulate 107 null datasets.

Simulation 3: Two studies with overlapping samples—We keep everything the 

same as in Simulation 2 except that the two studies now have 200 overlapping individuals. 

For “homogeneous” studies, we assume the association pattern is same across the two 

studies. For “heterogeneous” studies, excluding the overlap, we assume the association 

scenarios (i)-(iv) in one study while the traits are not associated (scenario (v)) in the other 

study. For individuals common to both studies, we assume scenario (v). Figure S1(d) shows 

the estimated correlation matrix, which is similar to the correlation structure of lipid traits 

from the METSIM and T2D-GENES studies (Figure S1(b)).

Application to Lipids Data

METSIM Study—The METSIM Study is a single-site, longitudinal study of 10, 197 men 

(aged 45 − 73 years) randomly selected from the population of Kuopio, Finland (Stančáková 

et al., 2009). Participants were genotyped with the Illumina OmniExpress GWAS chip and 

the Illumina exome chip. Here we focus on the association statistics of four lipid traits from 

the first visit: TC, HDL, LDL, TG. Before obtaining the summary statistics, individuals on 
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lipid-lowering medication are removed and TG is log-transformed. The traits are, then, 

regressed on age and age2, and residuals are inverse-normalized. We focus on 622, 950 

autosomal SNPs with MAF ≥ 1%. We used kinship matrix in the mixed model framework of 

EMMAX (Kang et al., 2010) to account for within-ancestry population structure and 

relatedness.

T2D-GENES Study—The T2D-GENES consortium carried out exome sequencing on 6, 

504 T2D cases and 6, 436 controls from five ancestry groups (Fuchsberger et al., 2016). 

Here, we consider the 4, 541 individuals of European origin, 983 of which are part of the 

METSIM study sample. As before, we focus on the four lipid traits. Exclusions, 

transformations and analysis parallel those for the METSIM lipid traits. Here, we also 

adjusted sex as a covariate.

Results

Simulation 1: A single study

The type I error estimates of metaUSAT and other methods are presented in Table 1. 

Regardless of the number of traits and the strength of trait correlations, all methods control 

type I error for moderate levels (α ≥ 10−4). For more stringent levels, we observe slightly 

inflated type I errors for all methods except SHom. The inflation seems to increase with 

increase in number of traits. We note that type I error of metaUSAT is worst at α = 5×10−7; 

in what follows we correct for this by computing power using empirical threshold. The 

empirical threshold is based on 105 null replicates.

Figure 1 summarizes the empirical powers (based on corrected critical values) of all 

methods. We observe that as correlation becomes stronger and the number of associated 

traits increase, SHom, minP and aSPU lose power in most association scenarios. SHet is 

dominated by metaMANOVA, which is usually most powerful. However, metaMANOVA 

loses power considerably as the proportion of associated traits increases. This phenomenon 

of metaMANOVA’s power loss is the same as what Ray et al. (2016) observed for 

MANOVA (for analyzing individual-level data) and provided an explanation for. When most 

or all of the traits are associated, aSPU and SHom are quite powerful. Irrespective of the 

number of associated traits and the strength of correlation, metaUSAT, being data-adaptive, 

has near optimal power to detect association at all scenarios. Results for marker with MAF 

0.5 (not shown) are qualitatively similar. Apart from exchangeable correlation, we also 

consider an AR1(ρ) correlation structure (auto-regressive correlation matrix of order 1 with 

parameter ρ) and, as before, we find metaUSAT’s power to be robust across association 

scenarios (Figure S2).

Simulation 2: Two independent studies

The estimated correlation matrix, based on 5, 000 null summary statistics, is given in Figure 

S1(c). Figures S1(a) and S1(c) show that trait correlations can be approximated by the 

correlations of summary statistics. Type I error estimates (Table S1) indicate all methods 

control type I error for low error levels. Table 2 suggests SHet, metaMANOVA, and 

metaUSAT are usually most powerful. metaMANOVA and metaUSAT have similar powers. 
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SHom and minP are least powerful in most cases. aSPU is least powerful when a small 

proportion of traits is associated. Results for MAF 0.5 (not shown) are qualitatively similar. 

We also conducted this power comparison for binary traits and found metaUSAT to be 

robust across association scenarios (Table S4).

Simulation 3: Two studies with overlapping samples

Type I error estimates (Table S2) are as expected from the earlier type I error analyses. 

Empirical powers (Table 3) of the methods in the presence of overlapping samples are 

similar to the simulation without shared individuals (Table 2). We observed similar 

conclusions when this power comparison is conducted for binary traits (Table S5).

METSIM Study: Joint analysis of lipid traits

Single-trait analysis identified 118 associated variants at the 4-trait Bonferroni corrected 

threshold of 1.25×10−8 (Figure 2(a)). metaMANOVA and metaUSAT respectively identified 

159 and 158 associated variants at threshold 5 × 10−8. To identify independent association 

signals, we grouped significant variants (with pairwise distance < 500 kb) into loci using LD 

r2 > 0.1. Both metaMANOVA and metaUSAT identified 28 such independent loci, 27 of 

which (except rs3093032, a 3′-UTR variant in ICAM1 gene) are known to be associated 

with lipids from published literature (Table S6). Additionally, we jointly analyzed 

individual-level data on these lipid traits using USAT. Figure 2(b) shows concordance of p-

values based on individual-level data and p-values based on summary statistics.

METSIM + T2D-GENES Studies: Meta-analysis of a single trait from studies with 
overlapping samples

We tested genetic associations of TC with 31, 897 variants (MAF ≥ 1%) using summary 

statistics from METSIM and T2D-GENES studies. metaUSAT, metaMANOVA and single-

trait analyses respectively found 12, 12 and 9 SNPs as significant (Figure 3(a)). Published 

literature indicate that signals identified by metaUSAT (or metaMANOVA) are known to be 

associated with cholesterol levels (Table S7). Figure 4(a) plots the metaUSAT p-values when 

overlap is present against metaUSAT p-values when the overlapping individuals are 

excluded from the METSIM sample. Concordance of the p-values suggest metaUSAT 

appropriately accounted for overlapping samples.

METSIM + T2D-GENES Studies: Joint meta-analysis of lipid traits from studies with 
overlapping samples

metaUSAT, metaMANOVA and single-trait analysis respectively found 26, 22 and 19 SNPs 

as significant (Figure 3(b)). metaMANOVA and metaUSAT detected more signals by 

borrowing information from correlated traits across studies. All of the signals found by both 

metaMANOVA and metaUSAT are known to be associated with lipid levels in humans from 

previous studies (Table S8). All the SNPs detected by metaMANOVA and by independent 

analysis of each trait were identified by metaUSAT. Further, metaUSAT exclusively reports 

4 significant SNPs (of which 3 are independent) that metaMANOVA fails to find (Table 4). 

For these SNPs, we also report the empirical p-values (calculated using 8.5 × 109 Monte 

Carlo simulations) to ensure these are not false associations detected as a result of slightly 
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inflated type I error of metaUSAT at stringent error levels. Details of this empirical p-value 

calculation of metaUSAT are provided in Supplementary S2. Finally, in Figure 4(b), we 

again observe concordance of metaUSAT p-values with and without shared individuals.

Discussion

MostGWAS have focused on testing genetic association to single traits. Several recent 

articles have advocated the joint analysis of multiple traits for improving statistical power to 

detect associated genetic variants. In this article, we propose a new method for multivariate 

meta-analysis, metaUSAT, an extension of our multivariate association test USAT (Ray et 

al., 2016). For a given genetic variant, metaUSAT tests the association of multiple traits from 

a single/multiple studies using univariate summary statistics. Importantly, it bypasses the 

need for individual-level data, which is often unavailable or difficult to obtain.

Our simulation experiments and real data analyses establish that metaUSAT is often more 

powerful than any of the existing tests for multivariate meta-analysis. It can be especially 

advantageous in detecting highly pleiotropic variants that simultaneously influence multiple 

traits. Apart from proposing new method metaUSAT, we also study power and type I error 

performances of metaMANOVA and other summary-statistic-based multi-trait methods at 

stringent error levels. metaUSAT and metaMANOVA can accurately control type I error for 

moderate α levels, but produce slightly inflated type I error rates at very small α levels (like 

the other methods). We found that metaMANOVA has a serious drawback: it may fail to 

detect association when most or all traits are associated (this behavior explored by Ray et al. 

(2016) in detail). The joint analysis of all lipid traits using METSIM and T2D-GENES 

studies further confirmed this. The power of metaMANOVA (and other multivariate tests) 

depends on a complex interplay of the number of truly associated traits, their correlation 

structure and the directions of the signals. The underlying association scenario changes from 

one variant to another, and is not known a priori for any real dataset. There is no uniformly 

most powerful multivariate test, and a particular choice of association test may not be 

powerful enough to detect true signals. metaUSAT, being data-adaptive in nature, is less 

affected by the true (unknown) association scenario, and proves to be a robust yet 

computationally efficient choice for investigators.

The assumption of equal genetic effects across traits and across studies is hardly tenable, 

making SHom unlikely to be powerful, especially when there is a moderate to large number 

of traits. aSPU relies on compute intensive p-value calculation approach, which is not 

feasible when analyzing large GWAS data. SHet is usually dominated by metaMANOVA. On 

the other hand, metaUSAT is at least as powerful as metaMANOVA and a fast p-value 

calculation approach makes it suitable for testing genetic associations across multiple traits 

from multiple large-scale genome wide studies. Power of metaUSAT is robust to the 

proportion of associated traits. To alleviate any concern of inflated association signals of 

metaUSAT at stringent levels, we can calculate empirical metaUSAT p-values (as described 

in Supplementary S2). This need not be done for all variants; instead we can focus only on 

the handful of variants that have metaUSAT p-values just crossing the chosen threshold.
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metaUSAT can be used in a few different ways. We can test association of one or more traits 

from a single or multiple studies, which may or may not be independent. metaUSAT does 

not assume homogeneity of trait effects across studies. If the studies are nearly independent 

and the trait effects are believed to be homogeneous across studies, we can use meta-

analyzed summary statistics for each trait (e.g., Z-statistic output from METAL (Willer et 

al., 2010)) to perform joint meta-analysis of multiple traits. metaUSAT, also, does not 

require the independence of samples. When samples are related (e.g., in family-based 

GWAS), metaUSAT can use summary statistics from EMMAX (or other univariate mixed 

model framework) to appropriately test for genetic associations.

A potentially important contribution of metaUSAT can be in the emerging field of phenome 

wide association studies (PheWAS) based on epidemiological cohorts. PheWAS 

systematically analyzes the impact of a genetic variant on a wide variety of human traits. 

Restrictions on data sharing necessitate use of meta-analysis for PheWAS (Bush et al., 

2016). In this age of using publicly available data for increasing power and decreasing 

sequencing costs, overlapping samples may be a concern when it comes to meta-analysis. 

Furthermore, current single-trait meta-analysis approach for PheWAS is burdened by 

multiple comparison testing both at the variant level and at the trait level (Hebbring, 2014). 

We recommend using metaUSAT to overcome these challenges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation 1: Empirical power curves (based on corrected critical values) of SHom, SHet, 

metaMANOVA, metaUSAT, minP and aSPU at significance level α = 10−4. Power estimates 

are based on 104 datasets with 1, 000 unrelated samples. Each sample has K = 5 or 10 traits 

with pairwise trait correlations ρ = 0.2, 0.4 or 0.6.
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Figure 2. 
METSIM Study: (a) Venn Diagram of the number of SNPs (and not independent loci) found 

significant by each of metaUSAT, metaMANOVA and single-trait analyses. A total of 622, 

950 SNPs (MAF ≥ 1%) are tested. For the single-trait analysis, a variant is declared as 

significant if its p-value for at least one trait is < 1.25×10−8 (4-trait Bonferroni corrected 

GWAS threshold). It should be noted that most of these significant SNPs are in LD. (b) 

metaUSAT p-values (joint analysis based on summary data) plotted against USAT p-values 

(joint analysis based on individual-level data).
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Figure 3. 
METSIM+T2D-GENES Studies: Venn Diagram of the number of SNPs (and not 

independent loci) found significant by each of metaUSAT, metaMANOVA and single-trait 

analyses. A total of 31, 897 SNPs (MAF ≥ 1%) are tested. For the single-trait analysis, a 

variant is declared as significant if its p-value for at least one trait is < 1.25×10−8 (4-trait 

Bonferroni corrected GWAS threshold). It should be noted that most of these significant 

SNPs are in LD.
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Figure 4. 
METSIM+T2D-GENES Studies: metaUSAT p-values, with the overlapping individuals in 

the two studies, are plotted on the x-axis, while metaUSAT p-values after removing the 

overlap from METSIM are plotted on the y-axis.
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