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Hookworm infection is endemic in developing countries, leading to poor cognitive function—among
other disruptions. In this study, the effects of Nippostrongylus brasiliensis infection (a murine

model of Necator Americanus) on cognitive function were investigated. Though impaired cognition

has been extensively reported, the exact domain of cognition affected is still unknown, hence

requiring investigation. The objective of this study was to identify possible cognitive changes during
Nippostrongylus brasiliensis infection in mice, using the Morris water maze. Here, we show for the first
time that mice infected with Nippostrongylus brasiliensis were able to learn the Morris water maze task,
but demonstrated impaired reference memory. Anxiety measured by thigmotaxis in the maze, did

not play a role for the observed cognitive impairment. Of further interest, an increase in the number

of hippocampal macrophages and microglia with training and/or infection suggested a significant

role of these cell types during spatial learning. Together, these experimental mouse studies suggest
that helminth infections do have an impact on cognition. Further experimental animal studies on
cognition and infection might open new approaches for a better understanding and impact of pathogen
infections.

One of the major immune responses to helminth infection include CD4 T-helper 2 (Th2) activity'2. Indeed,
effects of helminth infection on cognitive function have been a debatable topic for many years. Various studies
have linked helminth infection to cognitive impairment>=. For example, studies in helminth infected children
showed correlation by reduced cognitive scores than non-infected children. This lead to the general consensus

© that improvement in cognitive function might occur after helminth treatment®’. Indeed, deworming in indi-

. viduals infected with hookworm and/or other helminthes was reported to result in improvement of cognitive

. function®. Unfortunately, re-infection is common in endemic areas, even with regular deworming?, resulting in
possible long-lasting observed cognitive dysfunction. Although hookworm infection is known to occur in child-
hood, it is reported that both frequency and intensity of infection remain in adulthood’. Hence, there is a lack in
the knowledge of which cognitive domains—if any— are affected, along with mechanisms involved in the process
of learning and memory during helminth infection. Our results suggest impairment of reference memory, but
not learning.

At baseline and/or low physiological levels, pro-inflammatory cytokines are known to be essential for effec-
tive cognitive functioning but are detrimental at high, pathological concentrations (e.g. during infection), where
they may play a role in impaired learning and memory!'®!%. On the other hand, anti-inflammatory cytokines
IL-4 and IL-13—both up-regulated during Nippostrongylus brasiliensis (N. brasiliensis)'® infection, may influence
cognition'®!"”. In addition, administration of bacterial toxin has been shown to result in both impairment of mem-
ory and increased anxiety'$, indicating a possible association between anxiety and cognitive function.
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Figure 1. A measure of N. brasiliensis infection: On day 10 post infection, approximately 1 cm jejunum
segments were removed from the small intestine of both non-infected and N. brasiliensis infected Wild-Type
mice. (a) A pictorial representation of the water-jacketed organ bath (Panlab, Spain) used to measure smooth
muscle contractile responses is shown, connected to transducers and the PowerLab™ system (ADInstruments,
Australia) [Picture taken by Dr. T Brombacher, 2010]. This feeds and translates the signal to a computer for
measuring tissue isometric tensions (i). Tissues were weighed on an analytical scale (ii) showing an increase

in tissue weight by N. brasiliensis mice, before stimulating with varying concentrations of ACh —9 to —3

LOG [M] to determine isometric contractile responses (iii) showing an increase in tissue hypercontractility

of infected intestine. Mucus producing goblet cells were determined by PAS reagent at day 10 post infection

on jejunum sections of non-infected and N.brasiliensis infected Wild-Type mice. Goblet cell hyperplasia was
determined by counting the total number of enlarged goblet cells per 5 villi from 5 tissue sections isolated from
5 individual mice to a total of 25 villi. Mucus-producing goblet cells were visualized using PAS reagent staining
(iv) demonstrating hyperplasia by infected intestine tissue [100X magnification]. M: Muscularis, G: Goblet
cells [arrow heads], V: Villus [bordered lines]. Results are the mean = SEM (n =4 mice/group Unpaired t-test
*#%P < 0.001 for tissue weight; n = 10 mice/group Two-way repeated measures ANOVA with Bonferroni post-
hoc test used for individual time-point comparisons **#*P < 0.0001 for hypercontractility; n =5 mice/group
Unpaired t-test ***P < 0.001 for goblet cells. Results are a representation of three independent experiments.

The cognitive domains of interest in this particular study include learning and reference memory. An impor-
tant component of learning is that it is not stored because it is relevant to the activity at hand, while reference
memory is a form of hippocampal-dependent long-term memory that, unlike learning, becomes more stable over
time, as it requires consolidation to occur’®. We therefore investigated hippocampal activity to better understand
its contributions towards learning and memory**~%. Here, we describe how N. brasiliensis infection influences the
cognitive domains of learning and memory in an experimental mouse model to better understand the mechanism
leading to the reported decline in cognition during infection in human®->.

Results

N. brasiliensis infection induces hypercontractile responses to acetylcholine. Wild-type mice
of Balb/c background were infected with ~750 L3 infective stage larvae and tissue samples were collected at day
10 post infection. N. brasiliensis infected mice showed an increase in tissue weight (Fig. la.ii), and increased
hypercontractile responses to acetylcholine challenge compared to non-infected controls (Fig. 1a.iii). Goblet cell
hyperplasia was determined from jejunal sections (Fig. 1a.iv) by quantifying the total number of enlarged mucus
producing goblet cells stained with periodic acid Schiff’s reagent (PAS) shown by arrow heads, demonstrating
increased thickness of the muscle layer of N. brasiliensis infected mice with evident goblet cell hyperplasia. These
results taken together confirm successful N. brasiliensis infection, as previously shown?*.
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Figure 2. Impaired reference memory but not working memory induced by N. brasiliensis infection is not
influenced by speed, distance swam, or anxiety in the MWM. (a) A pictorial representation of the Morris water
maze used to assess hippocampal dependent spatial learning and memory is shown (i) [Picture, including
mouse, drawn by Dr. T Brombacher, 2017]. Balb/c mice were infected with ~750 L3 N. brasiliensis and trained
in the MWM with Velocity (ii) and distance swam (iii) measured as controls for any differences seen in
cognitive measurements. (b) Mice were then trained in the MWM and latency to platform measured during
acquisition (i) showing no differences across treatments during the simple learning phase of the task. A probe
trial was performed on day 5 to measure latency to platform crossings and number of platform crossings (ii)
with no differences between treatment conditions. Latency to platform was measured again during reversal and
visible phases of the task (iii) with no differences across treatment conditions during these complex learning
phases of the task. (c) Mice were assessed in the MWM and % thigmotaxis (i), % not moving (ii), % immobility
(iii) and immobility frequency (iv) were measured as indicators of anxiety, and no differences were observed
across treatment conditions. Results are the mean &= SEM (n = 18 mice/group; Unpaired t-test ***P < 0.001;
Two-way repeated measures ANOVA *P < 0.05, with Bonferroni post-hoc test). Figures are a representation of
7 independent experiments.

N. brasiliensis infection impairs reference memory, but not learning. In order to rule out per-
formance as a reason for differences across treatment groups, data from both N. brasiliensis infected and
non-infected mice were analyzed for speed (velocity) and distance swam. Infected and non-infected mice
demonstrated similar performances (Fig. 2a.i-iii). This result is an important control to rule out the possibility
that infection with N. brasiliensis influences behavioral factors, besides cognition. Mice were then trained in the
MWM and latency to platform measured during acquisition (Fig. 2b.i,iii). Statistically significant differences were
not observed during learning, suggesting that N. brasiliensis infection does not negatively impact on learning,
whether “simple” or “complex”. However, on a test of reference memory during the probe trial phase of the task,
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N. brasiliensis infected mice showed fewer platform crossings compared to non-infected mice (Fig. 2b.ii), demon-
strating impairment of this domain of cognitive function. Following the observed result of impaired reference
memory, but not learning, we hypothesized anxiety as a possible cause of interference in memory consolidation,
and was therefore investigated. Anxiety was determined by duration swimming within 10 cm of the MWM edges,
subject freezing in response to stimuli, immobility (indicating no limb movement), as well as not moving (where
there is no spatial displacement by the subject). Results from these behavioral markers demonstrated that anxiety
does not play a role in impaired reference memory, but rather, attenuated reference memory is directly due to N.
brasiliensis infection as demonstrated by no statistical differences between N. brasiliensis and non-infected mice
(Fig. 2c.i-iv).

Taken together, these results suggest that infection by N. brasiliensis is not detrimental for learning, but rather
for reference memory, suggesting that memory consolidation could be disrupted in this model, and that this
disruption is not due to anxiety.

MWM training and N. brasiliensis infection influence population dynamics of macrophages
and microglia within the Hippocampus. In an attempt to better understand neuro-immunological
mechanisms underlying the observed detrimental effects of N. brasiliensis on reference memory, macrophage
and microglia responses in the hippocampus of N. brasiliensis infected and non-infected mice were examined
before and after MWM training. Hippocampal cells stained with an immunofluorescent antibody against mac-
rophages (F480) and microglia (Ibal) were identified by FACS analyses, with a series of gates to allow identifi-
cation of F480" and Ibal™ cells (Fig. 3a.i). Interestingly, MWM non-trained but infected mice had an increased
percentage (Fig. 3a.ii) and numbers (Fig. 3a.iii) of F480 positive macrophages in the Hippocampus (Fig. 3a.iii).
Once trained, non-infected mice also increased the percentage of F480 positive macrophages, similar to the
infected mice (Fig. 3a.ii). In absolute numbers, non-infected mice showed similar F480 positive macrophage
numbers within the hippocampus, irrespective of training (Fig. 3a.iii), whereas infected mice increased the
number of F480 positive macrophages in the hippocampus (Fig. 3a.iii). Non-infected Iba positive microglia
showed similar percentage and numbers, whereas infected mice increased the percentage and numbers of Iba
positive microglia (Fig. 3a.iii). These results suggest that N. brasiliensis infection as well as MWM training in
mice may have effects on the population dynamics of F480 positive macrophages and Iba positive microglia
within the hippocampus.

Discussion

Because peripheral products and substances are able to infiltrate the central nervous system by various means
the effects of N. brasiliensis infection were investigated within the brain to assess possible influences on cognitive
function. Although helminth infection is known to cause cognitive impairments in children, the exact domain
and mechanism of cognitive impairment are unknown?®=. In this study, we demonstrate a central role for N. bra-
siliensis infection in the regulation of cognitive function. We show for the first time that N. brasiliensis infection
leads to partial impairment of cognitive function, as demonstrated by disrupted reference memory, but not learn-
ing. We further found that N. brasiliensis infection leads to accumulation of macrophages in the hippocampus.

Both N. brasiliensis infected and non-infected mice displayed similar latencies to the platform during “simple”
(acquisition) and “complex” (reversal) learning tasks (Fig. 2b.i,iii), with fewer platform crossings by N. brasilien-
sis infected mice during a measure of reference memory (Fig. 2b.ii). This result indicated that even though N.
brasiliensis infection impairs cognition, learning is protected, while reference memory seems to be attenuated
by a mechanism that is yet to be determined. Although learning was not affected during N. brasiliensis infection,
there was a constant increase in latency to platform by N. brasiliensis infected mice on day 2 of MWM training
(Fig. 2b.i). N. brasiliensis penetrates the skin to migrate to lungs by means of the vasculature where they reach
airspaces to be coughed up and swallowed in 3-4 days?. As a result heavy mucus production in the lungs at this
time point of infection®® may have interfered with “normal” breathing, which could have had an influence on task
performance and outcome.

While previous studies did not determine the cognitive domains affected by hookworm infection>*, it is
investigated and indicated here for the first time.

Having determined that N. brasiliensis infection impairs reference memory, but not learning, the role of
anxiety in impaired cognition of N. brasiliensis infected mice was investigated. Anxiety is known to influence
cognition both positively and negatively®’. Because the MWM task is a novel environment, anxiety levels were
determined to further characterize the cognitive impairment observed. Anxiety levels, as determined by thig-
motaxis, including freezing, not moving, and immobility, were similar between N. brasiliensis infected and
non-infected mice (Fig. 2¢), ruling out possible anxiety as a factor contributing to the impairment of reference
memory observed during infection. Currently, there is no evidence that anxiety may be associated with decreased
neurogenesis in the hippocampus, however anti-anxiety medication does increase neurogenesis in rodents®'.
Indeed, anxiety-related stress, as opposed to fear-related stress may cause attenuated learning®. To further
substantiate our findings of impaired reference memory, the role of cells in the hippocampus was investigated.
Evidence for hippocampal microglia and macrophages influencing cognition through enhancement/inhibition of
neurogenesis®****, incited the idea that these cells could be involved in the process of leaning and memory during
N. brasiliensis infection. In addition, blood-borne macrophage recruitment to the brain has been shown to have
detrimental effects on cognitive ability, although we do not show evidence of peripheral macrophages invading
the central nervous system*. In our study, macrophage numbers were determined within the hippocampus. Of
interest, MWM training with or without N. brasiliensis infected lead to an increase in macrophages. Moreover,
N. brasiliensis infection alone lead also to an increase in macrophages, which may suggest the importance of
macrophages in cognitive function, as well as defense from N. brasiliensis infection. Due to the impairment of

25,26
>
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Figure 3. N. brasiliensis infection alters hippocampus macrophages and microglia to influence cognitive
function. (a) Gating strategy for identifying F480" macrophages and Ibal™ microglia is shown. Single cell
suspensions from the hippocampus of N. brasiliensis infected and non-infected mice were examined by flow
by infection, and for Ibal™ microglia (iv, v) demonstrating statistically significant increase of microglia by
MWM training, but not infection following spatial learning task. A summary of results is shown (vi) as the
mean £ SEM (n =4 mice/group; Two-way ANOVA *P < 0.05, **P < 0.01, ***P < 0.001, **** p < 0.0001 with
Bonferroni post-hoc test). Figures are a representation of 3 pooled independent experiments.

reference memory in this model, it is likely that macrophages might be interfering with normal cognitive func-
tioning by producing high levels of pro-inflammatory cytokines in the brain'®**-%, while anti-inflammatory
cytokines IL-4 and IL-13 would support effective learning and memory'®!”**. Although macrophages were not
depleted as a means to determine their role in cognitive function following N. brasiliensis infection, it has been
reported that immune deficient mice injected with alternatively activated macrophages demonstrated beneficial
effects on learning and memory of the MWM task™®. This result substantiates the observations in our study, where
we show a positive correlation between macrophages and learning following MWM training or N. brasiliensis
infection. Because learning was not impaired, it is likely that immune products by macrophages are only detri-
mental to the cognitive domain of memory formation.

Microglia, which are residential brain macrophages, are known to support neurogenesis in the hippocampus,
which is essential for cognition®****!. However, if these microglia take on a classical inflammatory phenotype
(M1), they are instead detrimental to neurogenesis and cognition*>**. Therefore, microglial numbers were deter-
mined in the hippocampus in order to determine their role in spatial learning following N. brasiliensis infection.
While training alone and MWM training of N. brasiliensis infected mice lead to an increase in microglia, mice
that were infected demonstrated no changes, suggesting their role is geared to support cognition, but not to fight
N. brasiliensis infection. This result also suggests that infection hampers the accumulation and in turn effec-
tiveness of microglia, which is possibly of significance in memory formation. In this case, microglia are able to
support reference memory, but not learning.

Taken together, these results showed that increased numbers of macrophages and microglia in the hippocam-
pus of N. brasiliensis infected mice might interfere with optimal reference memory in a MWM spatial learning
task.
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In summary, we revealed that N. brasiliensis infection reduces spatial reference memory, independent of anx-
iety induced by the novel environment of the MWM. Moreover, expansion of microglial and macrophage popu-
lations in the hippocampus was associated with a reduction in reference memory.

Methods

Animals. Inbred 6-8 week old wild-type Balb/c mice were obtained from the University of Cape Town specif-
ic-pathogen-free animal facility and kept in individually ventilated cages. All animals were housed in temperature
(21-22°C) controlled rooms, maintained on a 12-h light/dark cycle and age matched in each experiment, with
free access to food and water. Animal protocols were approved by the independent Animal Ethics Research com-
mittee at the University of Cape Town, approval number 012/018, and all methods were performed in accordance
with the relevant guidelines and regulations.

N. brasiliensis Life Cycle and Larvae Infection. N. brasiliensis was passaged through 8 week old Wistar
rats by inoculating them with ~5000 3rd stage larvae (L3) per rat in 0.65% saline (a kind gift from Klaus Erb,
Wurzburg, Germany). Rats were injected subcutaneously with live L3 in the neck using 18 G needles (Strecan®,
B. Braun, Melsungen). At days 6, 7, and 8 post infection (p.i.), faecal pellets were collected in 250 pg/ml
Amphotericin B fungizone (Lot# 3079308, Invitrogen Corporation) treated dH2O. The emulsified faecal pellets
and Proanalysi charcoal (Merk, Darmstadt) were then mixed to a paste and placed on moist Whatman® filter
papers, where eggs were allowed to hatch, and larvae subsequently migrate to the edge of the filter paper. L3
were washed off the edge of the filter paper using 0.9% NaCl and counted under a dissection microscope (Nikon
Eclipse) as 5 x 10 ul samples. After counting, the worms were allowed to settle at the bottom of the tube for
30 min. NaCl was pipetted out and larvae re-suspended in 0.9% NaCl at a final concentration of 3750 worms/ml
(750 worms/200 pl). Mice were infected subcutaneously on the dorsal aspect of the neck with ~750 N. brasiliensis
L3 using a 21 G needle (Strecan®, B. Braun, Melsungen). Daily monitoring of sickness behavior*! was performed
in this study, with mice showing no signs of lethargy, reduced grooming, or loss of appetite. N. brasiliensis infected
rodents may display symptoms of sickness in a dose dependent manner, whereby “heavy” doses exceeding 2000
larvae induce illness*. A dose of ~750 larvae*® was used in this study to induce a Th2 response that is character-
ized by mucus production in the lungs with no signs of sickness behavior.

Morris water maze. Cognitive function was investigated in both non-infected and infected mice (n=18)
from day one post-infection using the Morris water maze (MWM) over a period of 8 days. Mice were given four
trials per day (starting at different locations North, East, South and West) for four consecutive days to locate a
plexiglass circular platform (10 cm in diameter), which was placed approximately 0.5 cm below water level in
an open circular 123 cm diameter MWM. All MWM testing was performed between 9 am and 3 pm during the
lights-on phase. The water and room temperature were kept constant between 21-22 °C and 20-24 °C respec-
tively'”!®. Balb/c mice used in this study have poor vision*” and cannot fully see shapes and objects, although
they can distinguish light from darkness*®, therefore a light source was placed behind the Morris water maze,
parallel to the platform position to serve as an external distal cue, where lux by the platform quadrant meas-
ured 1 and other quadrants had a lux of 0'”. During the acquisition phase of the task, each mouse was allowed a
maximum of 60 seconds to locate and climb onto the platform. Once the mouse had located the platform, it was
given approximately 10 seconds to remain on the platform before returning it to its home cage with infrared heat
lamps. Mice that failed to locate the platform within 60 seconds were gently guided to the platform and allowed
to acclimatize for 10 seconds before returning to the home cage'®. On day 5, a probe trial was performed with
the platform removed in order to test reference memory?. Each mouse was given a maximum of 60 seconds in
the Morris water maze. On days 6 and 7, the platform was placed in the quadrant opposite the original training
quadrant, and mice retrained for four sessions each day (reversal phase). On day 8, mice were introduced to the
pool with a visible platform in a different quadrant, placed approximately 0.5 cm above water level (visible phase).
Latency to platform was used as a measure of learning and the probe trial as a measure of reference memory,
while thigmotaxis, the tendency of mice to swim within 10 cm of the edges of the maze®, was used to assess anx-
iety®. Immobility indicates complete lack of movement, including that of limbs and grooming, while not moving
indicates lack of spatial displacement. Data was recorded using the EthoVision® XT 8 automated tracking system
(Noldus Information Technology, VA).

Brain sample collection. On day 8 post infection, mice were euthanized with halothane to collect hip-
pocampi. Hippocampi were collected into CentriStar™ cap 15ml Corning® centrifuge tubes (Corning, NY) in
Isove’s Modified Dulbecco’s Medium (IMDM) (GIBCO/Invitrogen; Carlsbad, CA), 10% Fetal Calf Serum (FCS),
and penicillin streptomycin (P/S) on ice. Tissue was pushed through 40 um nylon cell strainers (Falcon®, Corning
Incorporated, NY), centrifuged at 1200 rmp at 4 °C for 10 min and re-suspended in 450 pl IMDM buffer for flow
cytometry staining.

FACS of Hippocampal isolates. Flow cytometry was used to determine macrophage and microglia popu-
lations in single cell preparations of the hippocampus prepared in complete media; IMDM (GIBCO/Invitrogen;
Carlsbad, CA), 10% FCS, and P/S on ice. Samples were stained with an antibody mix (MACS buffer +1% inac-
tivated Rat serum, 1% a-FenII/ITT (clone 2.4G2), a-F4/80 (clone GK1.5; BD Pharmingen™, FITC), and a-Ibal
(clone GR106078-1; Abcam®, FITC) for 30 min on ice, and then fixed in 2% paraformaldehyde before permea-
bilization (0.5 g saponin, 0.055 g CaCl2, 0.0625 g MgSO4, 0.25g NaN3, 0.5g BSA, 10 mM HEPES in final volume
of 500 ml of 1X PBS) for 1 hour at 4°C. Intracellular staining of samples was done with an antibody mix (MACS
buffer +2% inactivated Rat serum, 2% o-Fc~NII/III (clone 2.4G2), a-IL-1cx (clone ALF-161; BioLegend®, PE);
a-IL-6 (Lot 99523; BP PharmingenTM, PE); a-iNOS2 (clone Sc651; Santa Cruz Biotechnology®), a-MHCII (clone
M5/114.15.2; eBioscience®, AlexaFluor 700), a-IL-4 (clone 11B11; eBioscience®, APC); a-IL-13 (clone eBio13A;
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eBioscience®, PE Cy7); and a-Arginasel (clone H1010; Santa Cruz Biotechnology®) for 30 min on ice and read
by a Becton Dickinson FACS FORTESSA machine (BD San Diego, CA). Data was analyzed by FlowJo© Treestar
(Ashland, OR) and graphed with GraphPad Prism® software. Unless otherwise stated, antibodies were from BD
Pharmingen™.

Statistical Significance. Statistical significance was measured by two-tailed unpaired student t-tests,
or two-way analysis of variance (ANOVA) corrected for multiple comparisons with a Bonferroni post-hoc.
GraphPad Prism v 6.0 was used for analyses, with a ‘p’ value of less than 0.05 considered significant (*p < 0.05,
#3kp < 0.01, #%p < 0.001).
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