Skip to main content
. 2018 Feb 9;12:23. doi: 10.3389/fnins.2018.00023

Table 1.

Summary of the different training parameters used in this study.

Network Model architecture Batch size No.of epochs
GRU RNN 2x 100 GRU - 100 Dense (ReLU) - 10 Softmax 128 200
LSTM RNN 100 Dense (SELU) - 2x 100 LSTM - 10 Dense 128 200
Phased LSTM 2x 250 Phased LSTM - 10 Dense 16 50

Tha Adam optimizer with a learning of 0.001 was used for all the networks.