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Abstract

Population substructure can lead to confounding in tests for genetic association, and failure to 

adjust properly can result in spurious findings. Here we address this issue of confounding by 

considering the impact of global ancestry (average ancestry across the genome) and local ancestry 

(ancestry at a specific chromosomal location) on regression parameters and relative power in 

ancestry adjusted and unadjusted models. We examine theoretical expectations under different 

scenarios for population substructure; applying different regression models, verifying and 

generalizing using simulations, and exploring the findings in real-world admixed populations. We 

show that admixture does not lead to confounding when the trait locus is tested directly in a single 

admixed population. However, if there is more complex population structure or a marker locus in 

linkage disequilibrium (LD) with the trait locus is tested, both global and local ancestry can be 

confounders. Additionally, we show the genotype parameters of adjusted and unadjusted models 

all provide tests for LD between the marker and trait locus, but in different contexts. The local-

ancestry adjusted model tests for LD in the ancestral populations; while tests using the unadjusted 

and the global-ancestry adjusted models depend on LD in the admixed population(s), which may 

be enriched due to different ancestral allele frequencies. Practically, this implies that global-

ancestry adjustment should be used for screening, but local-ancestry adjustment may better inform 

fine-mapping and provide better effect estimates at trait loci.
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1. INTRODUCTION

It is well known that ancestry differences among individuals can lead to confounding in tests 

of association between genes and a phenotype (Chakraborty & Weiss, 1988). Allele 

frequencies may differ depending on ancestry, as may trait values or disease prevalence, and 

this can lead to spurious associations if not properly accounted for in analyses. For this 

reason, it has become standard practice for genetic association tests to adjust for covariates 

that capture the background ancestry of study subjects. Prior to the genome-wide association 

study (GWAS) era, studies often relied on self-reported race and ethnicity. With the 

availability of dense, genome-wide genotyping, it became feasible to estimate ancestry from 

genetic markers, giving an assessment of ancestry that reflects the true genetic ancestry of 

the individual, rather than assessment that reflects cultural or societal perceptions (Burnett et 

al., 2006; Pasaniuc et al., 2011; Rosenberg, Li, Ward, & Pritchard, 2003). Often GWAS use 

principal component analysis to model ancestry differences among study participants (Price 

et al., 2006), though other methods are available (Alexander, Novembre, & Lange, 2009; 

Alexander & Lange, 2011; Cox & Cox, 2001; Falush, Stephens, & Pritchard, 2003; Hubisz, 

Falush, Stephens, & Pritchard, 2009; Pritchard, Stephens, & Donnelly, 2000; Tang, Peng, 

Wang, & Risch, 2005). Under many scenarios, the top principal components (PCs) from 

genome-wide array data are highly correlated with underlying ancestry. Thus, such PCs 

provide surrogate measures of “global” ancestry—that is, a picture of an individual’s 

average ancestral origin across the genome—and can be used as covariates in regression 

models for association analysis (Adeyemo et al., 2015; Armstrong et al., 2014; Beecham et 

al., 2014; Cruchaga et al., 2013; Melton et al., 2013; Naj et al., 2011; Nalls et al., 2014). 

However, global ancestry is not always representative of ancestry at individual genomic loci. 

The genome of admixed individuals is composed of stretches of DNA from different 

ancestral origins that are not always consistent with the global measure. This “local” 

ancestry can be estimated using a variety of statistical methods (Baran et al., 2012; Maples, 

Gravel, Kenny, & Bustamante, 2013) and offers a more fine-scale measure of genetic 

ancestry. However, outside of admixture mapping, few GWAS have used local ancestry in 

their association analyses (Baran et al., 2012; Pino-Yanes et al., 2015).

Recently some studies have begun to examine the properties of models adjusted for local 

ancestry and compare the behavior of hypothesis tests (e.g., power and Type I error) using 

local- and global-ancestry adjusted models. Liu et al (Liu, Lewinger, Gilliland, Gauderman, 

& Conti, 2013) argued that global-ancestry adjustment is sufficient to control Type I error, 

but local-ancestry adjustment can improve power when the LD in the ancestral populations 

and the correlation between genotype and ancestry in the admixed population are in the 

opposite direction. Zhang and Stram (2014) showed that adjusting for global ancestry is 

largely sufficient to control Type I error in their simulated model, but found that adjusting 

for local ancestry generally leads to lower power compared to adjusting for global ancestry, 

particularly for markers with large ancestral allele frequency differences. Wang et al (2011) 

pointed out that adjustment for global ancestry may not be sufficient to control Type I error 

when forces such as selection may be acting to create a local-ancestry effect near the test 

locus.
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Here we seek to expand on these studies and develop a comprehensive picture of the impact 

of global- and local-ancestry adjustment in regression analysis for genetic studies in 

admixed populations. This includes a taking a formal look at statistical confounding, the 

forms of regression parameters under different adjustments, and approximations for relative 

power. Formulating these properties in terms of genetic parameters (e.g., allele frequencies, 

coefficients of linkage disequilibrium (LD), admixture proportions) under specific models of 

population structure allows us both to address questions of when and how to adjust for 

ancestry and to better interpret hypothesis tests and regression parameter estimates. 

Throughout, we consider both a single admixed population and a stratified admixed 

population (composed of two non-intermating admixed subpopulations), under a quantitative 

genetic model. We use simulations to validate our theoretical results and illustrate findings 

with numerical examples. Finally, because we find that LD in the ancestral populations and 

admixed populations are key parameters driving differences in regression models, we use 

genome-wide single-nucleotide polymorphism (SNP) data generated in samples from the 

Genomic Origins and Admixture in Latinos (GOAL) study and other public data to examine 

LD in admixed and non-admixed samples; thereby placing our findings in the context of 

contemporary admixed populations.

2. METHODS

2.1 Confounding in linear regression models

The definition of a confounding variable is one that is related to both the outcome 

(dependent variable) and the predictor (independent variable). Consider the adjusted linear 

model:

(1)

where Y is the outcome variable (a continuous quantitative variable), X1 is the predictor 

variable being tested and X2 is a potential confounder for which we are adjusting. Formally, 

X2 is a confounder if and only if both of the following conditions hold:

i.

ii.

(2)

where  is the squared correlation coefficient between X1 and X2, and 

 is the partial squared correlation coefficient of Y and X2 with X1 

fixed (Robinson & Jewell, 1991). This means that X2 is a confounder if it is correlated with 

both the predictor (X1) and with the outcome Y after removing the effect of the predictor. 

Note that condition (ii) is not the same as saying that X2 and Y are correlated. They may in 
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fact be correlated, but if that correlation is explained solely by the relationship between X1 

and X2 and the effect of X1 on Y, then X2 is not a true confounder.

If the conditions in (2) both hold, so that X2 is a confounder, then we must include X2 in the 

model to ensure valid inference about the effect of X1 on Y; otherwise, adjustment for X2 is 

not necessary to obtain valid inference about the effect of X1 on Y. There are cases, however 

in which it may still be desirable with respect to power to adjust for a non-confounding 

variable (Robinson & Jewell, 1991). Specifically, suppose we consider testing the null 

hypothesis β1 = 0. If condition (ii) holds but (i) does not, then adjusting for X2 will increase 

power relative to power in the unadjusted model. If condition (i) holds but (ii) does not, then 

the adjusting for X2 will decrease power relative to the unadjusted model. If neither 

condition holds, then the powers of the adjusted and unadjusted models are largely 

equivalent. This leads to the general conclusion for linear regression that adjusting for a 

covariate that is correlated with outcome (after removing the effect of variable of interest) is 

desirable with respect to power. However, there is no benefit to adjusting for a variable that 

is not correlated with outcome; and furthermore, such adjustment is undesirable when the 

covariate is also correlated with the predictor of interest.

2.2 Regression parameters

In the multiple regression equation shown above (1), the unstandardized regression 

coefficient β1 takes the following form:

(3)

where VY and V1 are the variances of Y and X1 respectively, and the other terms are 

correlation coefficients. If X2 is not a confounder (i.e., either condition i or ii of (2) fail), 

then the regression coefficient is equivalent to the coefficient from the univariate model with 

X1 alone:

(4)

where CY1 is the covariance between Y and X1. However, if X2 is a confounder, the 

equivalence no longer holds. Thus, adjusting by a confounding variable changes the 

interpretation of β1 in the adjusted model compared to the coefficient in the unadjusted 

model. Understanding how the form of the regression coefficient being tested changes in 

terms of population genetic parameters, in unadjusted models or with covariate adjustment 

in the presence of confounding, is key to interpreting hypothesis tests. Failure to include 

confounding variables in the model can lead to what is known as specification bias, when 

parameters do not correctly model the desired effect because their relationship is confounded 

by an important omitted variable.
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2.3 Asymptotic relative precision (ARP) and power

To compare the performance of estimators from adjusted and unadjusted regression models, 

we examined the asymptotic relative precision (ARP) of the models. This is the ratio of the 

variance of the estimate of the regression parameter (βÛN) in an unadjusted model 

containing only X1 to the variance of the parameter estimate β̂1 in the adjusted model (1):

(5)

When ARP(β1̂, β̂UN) > 1, the adjusted model leads to greater precision (smaller variance for 

beta estimate); when ARP(β̂1, β̂UN) < 1, the unadjusted model leads to greater precision. 

Precision is a measure of variance of the beta estimator. When the expected values of the 

beta estimators in the adjusted and unadjusted models are the same (which happens when 

there is no confounding), then ARP is related directly to relative power. Specifically in this 

case, ARP is equivalent to Asymptotic Relative Efficiency (ARE), which represents the ratio 

of required sample sizes for the tests to have equivalent power asymptotically (Serfling, 

2009). We note that these statements are about the large-sample (asymptotic) behavior of 

tests, and conclusions may not hold in small samples.

2.4 Population and genetic models

We examined the correlation coefficients (2), regression parameters (3), and ARP (5) in the 

context of two different genetic models of population structure: (1) a single admixed 

population with two source ancestral populations (e.g., African Americans); and (2) a 

stratified admixed population composed of two subpopulations, each of which is itself 

admixed from two source ancestral populations (e.g., Haitians and Dominicans in 

Hispañola). We considered a quantitative trait locus (QTL) and “marker” loci with varying 

levels of LD dependent on recombination and population dynamics. Table I defines the 

notation used in the following sections.

2.4.1 Single admixed population model—For this model, we assume that there is 

initial mixing of two diploid ancestral populations with proportion q of the chromosomes 

originating from ancestral population 1. Following the initial mixing, we assume that there 

has been random mating within the admixed population for some number of generations, but 

for simplicity no additional migration. Suppose that each haplotype of an individual is 

broken into K chromosomes, each with m distinct biallelic loci (total M = mK loci). Here we 

use the term “haplotype” to refer to the entire set of chromosomes inherited from one parent 

(parental gamete). We define the recombination probability between any two loci j and k on 

the same chromosome, rjk, as the chance that there has been some crossover event between 

the two loci since the initial mixing. For any pair of loci on different chromosomes (on the 

same haplotype), ru is the probability that the gamete has recombined (or assorted with a 

non-gametic allele) since the initial admixture. For a single generation, ru is expect to be ½. 

In general, the probabilities rjk and ru are functions of the crossover rate between a pair of 

loci and the number of generations since initial admixture.
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In the admixed population, at each locus, the alleles of the two haplotypes each descend 

from ancestral population 1 or 0. For the hth haplotype at the jth locus, we define

(6)

Initially the Ahj are the same for all j, but recombination begins to break down the 

correlation across the genome. Averaging over the two haplotypes within an individual, A·j = 

(A1j + A2j)/2, gives a measure of local ancestry for the jth locus for the individual. As a 

global measure of ancestry, we use the average of local ancestry measures across all loci 

(and both haplotypes):

(7)

where M is the total number of loci across the genome.

We suppose that there is a biallelic QTL with alleles T1 and T2, where pi =the frequency of 

allele T1 in ancestral population i, for i = 0,1. For the trait model, we assume allele effects at 

the QTL are additive so that the trait has the following conditional distribution:

(8)

We define the genotypic random variable for the QTL:

(9)

We also consider a marker locus with two alleles (L1 and L2), where pLi =the frequency of 

allele L1 in ancestral population i, for i = 0,1, and define the genotypic random variable:

(10)

The LD coefficient between alleles at the QTL (T1) and marker (L1) in ancestral population i 
is defined as follows:
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(11)

where PTLi is the frequency of the haplotype carrying T1 and L1 in ancestral population i. 
The LD in the admixed population depends on the LD in ancestral populations, the mixing 

proportion (q), the ancestral allele frequency differences at the QTL (Δ = p1 − p0) and 

marker (ΔL = pL1 − pL0), and probability that there has been a recombination event between 

QTL and marker (rgl):

(12)

where W = qD1 + (1 − q)D0 is the weighted average of LD coefficients in the ancestral 

populations.

2.4.2 Stratified admixed population model—For this model, we assume a population 

stratified into two admixed subpopulations: subpopulation 0 and 1 (Appendix B.3 extends 

the model to >2 subpopulations). Let Q be the probability that a random individual sampled 

from the whole population is from subpopulation 0. Suppose that for subpopulation s (s = 

0,1), each locus is sampled from one of the two ancestral populations, and let qs be the 

probability a locus is from ancestral population 1. For the QTL, we assume Hardy-Weinberg 

equilibrium (HWE) within each subpopulation, but not necessarily in the overall population 

(e.g., no intermating between subpopulations). Let subpopulation membership for an 

individual be denoted by the random variable,

We let the trait within subpopulation 0 be defined as above in the single admixed population 

(8), but for subpopulation 1, assume the following trait model:

(13)

That is, both subpopulations have the same additive genetic effect (a), but subpopulation 1 

has its mean trait value increased by a constant, c. This model would be reasonable, for 

example, if there was an independent environmental factor that increased the baseline value 

of the trait in subpopulation 1 (or lowered it in population 0) or independent genes that 

increased/decreased the baseline trait value.

Genotypic variables (G and L) for the trait locus and marker loci are defined as above (9 and 

10). For marker loci in the stratified admixed population we must consider LD between 
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marker and trait loci in the ancestral populations, D0 and D1, and LD in the admixed 

subpopulations, s=0 and 1 (similar to equation 12):

where Ws = qsD1 + (1 − qs)D0, the weighted disequilibrium coefficient in subpopulation s. 

The LD coefficient for the stratified population as a whole depends on LD in the ancestral 

populations (W* = QW1 + (1 − Q)W0), the ancestral allele frequency differences (Δ and ΔL), 

and functions of both the mixing parameters and relative size of the subpopulations (ω = 

Qq1(1 − q1) + (1 − Q)q0(1 − q0) and δ = Q(1 − Q)(q1 − q0)2). The LD coefficient in the 

stratified population can be written as follows (see Appendix B.2.1):

(14)

We see that like D*, the coefficient D** also depends on the recombination probability, rgl, 

and decreases with increasing recombination; however, the term δΔΔL represents LD that 

results from the stratification (as a result of non-intermating between subpopulations) and is 

not influenced by recombination within the subpopulations.

2.5 Simulations

We performed simulations to test our theoretical conclusions using simuPOP (Peng & 

Kimmel, 2005), a forward-time population genetics simulation program. Genotype data and 

phenotype data were generated for single admixed and stratified admixed populations; then 

data were analyzed with regression models using different ancestry adjustments. Details of 

simulations are provided in Supplemental Material.

2.6 Analysis of LD in admixed and non-admixed datasets

2.6.1 Datasets—We estimated LD in seven different admixed datasets and three non-

admixed “ancestral” datasets. Each of these would be comparable to our single-admixed 

population model but with three-way admixture rather than the simpler two-way admixture 

considered in our theory. Datasets included primarily family trios and parent-child pairs. The 

admixed datasets include samples from the GOAL study (Moreno-Estrada et al., 2013) 

sampled in South Florida with origins from five Caribbean countries: Colombia (39 

individuals from 18 families), Honduras (24 individuals from 8 families), Cuba (60 

individuals from 20 families), Puerto Rico (48 individuals from 16 families), Dominican 

Republic (27 individuals from 9 families). We also included four datasets from the 1000-

Genomes Project (1000 Genomes Project Consortium et al., 2015): Mexican (MXL 64 

individuals) and African American (ASW 61 individuals) admixed datasets, and two non-

admixed datasets of European (CEU 99 individuals) and West African (YRI 107 individuals) 

individuals. Finally, a third ancestral population was included: 56 Native American samples 

from the Human Genome Diversity Project (includes Colombians, Karitiana, Maya, and 

Pima) (Cann et al., 2002). GWAS array data (1000 Genomes Project Consortium et al., 

2015; Moreno-Estrada et al., 2013) were merged across datasets and 500 SNPs were 

selected on chromosome 20 to provide a range of intermarker distances. To represent 
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unlinked markers, 500 SNPs were also selected on chromosome 21. SNPs were not selected 

on the basis of allele frequency. Genotypes from these SNPs were used for LD calculations.

2.6.2 Estimation of disequilibrium coefficient—Plink version 1.07 was used to 

estimate haplotype frequencies in the nine different datasets (Purcell et al., 2007). First, all 

founders were phased by Plink using the E-M algorithm; then all descendants of these 

founders were phased given the set of possible parental phases and assuming random-

mating. Haplotype frequencies were then estimated from phased data and the LD coefficient 

was computed from these estimates as the difference between haplotype frequency and the 

product of respective allele frequencies. Haplotypes were matched across datasets to ensure 

consistency of the sign of the LD coefficient. R version 3.0.1 was used for computations 

with haplotype frequencies and plots of LD. In addition, we computed an estimate of W for 

each admixed population using previous estimates of mixing proportions (Bryc, Durand, 

Macpherson, Reich, & Mountain, 2015; Johnson et al., 2011; Moreno-Estrada et al., 2013) 

and LD estimates from the three ancestral datasets.

3. RESULTS

3.1 Observations based on theory

For each of the population models, we evaluated the conditions of confounding on measures 

of local and global ancestry, and examined the form of the regression parameters from 

unadjusted and adjusted regression models (Table II). We considered tests of genotype-

phenotype association at the QTL itself and at marker locus, taking into account LD. Where 

appropriate we examined ARP to compare the relative power of tests with different 

adjustments.

3.1.1 Single admixed population

3.1.1.1 Testing at the QTL: Suppose that we have measured the trait and the QTL 

genotype. We first asked whether local and/or global measures of ancestry are confounders 

by evaluating the conditions i and ii in (2). The relevant correlations for the two conditions 

are derived in Appendix A.1. We found that for both local and global ancestry, the partial 

correlations required to evaluate condition 2ii are always . This 

makes sense because at the QTL, once genotype is known, ancestry provides no additional 

information. It follows that neither local nor global ancestry are confounders for the 

relationship between the QTL genotype and trait in this scenario.

Since neither local nor global ancestry measures are confounders, the regression parameters 

in the unadjusted and both adjusted models should all take the same form. It is easy to show 

(see Appendix A.1.5) that the genotype-term regression parameters for the unadjusted, local-

ancestry adjusted and global-ancestry adjusted models are , respectively 

(Table III); thus all models correctly model the true genetic effect.

Even though ancestry is not a confounder, and thus not a necessary covariate, we can explore 

the consequence of adjustment on statistical power. Since each model correctly estimates the 

same parameter, we can use ARP as a measure of relative power (or more precisely, the 
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relative sample size required to achieve equivalent power). Because the partial correlations 

are 0 for both the local and global ancestry measures, the ARPs comparing the estimates 

from the adjusted models to unadjusted models are the following:

These ARPs are clearly both always less than or equal to 1, and it follows that the test of the 

genetic effect in either ancestry adjusted model will always be less powerful than the test 

based on the unadjusted model.

We can further describe the relationship between  and , by 

noticing that , where  and 

 (see Appendix A.1.5). The first equation, φ, involves 

the sum over all pairwise recombination probabilities and the second equation, φg, involves 

the sum of recombination probabilities between each locus and the QTL (locus g). We show 

in Appendix C and Supplemental Figure 2 that ; the ratio is largest when 

there is little recombination and smallest when there is lots of recombination. This gives the 

following relationship: , meaning the unadjusted model 

will have the most power, followed by the global adjusted model and then the local-adjusted 

model. At the extremes, when rjk = rU = 0∀j,k (which would be expected immediately after 

the initial admixture event), then  and , which 

implies that adjusting for global or local ancestry would give equivalent power. This makes 

intuitive sense because in this case of no recombination, global ancestry and local ancestry 

are equivalent. For the other extreme, when rjk = rU = 1∀j,k, then  and 

, for large M. In this case, little is lost by using the global-

adjusted model relative to the unadjusted model, but the local adjusted model loses power 

due to the correlation between QTL genotype and local ancestry.

We examined the magnitude of the adjusted models’ power loss relative to the unadjusted 

model (Supplemental Figures 3 and 4) over a range of parameter values. We found that the 

power loss with the local-ancestry adjusted model can be substantial, particularly when 

allele frequencies are very different between the ancestral populations (Supplemental Figure 

3). The global-ancestry adjusted model (Supplemental Figure 4) still loses power, but less 

power than the local-ancestry adjusted model. Additionally, we find that when 

recombination increases (Supplemental Figure 4B),  is very close to 1. This 

illustrates that as the amount of recombination across the genome increases (such as after 

Martin et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



several generations of random mating), the power of the global-ancestry adjusted model 

approaches the power of the unadjusted model.

3.1.1.2 Testing at a marker: For tests at a marker locus, we also evaluated the confounding 

conditions (2), but with respect to marker genotype, local ancestry at the marker, and global 

ancestry. The correlation between the marker genotype and local ancestry at the marker 

(required for condition 2i) is analogous to that derived for the QTL: , 

where γL = qpL1(1 − pL1) + (1 − q)pL0(1 − pL0). However, unlike the case of testing at the 

QTL, the partial correlation necessary to evaluate condition 2ii can be non-zero because it 

involves both the LD between QTL and marker alleles and the correlation between QTL and 

marker ancestries. Specifically, we can show that the numerator of  is proportional to 

Ψ2, where  (see Appendix A.2.4 for full form).

As a validation, we can see that when there is complete LD in the ancestral populations (so 

that marker and QTL alleles are completely correlated), then Δ = ΔL and W = γL, and these 

correlations reduce to the equations that we derived for testing the QTL itself. In that special 

case, there is no confounding. In general the partial correlation is 0 (and local ancestry is not 

a confounder) when any one of the following conditions holds: (1) a = 0 or (2) rgl = 1 or (3) 

ΔγL = ΔLW. The last condition holds when Δ = 0 and either ΔL = 0 or W = 0 (or if there is 

complete LD in the ancestral populations). If any of these conditions hold, local ancestry at 

the marker will not be a confounder. Alternatively the correlation between marker genotype 

and local ancestry will be 0 (which would also lead to no confounding) if ΔL = 0.

The correlation between marker genotype and global ancestry also has the same form shown 

before for the QTL:

where  and φ is as defined previously. The numerator of 

 is proportional to (Ψ + ψ)2, where 

 (see Appendix A.2.4). If there has 

been little recombination, φl and φg will both be close to 1 and the numerator will look like 

Ψ2 as with local ancestry. In general, the partial correlation is 0 if either of the following 

conditions hold: (1) a = 0 or (2) Δ = 0 and either ΔL = 0 or W = 0. The correlation between 

marker genotype and local ancestry is 0 if ΔL = 0. Taken together, this means global ancestry 

will not be a confounder if either: (1) a = 0 or (2) ΔL = 0 or (3) Δ = 0 and W = 0. Unlike 

adjusting for local ancestry, this partial correlation is not necessarily 0 when rgl = 1. These 

observations show that when we are testing at a marker locus (not in perfect LD with the 

QTL), both local ancestry at the marker and global ancestry can be confounders, and 

adjusting may be required to obtain valid inference.
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We can gain more insight by examining the regression parameters for the unadjusted and 

adjusted models (Table III). For the unadjusted model, we can show (see Appendix A.2.5) 

that βL is a function of the LD between alleles T1 at the QTL and L1 at the marker locus in 

the admixed population, D* (equation 12). Specifically, we see (Table III) that the genotype 

coefficient in the unadjusted model is 0 if either there is no genetic effect (a = 0) or there is 

no LD in the admixed population (D* = 0). It is well known the admixture can generate LD 

even in the absence of LD in the ancestral populations. LD in the admixed population 

depends on the LD in the ancestral populations (W), the difference between allele 

frequencies in the ancestral populations (Δ and ΔL), as well as recombination between the 

QTL and marker (rgl). We expect no LD (D* = 0) if either (1) rgl = 1 or (2) W = 0 and either 

Δ = 0 or ΔL = 0. Either of these conditions or the condition that a = 0 satisfies the criteria for 

no confounding by local ancestry discussed above. Therefore, we can conclude that the 

unadjusted model will provide a valid test of the null hypothesis of no genetic effect (a = 0) 

or no LD in the admixed population (D* = 0).

For the local-ancestry adjusted model, we can show that  is a function of genetic effect (a), 

LD in the ancestral populations (W) and recombination between the marker and QTL (rgl) 

(see Appendix A.2.5). Specifically we see (Table III) that  if a = 0, W = 0 or rgl = 1; 

thus the model adjusted for local ancestry provides a valid test of either no genetic effect (a 
= 0) or no LD in the ancestral populations (W = 0). Since the parameter is also 0 when there 

has been recombination between the marker and trait loci, we can view this test as having 

power only for markers linked to the QTL (or for very recent admixture).

The genotype coefficient for the global-ancestry adjusted model is shown in Table III (see 

Appendix A.2.5 for derivation). We see that, in general,  if either a = 0 or D* = 0 and 

either Δ = 0 or ΔL = 0. This means that a test of genotypic effect using the model adjusted by 

global ancestry is valid as a test of no genetic effect, but is not generally a valid test of D* = 

0 (unlike the unadjusted model) or W = 0 (unlike the local-ancestry adjusted model). In 

Appendix C and Supplemental Figure 2, we show the behavior of the functions  and , 

which appear in the numerator and denominator of , as a function of the amount of 

pairwise recombination. We see that when of the amount of recombination increases (e.g., 

Supp Fig 2B as s increases), the functions will both approach 0, and then  will 

approximate the parameter from the unadjusted model. On the other extreme, when there has 

been little recombination (e.g., Supp Fig 2D for small s), both  and  will be close to 

1, and then  will approximate parameter from the local-ancestry adjusted model.

In general power comparisons between the different models using ARP are not appropriate 

since the genotype regression parameters differ for the different models. However, relative 

rejection rates can be addressed with simulations, results following.
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3.1.2 Stratified admixed population

3.1.2.1 Testing at the QTL: In the stratified population model, the two admixed populations 

may have different ancestry proportions (q1, q0) and different phenotypic means (shifted by 

a constant c). For the linear model adjusted for local ancestry at the QTL, the squared 

correlation coefficients relevant to assess confounding by local ancestry are as follows (see 

Appendix B.1.4):

where Δ = p1 − p0 as defined before, γ′ = αp1(1 − p1) + (1 − α)p0(1 − p0), δ = Q(1 − Q)(q1 

− q0)2, and ω = Qq1(1 − q1) + (1 − Q)q0(1 − q0).

As in the single admixed population,  if the allele frequencies at the QTL are the 

same in the two ancestral populations (Δ = 0). It is also 0 if the mixing proportions are the 

same in the subpopulations, q1 = q0. Unlike the single admixed population model, we see 

that the partial correlation is non-zero in the stratified population when there are different 

ancestry proportions between the subpopulations (q1 ≠ q0) and different phenotypic means 

(c ≠ 0). Thus in general, if there are differences between ancestral allele frequencies at the 

QTL and differences in ancestry proportions and phenotypic means in the subpopulations, 

then local ancestry will be a confounder.

For global ancestry, the correlations to assess confounding are the following (see Appendix 

B.1.4 for details):

where φ and φg are functions of the recombination probabilities defined previously. The 

conclusions are the same as for local ancestry: if there are differences between ancestral 

allele frequencies at the QTL (Δ ≠ 0) and differences in ancestry proportions (δ ≠ 0) and 

phenotypic means (c ≠ 0) in the subpopulations, then global ancestry will be a confounder.

The parameter estimates for the genotypic term in the unadjusted and ancestry adjusted 

models are shown in Table III (see Appendix B.1.5 for derivations). For the unadjusted 

model, we see that the regression parameter does not generally provide an estimate of the 

true genetic effect of the QTL, a (except in the case c = 0 or Δ = 0 or q1 = q0). On the other 
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hand, the model adjusted by local ancestry does correctly model the true genetic effect. Like 

the unadjusted model, the regression parameter model adjusted by global ancestry, , does 

not estimate the genetic effect, a, when c ≠ 0, Δ ≠ 0 and q1 ≠ q0. However, this bias also 

depends on pairwise recombination through φ and φg. Supplemental Figure 1 shows that 0 < 

φ ≤ 1 and the difference φ − φg approaches 0 as recombination increases or decreases (and 

tends to be small in general). Therefore, unless c is very large relative to a, the bias is 

expected to be small.

Although, subpopulation membership is often unknown, it is interesting to consider the 

properties of the model adjusted for membership. For the regression model adjusted for 

subpopulation membership (Table II), it is not hard to show (see Appendix B.1.5) that, like 

the local-ancestry adjusted model, using membership as a covariate also correctly models 

the true genetic effect:  (Table III).

Since adjusting for local ancestry or subpopulation membership both provide estimates of 

the genetic effect, a, we can use ARP to compare power. Using the correlations derived in 

Appendix B.1.3 we have,

All parameters in the second and third terms of the denominator are positive, and 

consequently . Thus the model adjusting for subpopulation membership is 

at least as powerful as the local-ancestry adjusted. Supplemental Figure 5 shows examples of 

 for various parameter values. Power of the tests in the two models is most 

similar (  closest to 1) when q0 and q1 are most different (Supplemental Figure 

5, red line q1 = 1). Though not shown in this figure, when |q1 − q0| = 1, we have ω = 0, and it 

can be seen from the formula above that . This makes sense because when 

local ancestries come from distinct ancestral populations in the strata, the local ancestry 

variable will be the same as the subpopulation membership variable. On the other hand, 

when q1 − q0 = 0 (Supplemental Figure 5, purple line q1 = 0.65), local ancestry gives no 

information about subpopulation membership, and we see the greatest loss in power for the 

local-ancestry adjusted model relative to the membership-adjusted model. As with the single 

admixed population, for each value of qi, the loss in power using local ancestry instead of 

subpopulation membership increases with more divergent ancestral allele frequencies (|Δ|). 

In Supplemental Figure 5, we also see that the ARPs increase (and hence the powers of the 

local ancestry and membership adjusted models become more similar) if the difference in 

trait means between populations is smaller (e.g., c = 1 vs c = 2).

3.1.2.2 Testing at a Marker: To assess confounding by local ancestry when testing at a 

marker, we derive the following correlation coefficients (see Appendix B.2.4):
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where . Similar 

to the case of testing at the QTL, we see that local ancestry will be a confounder if there are 

differences between ancestral allele frequencies at the marker (ΔL ≠ 0), differences in 

ancestry proportions (q1 ≠ q0) and phenotypic means in the subpopulations (c ≠ 0). However, 

when testing at a marker, the partial correlation  can also be non-zero even when q1 = 

q0 or c = 0 if a ≠ 0.

For global ancestry, the relevant correlation coefficients are derived in Appendix B.2.4:

where

If there is complete LD between QTL and marker, then Υ = 0 and the correlations are the 

same as derived for local ancestry. We see that like local ancestry, global ancestry can be a 

confounder in general.

Examining the regression coefficients from the unadjusted and adjusted models (Table III), 

we see that the coefficient for the unadjusted model does not estimate the true genetic effect, 

and will not provide a valid test of a = 0 if c ≠ 0, ΔL ≠ 0 and q0 ≠ q1. Unlike the unadjusted 

model in the single admixed population examples, in stratified populations the unadjusted 
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model does not generally provide a test of LD in the population as a whole either, D** ≠ 0 

because the regression parameter can be non-zero even when D** = 0 if ΔL ≠ 0 and q0 ≠ q1. 

Therefore, when testing a marker locus, the unadjusted model generally provides neither a 

test for no genetic effect or of no LD in the stratified population.

For the model adjusted for local ancestry, the form of the regression parameter  is similar 

to that in the single admixed population (Table III). We see that  if a = 0 or W* = 0 or 

rgl = 0; thus the model adjusted for local ancestry provides a valid test of either no genetic 

effect or no LD in the ancestral populations (independent of the value of c). Notably it is 

also possible for the regression parameter to be 0 even when the LD coefficients in the 

ancestral populations are non-zero if the LD in the ancestral populations is in opposite 

directions such that QW0 = (1 − Q)W1, or equivalently αD0 = (1 − α)D1.

As for the unadjusted model, the coefficient for the model adjusted for global ancestry also 

has a bias that depends on c, and so does not generally provide a test for no genetic effect (a 

= 0). The bias term will be 0 if , which happens if c 

= 0, ΔL = 0, q1 = q0, or . We show in Supplemental Figure 1 that φ and φl 

approach 0 as the amount of recombination increases and approach 1 as recombination 

decreases; thus (φ − φl) → 0 at the extremes of recombination and the bias term disappears. 

However, the bias may be non-negligible for modest amounts of recombination (as with 

moderately recent populations) if c is large. Notably, as recombination decreases (φ and φl 

approach 1), we can show that . This makes sense because with little 

recombination, local ancestry and global ancestry measures should be similar for each 

individual. As recombination increases (φ and φl approach 1), we find that 

, which is the marker-genotype coefficient for the model adjusted for 

subpopulation membership (Table III).

For the subpopulation-membership adjusted model, we see that  is 0 if a = 0 (Table III), 

showing that it is a valid test of genetic effect regardless of the value of c. It is also 0 if there 

is no LD in both of the admixed subpopulations, . The coefficient is not 0, 

however, if D** = 0, unless Δ = 0 or ΔL = 0, nor is it 0 if W* = 0, unless Δ = 0 or ΔL = 0 or 

rgl = 1. This means adjusting for subpopulation membership does not generally provide a 

valid test of LD in the stratified population or LD in the ancestral populations, but does 

provide a valid test of no genetic effect or of no LD in both admixed subpopulations.

3.2 Simulation results

We conducted simulations of single admixed and stratified admixed populations to validate 

our theoretical findings (Supplemental Methods and Results). Consistent with the theoretical 

conclusions above, our simulations of a single admixed population show that all models 

result in valid tests of the null hypothesis a = 0 (at the QTL and marker loci). For a ≠ 0, the 

rejection rates depend on LD as expected. The local-ancestry model, but not necessarily the 
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unadjusted or global adjusted models, provides valid tests of W = 0. The unadjusted model 

provides valid tests of the null hypothesis of D* = 0. In general we found that power 

depends on the relative size of W and D*. When D* > W the unadjusted tends to be most 

powerful and when W > D* the local-ancestry adjusted model tends to be most powerful. In 

general, we found that the global-ancestry adjusted model performs similarly to the 

unadjusted model or has power between the unadjusted and local-ancestry adjusted model. 

This agrees with our theory that the regression parameter for the global-adjusted model 

should be close to the unadjusted model if there has been sufficient recombination, which is 

the case with our simulations involving 20 generations of random mating following 

admixture.

Results from simulations of stratified populations are also consistent with theory. When c ≠ 

0, such that there is a difference in trait mean between strata, only the local-ancestry and 

membership adjusted models are valid for the null hypothesis of a = 0. Interestingly, the 

global-ancestry adjusted model also shows correct rejection rates, suggesting that the 

specification bias discussed in the methods section is small for these examples. When a > 0, 

we show that the local-ancestry adjusted model is valid as a test of the null hypothesis of W* 

= 0 (or rgl = 0) and the membership-adjusted model provides a valid test of no LD in both 

subpopulations. Rejection rates for the unadjusted model are greater than the nominal rate, 

even for distant markers. The exceptions are markers in low LD with the QTL in the 

stratified population (D**) and with small differences between marker allele frequencies in 

the ancestral populations. Power again depends on the relative level of LD in the ancestral 

populations and in the stratified population.

3.3 Estimates of LD in admixed datasets

When testing at a marker, we have seen that the regression coefficient for the genetic effect 

depends on the genetic effect at the QTL and LD between the QTL and marker genotypes. 

To put these results into the context of actual admixed populations, we examined the 

relationship between estimates of LD (disequilibrium coefficient: D* or Di) and intermarker 

distance for six admixed Hispanic datasets (Colombian, Honduran, Cuban, Puerto Rican, 

Dominican and Mexican), an admixed non-Hispanic dataset (African-American), and non-

admixed “ancestral” datasets (European, African and Native American). As expected, the 

estimates of LD tend to be larger (in absolute value) and more variable in the admixed 

datasets relative to the non-admixed datasets (Supplemental Figure 6). Colombian, 

Honduran and Dominican datasets show the largest variation in LD estimates. Cuban, 

Mexican, and African-American datasets show the least variation and are similar to 

estimates in non-admixed datasets. For all datasets, LD values get closer to 0 as intermarker 

distance increases. Within each dataset, pairs beyond ~100–200kb demonstrate LD values 

with a similar distribution to unlinked pairs, but the range remains relatively wide in 

Colombians, Hondurans and Dominicans, even for unlinked pairs (e.g., 17–20% of unlinked 

pairs in these admixed datasets have estimates of |D*|<0.05 compared to <4% of unlinked 

pairs in non-admixed datasets).

We have shown that the key quantities in the formulas for the regression coefficients of the 

unadjusted and local-ancestry adjusted models (as well as global-adjusted but in a more 
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complex way) are D*, computed directly in an admixed population, and W, computed as an 

average of LD in the ancestral populations weighted by mixing proportions. Simulations 

also demonstrated that these have strong influences on relative power. Figure 1 compares 

estimates of W and D* across varying intermarker distances in Colombians, Cubans, 

Dominicans and African Americans (results in Hondurans, Puerto Ricans and Mexicans are 

shown in Supplemental Figure 7). We see as expected a smaller median and tighter 

distribution (smaller IQR) for W compared to D* for all admixed populations; however there 

is variability among populations, with the Dominicans being most strikingly different (e.g., 

for unlinked markers in Dominicans the median |D*| is about 3 times the median of |W| 

0.023 vs 0.008). Interestingly, the differences in distribution are most apparent for distant 

markers; for nearby markers (e.g., <~25kb) the distributions of W and D* are fairly similar 

for all admixed populations.

4. DISCUSSION

Our aim was to better understand the properties of global- and local-ancestry adjustments in 

linear regression models used for genetic association studies. Specifically, we examined 

statistical confounding, the forms of regression parameters, and relative power in terms of 

genetic parameters. Our results regarding confounding are not surprising. When testing a 

QTL itself in a single admixed population, (global or local) ancestry is not a confounder 

because, in our model, the QTL explains all of the non-random phenotypic variation. 

However, in all other scenarios considered (testing at marker loci or in stratified admixed 

populations), ancestry can be a confounder, and our formulas shed light on when this is the 

case. Since typically we assume we are not testing the QTL directly, we must consider 

ancestry a potential confounder, and should adjust for it at some level.

Studying the forms of the regression parameters for unadjusted and adjusted regression 

models was particularly informative, as it shed light on our implicit assumptions in 

hypothesis testing. We saw that tests of the genotype coefficient can correspond to tests of 

different null hypotheses in terms of genetic parameters. In a single admixed population, we 

have shown that the unadjusted model and the models adjusted for local and global ancestry 

all provide valid tests for the hypothesis of no genetic effect; however, in the presence of a 

genetic effect, tests at marker loci depend on LD between the marker and QTL in different 

ways. The unadjusted model provides a valid test of the null hypothesis of no LD in the 

admixed population, while the local-ancestry adjusted model provides a valid test of no LD 

in the ancestral populations. The global-adjusted model will perform similarly to the 

unadjusted model as recombination increases and similarly to the local-ancestry adjusted 

model if there has been little recombination.

In a stratified population, only adjusting for local ancestry or subpopulation membership 

guarantees valid tests of no genetic effect. As in the single admixed population, in the 

presence of a genetic effect, the different adjustments provide tests of different null 

hypotheses with respect to LD. The model adjusted for subpopulation membership provides 

a valid test for no LD in both of the admixed subpopulations, while the local-ancestry 

adjusted model provides a valid test of no LD in the ancestral populations. The coefficient 

for the global-ancestry adjusted model ranges between that for the local-ancestry adjusted 
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and population-membership adjusted models, depending on the amount of recombination 

across the genome. The unadjusted model is generally invalid, even at the QTL itself, since 

it is sensitive to phenotypic differences between the subpopulations not explained by the 

QTL.

Our estimates of disequilibrium coefficients in data from actual admixed and “ancestral” 

populations provide insight into how these different hypothesis tests may behave in real data. 

Though we cannot go directly from these estimates to statements about power, we can make 

some useful observations: (1) Values of W (average LD from the ancestral populations) get 

closer to 0 quite rapidly with increasing distance, suggesting that local-ancestry adjusted 

models will likely only have power at markers close to the QTL (<~1Mb for our examples); 

(2) The admixed populations show more extreme values of LD (D*) than the ancestral 

populations, suggesting that unadjusted (and sometimes global-adjusted models) will have 

more power in admixed populations than non-admixed populations; (3) The more extreme 

values of LD seen in the admixed populations persist even between distant and unlinked 

loci, suggesting there will be a lot of noise at distant markers when using unadjusted tests.

Our results are in agreement with previous studies that considered global vs. local ancestry 

adjustment in association tests. Like others (Liu et al., 2013; Zhang & Stram, 2014), we find 

that using global ancestry as a covariate works well to weed out spurious associations at 

distant loci and control type I error. Also in agreement, we show that the local-ancestry 

adjusted models will result in tests that generally have lower rejection rates than the global-

adjusted model. Our derivation of explicit formulas for the regression coefficients helps us to 

understand these findings, and in particular understand that these models actually provide 

tests of different null hypotheses. For example, when testing at a marker in a single-admixed 

population, we have shown that the unadjusted model provides a test of LD in the admixed 

population while the local-ancestry adjusted model provides a test of LD in the ancestral 

populations. Since LD in admixed populations tends to be larger and span larger distances 

than the LD in the ancestral populations, it makes sense that the unadjusted model has a 

higher rejection rate. As we show, the coefficient for the global model is intermediate to the 

unadjusted and local adjusted model, depending on the admixture dynamics (in particular 

the amount of recombination). We did not explore the scenario posed by Wang et al (2011) 

in which forces such as selection lead to local-ancestry effects at the test marker, but this 

would appear to be a case for which additional adjustment for local-ancestry may be 

required. We also did not consider inclusion of a genotype × ancestry interaction term, 

which Liu et al (2013) show can improve power when LD varies in ancestral populations. 

Examining the forms of this interaction and main effect coefficients under these models will 

be the subject of future work.

We have made several assumptions to simplify the theoretical calculations. The model of 

admixture and population evolution assumes only two mixing populations as well as specific 

pulses of admixture followed by random mating. These assumptions may not be valid for 

Hispanic populations, which often show three-way admixture. Other assumptions include a 

known (not estimated) haplotype ancestry and equal trait variance. Perhaps the most 

unrealistic simplification is that of a single common QTL. We expect variation of 

quantitative traits to be influenced by multiple genetic and environmental factors as well as 
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their potential interactions. The relationship of these factors to ancestry may influence our 

conclusions about ancestry adjustment. For example, we have assumed that the trait mean 

depends only on genotype at the QTL, but if the trait depends on ancestry -specific factors 

(genetic or environmental), our conclusions may not hold. Such considerations are 

particularly important as we think about the contributions of multiple rare variants within a 

gene to a trait. Rare variants are likely to be ancestry-specific, and thus trait means with 

respect to a particular variant genotype will depend on both the genotype and ancestry of the 

gene region. This relationship complicates theoretical calculations but is an important topic 

for future exploration.

We have focused here on analysis of continuous traits, but many studies use a case-control 

design that focuses on a binary outcome and use logistic regression. There has been 

interesting discussion on the properties of covariate adjustment in linear regression models 

versus randomized and retrospective case-control logistic regression models (Mefford & 

Witte, 2012; Pirinen, Donnelly, & Spencer, 2012; Robinson & Jewell, 1991). In particular, 

the conclusions with respect to relative power of adjusted and unadjusted models when 

considering a non-confounding, predictive covariate are similar for randomized studies with 

continuous or binary traits; but for a case-control design, where selection is based on 

phenotype, the relative power depends on disease prevalence (Pirinen et al., 2012; Robinson 

& Jewell, 1991). It is not clear how our findings will generalize to commonly used case-

control designs. Extension of our theory to such designs, particularly approximations of 

relative power, are more difficult since the selection of subjects can induce a bias that must 

be accounted for in addition to relative variance (Robinson & Jewell, 1991). Nevertheless, 

such extensions would be interesting and informative.

As practical recommendations based on our results, we suggest that global-adjusted models 

should be used for initial association analyses. Though we did show that in stratified 

admixed populations, the parameter can be biased, we demonstrate that this bias is typically 

small. If one can be relatively certain that the population under study represents a single 

admixed population, e.g. African American, an unadjusted model may be used for this initial 

scan as it will be sensitive to LD in the admixed population. However, it is likely that more 

distant markers with LD driven by ancestral allele frequency differences will also be 

detected. For fine-mapping and to exclude results due entirely to LD induced by admixture; 

local-ancestry adjusted models should be used, given that in the presence of a genetic effect, 

they provide a valid test of LD in the ancestral populations. Our results also suggest that 

local-ancestry models should also be used to characterize effect size when we believe we 

have found the underlying QTL. This will more appropriately estimate the true genetic effect 

if there is population stratification than the global-adjusted or unadjusted model and more 

closely reflect the effect in non-admixed ancestral populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Violin plots for absolute value of estimates of disequilibrium coefficients three admixed 

datasets. D* is the estimate in the admixed dataset and W is the average of disequilibrium 

coefficients in the ancestral populations, weighted by estimates of mixing proportions: 

Colombian (0.68 European, 0.07 African, 0.25 Native American), Cuban (0.81 European, 

0.15 African, 0.04 Native American), Dominican (0.70 European, 0.27 African, 0.03 Native 

American), African American (0.24 European, 0.75 African, 0.01 Native American). Results 

are binned by intermarker distance, with the final bin being pairs of unlinked markers.
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Table I

Table of Notation

Single Admixed Population

Random Variables

G QTL Genotype

L Marker Genotype

Y Quantitative Trait

A Local Ancestry

Ā Global Ancestry

Constants

K number of chromosomes

m number of markers per 
chromosome

M = mK total number of markers

Parameters

a genetic effect of QTL

σ2 Within-genotype variance of 
quantitative trait

q probability any locus on a random 
haplotype is from ancestral 
population 1

rjk recombination probability between 
locus j and k

ru recombination probability between 
loci on different chromosomes

Functions of recombination 
probabilities, where g is QTL and l 
is marker locus

QTL Marker

pi pLi allele frequency in ancestral 
population i, for i = 0,1
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Δ = p1 − p0 ΔL = pL1 − pL0 ancestral allele frequency difference

p* = qp1 + (1 − q)p0 allele frequency in the admixed 
population

γ = qp1(1 − p1) + (1 − q)p0(1 − p0) γL = qpL1(1 − pL1) + (1 − q)pL0(1 − pL0) average variance of allele frequency 
in the admixed population

Di = PTLi − pLipi disequilibrium coefficient between 
marker and QTL alleles in ancestral 
population i

D* = (1 − rgl)(W + q(1 − q)ΔΔL) disequilibrium coefficient in 
admixed population

W = qD1 + (1 − q)D0 average disequilibrium coefficient

Stratified Admixed Populations

Random Variables

S admixed subpopulation membership

Parameters

c shift in mean quantitative trait value 
in subpopulation 1 compared to 
subpopulation 0

Q probability of being in 
subpopulation 1

qs probability any locus on a random 
haplotype in subpopulation s is 
from ancestral population 1

α = Qq1 + (1 − Q)q0 average ancestry in stratified 
population

δ = Q(1 − Q)(q1 − q0)2 covariance of ancestry of different 
haplotypes at the same locus within 
an individual

ω = α(1 − α) − δ = Qq1(1 − q1) + (1 − Q)q0(1 − q0) convenient function of population 
structure parameters

QTL Marker

allele frequency in subpopulation s, 
for s = 0,1

allele frequency in stratified 
population

γ′ = αp1(1 − p1) + (1 − α)p0(1 − p0) γL′ = αpL1(1 − pL1) + (1 − α)pL0(1 − pL0) average variance of allele frequency 
in stratified population

disequilibrium coefficient in sth 
subpopulation
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Ws = qsD1 + (1 − qs)D0 average disequilibrium coefficient 
in subpopulation s

disequilibrium coefficient in 
stratified population

W* = QW1 + (1 − Q)W0 average disequilibrium coefficient 
over subpopulations
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Table II

Regression models for tests at the QTL and marker adjusted by ancestry or subpopulation membership 

covariates.

Testing QTL Testing Marker

Unadjusted (UN) E(Y|G) = β0 + βG G E(Y|L) = βL0 + βL L

Local-ancestry adjusted (LA)

Global-ancestry adjusted (GA)

Subpopulation-membership adjusted (MA)
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Table III

Regression coefficients for the genotype term in single admixed and stratified admixed populations. 

Regression models are the unadjusted model (UN) and models adjusted for local ancestry (LA), global 

ancestry (GA), and subpopulation membership (MA) (only for stratified admixed populations).

Model Regression Coefficient

Single Admixed Population

At QTL

UN βG = a

LA

GA

At Marker

UN

LA

GA

Stratified Admixed Population

At QTL

UN

LA

GA

MA

At Marker

UN

LA

Genet Epidemiol. Author manuscript; available in PMC 2019 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martin et al. Page 30

Model Regression Coefficient

GA

MA
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