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Abstract

Background: Microbial longitudinal studies are powerful experimental designs utilized to classify diseases,
determine prognosis, and analyze microbial systems dynamics. In longitudinal studies, only identifying differential
features between two phenotypes does not provide sufficient information to determine whether a change in the
relative abundance is short-term or continuous. Furthermore, sample collection in longitudinal studies suffers from all
forms of variability such as a different number of subjects per phenotypic group, a different number of samples per
subject, and samples not collected at consistent time points. These inconsistencies are common in studies that
collect samples from human subjects.

Results: We presentMetaLonDA, an R package that is capable of identifying significant time intervals of differentially
abundant microbial features.MetaLonDA is flexible such that it can perform differential abundance tests despite
inconsistencies associated with sample collection. Extensive experiments on simulated datasets quantitatively
demonstrate the effectiveness ofMetaLonDA with significant improvement over alternative methods. We applied
MetaLonDA to the DIABIMMUNE cohort (https://pubs.broadinstitute.org/diabimmune) substantiating significant early
lifetime intervals of exposure to Bacteroides and Bifidobacterium in Finnish and Russian infants. Additionally, we
established significant time intervals during which novel differentially relative abundant microbial genera may
contribute to aberrant immunogenicity and development of autoimmune disease.

Conclusion: MetaLonDA is computationally efficient and can be run on desktop machines. The identified
differentially abundant features and their time intervals have the potential to distinguish microbial biomarkers that
may be used for microbial reconstitution through bacteriotherapy, probiotics, or antibiotics. Moreover,MetaLonDA
can be applied to any longitudinal count data such as metagenomic sequencing, 16S rRNA gene sequencing, or
RNAseq.MetaLonDA is publicly available on CRAN (https://CRAN.R-project.org/package=MetaLonDA).
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Background
Longitudinal studies of the microbiome have gained
tremendous popularity during the past few years due to
the ability to detect trends of microbiome changes over
time and relate these changes to disease progression in
different parts of the body, such as the gut, kidney, skin,
or lung [1–6]. In addition, there has been a drastic reduc-
tion in sequencing cost that has made longitudinal studies
more affordable on a large scale.
Two major types of analysis can be performed in lon-

gitudinal microbial studies that snapshot studies cannot
provide: (a) analysis over time to capture the dynamics
of microbial interactions [7, 8] and (b) association studies
that correlate change of microbial features, such as tax-
onomies, genes, or average relative abundance of pathway
components, with a phenotypic group. The latter analysis
is usually challenged by variability in longitudinal sam-
ple collections, including inconsistencies in the number
of subjects per phenotype, number of samples per sub-
ject, and sample collection at inconsistent time points.
These inconsistencies increase with the level of difficulty
with which samples are obtained from the subjects. For
example, in humans, the variability decreases in samples
collected non-invasively (e.g., stool and urine samples) but
increases in the invasive procedures (e.g., bronchoalveolar
lavage (BAL) samples which are extracted from the lung
by bronchoscopy).
One solution to address this variability is to bin sam-

ples into a certain number of windows between the start
and end times of the study course by selecting the near-
est sample in time for each bin [2], then, compare the
microbial feature’s relative abundance or diversity indices
[9–11] between any pair of time points to characterize any
pairwise changes. The limitation of this approach is that
it deals with the longitudinal data points as a collection
of static snapshots and ignores temporal dependencies.
Furthermore, if more than one sample is taken in the
same time window, it may result in either retaining only
one sample and excluding the others or taking the aver-
age of the measured feature’s values, which may lead to
mischaracterizing the exact microbial behavior.
Another strategy is to identify time intervals of differen-

tially abundant microbial features. To date, two methods
have been proposed: the first is MetaSplines [12], and the
second is MetaDprof [13]. MetaSplines and MetaDprof
are both based on the Gaussian smoothing spline ANOVA
(SS-ANOVA) approach [14–16], where the Gaussian dis-
tribution is used to model the number of reads mapped
to each microbial feature. MetaSplines has a higher sen-
sitivity of detecting time intervals of differentially abun-
dant features than MetaDprof, but MetaDprof has higher
specificity [13].MetaDprof has amajor drawback, namely,
its implementation assumes consistency in longitudinal
microbial samples, such that it is only able to perform

the analysis on an equivalent number of subjects per phe-
notypic group, the same number of samples from each
subject, and the same elapsed time between adjacent time
points. However, these conditions are rarely fulfilled in
human microbiome longitudinal studies.
In this paper, we introduce MetaLonDA (Metagenomic

Longitudinal Differential Abundance method), an R pack-
age that performs longitudinal differential abundance
tests in a strategy that can identify time intervals of micro-
bial features that are significantly over/under abundant
in a phenotypic group. MetaLonDA is flexible such that
it can handle all types of inconsistencies in microbial
sample collections. The identified differentially abundant
features and their time intervals have the potential to
distinguish microbial biomarkers that may be used for
microbial reconstitution therapy through bacteriotherapy,
probiotics, or antibiotics and may also suggest timing and
duration of the therapy.

Implementation
The main components of the MetaLonDA framework are
shown in Fig. 1.

Input
Metagenomic reads are processed for each sample to con-
struct taxonomic and/or functional profiles [17–20]. The
taxonomic profiles, functional profiles, or both for all
samples from different subjects are then integrated into
one count table C with a dimension of m × n, where m
denotes the number of microbial features and n denotes
the number of metagenomic samples. C(i, j) represents
the number of reads from sample j that mapped to micro-
bial feature i. The count table C is the main input to
MetaLonDA. Additionally, three vectors each of length
n are needed for MetaLonDA to perform the analysis:
(a) time of sample collection vector T, (b) phenotypic
group vector G, and (c) subject ID vector I. As previ-
ously highlighted,MetaLonDA supports unequal numbers
of samples between subjects, unequal numbers of subjects
between phenotypic groups, and uneven elapsed time
between time points.

Normalization
Since metagenomic samples may have different sequenc-
ing depths, the aggregated metagenomic counts need
to be normalized among samples [21, 22]. MetaLonDA
incorporates three different normalization methods into
its framework: (a) cumulative sum scaling [12], (b)
median-of-ratios scaling factor [23], and (c) trimmed
mean of M values [24]. If the count table is already nor-
malized, the normalization step should be skipped in
MetaLonDA. As a preprocessing step forMetaLonDA and
based on a user-specified threshold, relatively low abun-
dant features are removed from the metagenomic count
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Fig. 1MetaLonDA framework

table. In ourmodel, we assume that the normalized counts
of each feature follow a negative binomial (NB) distribu-
tion, which is different from modeling the original counts
as NB distributed after incorporating a size factor into the
mean as in DESeq2 [23].

MetaLonDA core algorithm
The MetaLonDA algorithm relies on two modeling com-
ponents: the NB distribution for modeling the mapped
read counts for each feature and the semi-parametric
SS-ANOVA technique for modeling longitudinal profiles
associated with each phenotype [25]. By fixing a feature
f = 1, . . . , F , the data under consideration are the random
variables Ytki or their observations ytki of mapped reads of
the ith subject of phenotype k to the feature f at time point
t, where t = 1, . . . ,T , k = 1, 2, and subject i = 1, . . . , nk .
The random variable Ytki is assumed to follow NB distri-
bution as shown in Eq. (1), with integer α > 0 and success
probability p(t, k) ∈ (0, 1).

Ytki ∼ NB(α, p(t, k)) (1)

Assuming Ytki’s are independent, the log-likelihood given
time-course metagenomic count profiles y = {ytki}t=1,...,
T ;k=1,2;i=1,...,nk is calculated as in Eq. (2)

L = log L(p,α | Y = y) (2)

We seek the estimation of model parameters α and
p(t, k) by maximizing Eq. (2) (Additional file 1). To model
the time and phenotypic effect, we use a general linear
model with a logit link as in Eq. (3)

η(t, k) = log
p(t, k)

1 − p(t, k)
(3)

Following [16], in order to control the smoothness of the
function η, a roughness penalty J(η) is added to the minus
log-likelihood together with the smoothing parameter
λ > 0 for the trade-off between the goodness of fit and
the smoothness of the spline curve as in Eq. (4), where the
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smoothing parameter λ is determined by cross-validation
procedure.

min
p,α

−L + λ · J(η) (4)

The solution to the optimization problem in Eq. (4)
leads to a smoothing spline that fits the reads from sam-
ples across multiple time points. After fitting longitudinal
profiles in each phenotypic group with a NB smoothing
spline, the area ratio ARt,t+1 between the two modeled
curves per unit time interval is calculated as in Eq. (5),
where Ak1

t,t+1 and Ak2
t,t+1 denote the area under the spline

curve from time t to time t + 1 for group 1 and group 2,
respectively, t = 1, . . . ,T − 1.

ARt,t+1 = Ak1
t,t+1 − Ak2

t,t+1

max(Ak1
t,t+1,A

k2
t,t+1)

(5)

The p-value of each time interval is then calculated
based on the ARt,t+1 empirical distribution which is con-
structed by a permutation test. The significant time inter-
vals are identified as those with p-value < threshold
(default = 0.05) after multiple testing corrections using
Benjamini-Hochberg (BH) [26]. The complete mathemat-
ical derivation of the MetaLonDA algorithm is illustrated
in details in Additional file 1.

Output format and visualization
MetaLonDA outputs a table that includes significant
features, start and end points of the corresponding sig-
nificant intervals, the adjusted p-value of each significant
time interval, and the phenotypic group in which the
corresponding feature is more abundant. In addition
to the output table, MetaLonDA produces two types of
visualizations: (a) a figure showing the fitted splines of
each group and the associated time interval for each
feature that has at least one significant time interval and
(b) a figure visualizing the identified time intervals of the
differentially abundant features (as shown in Fig. 6).

Results and discussion
Evaluation of the negative binomial assumption
One major assumption of MetaLonDA is that the num-
ber of metagenomic reads mapped to microbial features
follows a NB distribution. To evaluate this assumption,
we extracted the count data from Caporaso et al. [1].
In this dataset, microbial samples were taken on a daily
basis from a man and a woman over a period of 15 and
6 months, respectively, from four different body sites. The
obtained read counts were normalized using the median-
of-ratios scaling factor method [23]. After filtering out
the relatively rare operational taxonomic units (OTUs)
with fewer than five reads, a total of 750 OTUs were
selected from 1967 samples. The Q-Q plot in Fig. 2 exem-
plifies the suitability of modeling read counts of Klebsiella

species using different parametric distributions, namely,
NB, Poisson, zero-inflated Poisson (ZIP), and lognormal
distributions. The theoretical quantiles of each parametric
distribution are calculated from random numbers gen-
erated from each parametric distribution with parame-
ters estimated from each OTU read count (parameter
fitting methods for each distribution are discussed in
Additional file 1). The p-value on the top of each sub-
figure of Fig. 2 represents the BH-adjusted p-value of the
two-sample Kolmogorov-Smirnov (KS) test [27], where a
higher p-value indicates that the two samples are derived
from the same population distribution and smaller p-value
indicates that the two samples are drawn from different
population distributions. In the case of Klebsiella, only the
NB distribution is considered suitable (p-value = 0.28).
To evaluate all other features, we applied the KS test to

the read counts of each of the 750 OTUs and the sampled
numbers from the corresponding parametric statistical
distribution that had the same parameters as estimated
from the read counts. Table 1 summarizes the number of
features that do not show significant divergence (p-value
> 0.05 after BHmultiple testing corrections) withNB, ZIP,
Poisson, lognormal, exponential, half-normal, and normal
distributions. Out of the 750 features, 96% were mod-
eled appropriately using NB distribution. In comparison,
ZIP and Poisson were appropriate for 41% and 26% of
the OTUs, respectively, whereas the rest of the paramet-
ric distributions employed in this analysis barely fit. This
indicates the appropriate use of NB as a parametric dis-
tribution model forMetaLonDA when compared to other
standard parametric distributions. Furthermore, this find-
ing is consistent with previous studies that show that
cross-sectional differential abundance methods that use a
NB distribution to model microbial features outperform
methods that rely on other distributions, especially when
the number of samples is small [28].

Performance evaluation based on simulated datasets
In order to benchmark MetaLonDA’s performance, we
performed a comprehensive simulation study. Longitudi-
nal features (n = 1000) were simulated fromNB, Poisson,
and ZIP distributions using the corcounts R package [29].
Although read counts of metagenomic features follow NB
distribution as shown in Table 1, the purpose of simulating
data from Poisson and ZIP was to evaluate the robustness
ofMetaLonDAwhen read counts fail to follow the NB dis-
tribution. These simulated features were categorized into
two types: (a) 500 differentially abundant features between
the two testing groups and (b) 500 features that were not
differentially abundant between the two testing groups. In
the case of the differentially abundant features (demon-
strated in Fig. 3a), the mean μ(t) pattern is simulated to
be differentially abundant in three regions: (a) at the start
of the study course, (b) at the end of the study course, and
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Fig. 2 Quantile-quantile plot between different theoretical distributions and Klebsiella read counts. Each sub-figure represents a different
distribution: (a) NB distribution, (b) Poisson distribution, (c) ZIP distribution, (d) lognormal distribution. The p-value above each sub-figure represents
the significance of the KS test between the sample quantiles and the theoretical quantiles of the corresponding distribution. The NB distribution is
most appropriate to model the OTU count among other standard distributions

(c) in the middle of the study course (Additional file 1).
In the case of non-differentially abundant features, the
μ(t) = N(20, 1), where N denotes normal distribution
and t = 0, . . . , 20.
For features simulated from the NB distribution, we

used a size factor equal to 40/μ(t). In the case of Pois-
son distribution, we used λ = μ(t), and in the case of
zero-inflated Poisson distribution, we used p(y = 0) = 0.3
for the zero-inflation parameter. Our choice of the zero-
inflation probability was based on the analysis of p̂(y = 0)
when we fitted all features in the Caporaso et al., study
[1] with the ZIP distribution (Table 1). The histogram in
Additional file 2 shows that 75% of the p̂(y = 0) is less
than 0.3 (median of p̂ = 0.1). Therefore, our choice of 0.3
is to evaluate how MetaLonDA performs in this case of
simulated zero inflation.
In order to mimic the correlation behavior between

adjacent time points in longitudinal studies, the simu-
lation of read counts of adjacent samples followed the
first-order autoregressive model [30] with a correlation
coefficient ρ = 0.9. Datasets were simulated for 15 sub-
jects with 20 time points each (T = 20). Additionally, to
mimic inconsistencies in the number of subjects per group
and number of samples per subject, we randomly chose 11

samples from 8 subjects from group A and 8 samples from
6 subjects from group B (Fig. 3a).
We proceeded to evaluate the performance of

MetaLonDA in comparison to MetaSplines, MetaDprof,
and LOWESS [31]. LOWESS is a non-parametric local
regression model that is based on combining multiple
regression models in a k-nearest-neighbor-based meta-
model. In the context of this paper, LOWESS refers to
using the LOWESS regression model to substitute the NB

Table 1 Number and percentage of species out of 750 species
that do not show significant differences (KS p-value> 0.05) with
various standard statistical parametric distributions

Number Percentage

NB 721 96.13

ZIP 309 41.20

Poisson 201 26.80

Lognormal 1 0.13

Exponential 0 0

Half-normal 0 0

Normal 0 0

The count data is taken from Caporaso et al. [1]
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Fig. 3 Pattern and performance evaluation of data simulated from various statistical distributions. (a) The pattern of the simulated longitudinal
features. Each differentially abundant feature has time intervals between group A and B at [1,5]

⋃
[8,13]

⋃
[15,20] and non-differential time intervals

[5,8]
⋃

[13,15]. The simulated data mimics inconsistencies in sample collection (different number of subjects per group, different number of
samples per subject, and samples not equally spaced.) (b) The fitted smoothing spline of each group and the highlighted significant time intervals
between the two groups. (c–e) The performance of different tools using data simulated from NB, Poisson, and zero-inflated Poisson, respectively.
Each bar represents the mean among 1000 features, and the error bar represents the standard deviation.MetaLonDA always has a higher specificity
than LOWESS andMetaSplines. This showsMetaLonDA’s robustness among different distributions

distribution in MetaLonDA’s framework. Each method
was run for 1000 permutations to construct the AR empir-
ical distribution. The p-value threshold was set to 0.05
after multiple testing corrections using BH. The rest of the
parameters were set to default. The assessment is based
on the sensitivity = TP

TP+FN and specificity = TN
TN+FP .

In this context, TP represents the number of truly iden-
tified time intervals of differentially abundant features.
TN represents the number of truly identified time
intervals of non-differentially abundant features, FP
represents the falsely identified time intervals of non-
differentially abundant features, and FN represents the
falsely identified time intervals of differentially abundant
features.

Table 2 shows the performance evaluation based on
consistent sampling, i.e., the ideal scenario which is rare.
MetaLonDA has the most balanced prediction in terms
of sensitivity and specificity followed by MetaDprof and
MetaSplines.
Next, we benchmarked MetaLonDA using the incon-

sistent sampling scenario. In this experiment, MetaDprof
was excluded since its package cannot handle the sam-
pling inconsistencies. In the case of data simulated from
NB distribution, Fig. 3c shows that MetaLonDA out-
performs MetaSplines and LOWESS in sensitivity and
specificity. On the other hand, in the case of data simu-
lated from Poisson distribution, Fig. 3d demonstrates that
LOWESS has a slightly better sensitivity thanMetaLonDA
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Table 2 Performance evaluation of data simulated from various statistical distributions mimicking consistent sampling

NB Poisson ZIP

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

MetaLonDA 98 95 99 96 84 90

MetaDprof 94 94 86 94 87 96

LOWESS 96 80 100 47 94 60

MetaSplines 81 79 85 59 60 64

(100 vs. 98%). But, the specificity of LOWESS andMetaS-
plines is very low when compared to MetaLonDA (50
vs. 95%). This is because LOWESS and MetaSplines
over-fit the data. Lastly for the case of the zero-inflated
Poisson, Fig. 3e shows that MetaLonDA, MetaS-
plines, and LOWESS have a comparatively low level of
sensitivity(∼ 50%), butMetaLonDA has higher specificity.
The reason behind this low sensitivity is the high zero
inflation probability we chose for ZIP, p(y = 0) = 0.3.
To summarize, MetaLonDA always maintains a very high
specificity, in contrast to LOWESS andMetaSplines.

The execution time of MetaLonDA, MetaDprof, and
MetaSplines is comparable and depends on the number
of permutations used. Analysis of the simulated dataset
from a NB distribution with 1000 features took 104 min
with MetaLonDA, 113 min with MetaDprof, and 99 min
with MetaSplines. The analysis was conducted on a MAC
machine with 2.5 GHz Intel Core i7 processor and 16 GB
1600 MHz RAM. For the same analysis, LOWESS was
slightly faster (87 min) because it does not have the com-
plex smoothing spline optimization Eq. (4) that needs to
be solved numerically.

Performance evaluation on a biological dataset: hygiene
hypothesis study
In order to assess the biological significance of the iden-
tified time intervals of differentially abundant features,
we used a publicly available dataset from a longitudinal

metagenomic study that investigates the hygiene hypoth-
esis [3]. The study was part of the DIABIMMUNE project
(https://pubs.broadinstitute.org/diabimmune). Stool sam-
ples were collected from 222 infants (74 from Russia, 74
from Finland, and 74 from Estonia) from birth to ∼ 3
years of age. In our analysis, we identified the time inter-
vals with differentially abundant genera in Russian and
Finnish infant guts. We focused on the 585 samples (304
from 70 Russian infants and 281 from 71 Finnish infants)
that had been sequenced using metagenomic shotgun
(MGS) sequencing. Figure 4 shows the distribution of
time points of the stool samples collected from each
group (Additional file 3 shows the distribution of time
points per subject). Reads from the 585 sequenced sam-
ples were quality-controlled by filtering out low-quality
reads, short reads (< 60 bp), and human reads. Taxo-
nomic profiles were constructed using MetaPhlAn2 [32].
The number of reads mapped to each taxonomic fea-
ture was then normalized to the reads per kilo-base per
million (RPKM) sample reads to correct for bias due to
differences in genome size and sequencing depth. The
aggregated taxonomic profiles of all 585 samples revealed
128 genera.
In order to evaluate the suitability of using NB to model

genera read counts before applying MetaLonDA, we con-
ducted an analysis similar to the one shown in Table 1. We
found that NB can be considered a good fit for 79% of the
128 genera (Additional file 4 shows a detailed comparison
between different parametric distributions).

Fig. 4 Time distribution of 585 stool samples (304 from 70 Russian and 281 from 71 Finnish) sequenced using MGS in the DIABIMMUNE project. The
collected samples have various forms of inconsistencies, different numbers of subjects per group (70 Russian vs 71 Finnish infants), and different
numbers of samples per subject (min = 1, max = 13), and the samples’ time points are not equally spaced

https://pubs.broadinstitute.org/diabimmune
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We applied MetaLonDA, LOWESS, and MetaSplines to
identify the time intervals of the differentially abundant
genera. We set the number of permutations for all three
methods to 1000, p-value threshold = 0.05, multiple
testing correction method to BH, and other parameters
to default. MetaLonDA identified 71 genera that have
at least one time interval with differentially abundant
genera, LOWESS identified 122 genera, and MetaSplines
identified 80 genera. Although there are 53 mutually
inclusive common genera identified by the three meth-
ods as shown in Fig. 5, this does not necessarily indi-
cate that they share the same identified time intervals
as demonstrated in Fig. 6. LOWESS identified 30 gen-
era that neither MetaSplines nor MetaLonDA reported.
Whereas MetaLonDA identified 2 genera that were not
reported by either LOWESS orMetaSplines. These results
emphasize the high control of false positive identifica-
tions by MetaLonDA. The previously discussed simula-
tion study concluded that LOWESS andMetaSplines have
lower specificity compared to MetaLonDA. Thus, Met-
aLonDA discovery of few significant time intervals is
directly related to its increased specificity compared to the
other two methods.
Figure 6 visualizes differences between the time inter-

vals identified byMetaLonDA, LOWESS, andMetaSplines
correlating with the major shared genera. In most cases,
the time intervals identified by MetaLonDA were also
identified by either LOWESS, MetaSplines, or both. One
critical observation that likely contributes the greater
number of false positives observed in MetaSplines is
that it sometimes identifies time intervals where samples
from one group are missing. The absence of one group’s
samples can make the spline fitting uncontrollable [16].

Fig. 5 Number of genera identified as differentially abundant
between the Finnish and Russian infants. Fifty-three common genera
were identified as differentially abundant using the three tools. The
“17” on the lower right corner represents the number of genera that
were not identified at any time interval byMetaLonDA, LOWESS, or
MetaSplines

For example, MetaSplines identified Actinobacillus as rel-
atively more abundant in the Russian infants from day
40 until day 65, although the first Russian sample was
collected 96 days after birth. MetaLonDA handles this
situation by only reporting significant intervals during
the time period when samples from all study groups are
available. In the case of the hygiene hypothesis study, indi-
vidual genera’s time intervals identified by MetaLonDA
are bounded in the range of 96 to 1105 days. Day 96 was
the day on which the first sample from a Russian infant
was collected, and day 1105 is when the last Russian sam-
ple was collected (the first sample from Finnish infants
was on day 41, and the last was on day 1162). Since we
implemented LOWESS on the same MetaLonDA frame-
work, it also handles this edge problem. A list of all time
intervals identified byMetaLonDA, LOWESS, andMetaS-
plines are shown in Additional file 5. Additional file 6
shows the time intervals of differentially abundant gen-
era identified byMetaLonDA, LOWESS, andMetaSplines,
while Additional file 7 shows time intervals identified by
MetaLonDA only.
In our analysis, MetaLonDA confirms the report by

Vatanen et al. demonstrating that the genus Bacteroides
is relatively more abundant during early time points in
the Finnish group, whereas the genus Bifidobacterium
is relatively more abundant in the Russian group [3].
MetaLonDA specifies that Bacteroides were significantly
abundant during days 96–584 in Finnish infants, and Bifi-
dobacterium were relatively more abundant in Russian
infants from day 96 to day 720. Furthermore, in their
study, Vatanen et al. noted that early life exposure to
specific structurally distinct bacterial lipopolysaccharides
(LPS) influences the development of autoimmune disease.
They suggest that in contrast to Russian infants, Finnish
infants mount an insufficient immune response due to
exposure to Bacteroides LPS rather than Escherichia coli
LPS. Utilization of MetaLonDA in this cohort demon-
strates that Escherichia establishes a significant commu-
nity in Russian infants from day 550 to 946 with little
variability. MetaLonDA also defined specific time inter-
vals during which other bacterial genera (e.g., Lacto-
bacillus, Leptotrichia, Klebsiella) previously associated as
protective or instigating of type 1 diabetes (T1D) were
differentially abundant [33, 34]. Moreover, MetaLonDA
established that up until day 629, Finnish infants present
an additional shift in Proteobacteria with an overabun-
dance of genera that are known to be implicated in
human disease, including Campylobacter, Haemophilus,
Klebsiella, and Neisseria. In parallel, when evaluating
genera that have previously been associated with protec-
tion against T1D, MetaLonDA reveals a divergence from
Lactobacillus and Lactococcus to Veillonella as the domi-
nant Firmicutes genera observed early in the life of Finnish
infants. These findings suggest that there is a complex
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Fig. 6 The time intervals of the mutually differentially abundant genera from Finnish and Russian infants identified byMetaLonDA, LOWESS, and
MetaSplines. Each line represents significant time interval of the corresponding genera.MetaLonDA (purple), LOWESS (green),MetaSplines (orange).
The solid lines represent the intervals where samples from the Finnish group have more reads, while the dashed lines represent the differential
abundance intervals where samples from the Russian group have more reads

interplay of multiple bacterial genera early in life which
may all have immunogenic potential and will allow, in this
case, further exploration of the role of bacteria-specific
LPS as well as other microbial specific stimulators or
inhibitors of the host immune response and their role in
development of autoimmune disease.

Conclusion
We have developed MetaLonDA as an R package that
can identify significant time intervals of differentially
abundant microbial features such as taxonomies, genes, or
pathways.MetaLonDA is flexible such that it can perform
differential abundance tests on longitudinal samples with
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different numbers of subjects per phenotypic group, dif-
ferent numbers of samples per subject, and samples that
are not collected at consistent time points. These incon-
sistencies are often the case for samples collected from
human subjects. Inconsistencies increase with the com-
plexity of the procedure utilized to obtain the samples.
Usually, there is less inconsistency in samples collected
through non-invasive procedures such as stool and urine
samples but increases in the case of invasive procedures
such as BAL. MetaLonDA relies on two modeling com-
ponents: the NB distribution for modeling the mapped
read counts for each feature and the semi-parametric
SS-ANOVA technique for modeling longitudinal profiles
associated with different phenotypes.
Extensive experiments on simulated datasets quantita-

tively demonstrate the effectiveness of MetaLonDA with
significant improvement over alternative methods. The
time needed to execute MetaLonDA depends on the
number of features being tested and the number of per-
mutations for generating AR empirical distributions.Met-
aLonDA performs significance testing based on unit time
intervals that can be hours, days, weeks, months, or
years. The identified time intervals of differentially abun-
dant features can be used as preselected features for a
machine learning classifier to predict disease prognosis
[35–37]. MetaLonDA can be applied to any longitudi-
nal count data such as metagenomic sequencing, 16S
rRNA gene sequencing, or RNA-Seq. It is worth noting
that the NB assumption made for taxonomy would need
to be reassessed before MetaLonDA can be confidently
applied to functional data. In the future, we plan to imple-
ment a checker function that evaluates the distributional
assumption based on KS test, and accordingly, the best fit-
ted model can be utilized for the longitudinal differential
abundance test.
Furthermore,MetaLonDA allows for an in-depth explo-

ration of potential features and establishment of precise
time intervals during which individual features may serve
as biomarkers from population-based longitudinal stud-
ies such as the DIABIMMUNE cohort discussed in this
paper. Specific significant time intervals can then be uti-
lized to establish targeted timely screening or prevention
of individual features and allow for prompt intervention,
such as the use of antibiotics or probiotics. Unlike with
cross-sectional methods that are incapable of identify-
ing significant time intervals associated with differentially
abundant features, MetaLonDA may lead to reconstitu-
tion of the microbiome and reestablish homeostasis prior
to entering the cascade of events that may lead to overt
disease.
Although MetaLonDA addresses one of the most

common limitations in human sample collection incon-
sistencies, there is still room for improvement. The
current version of MetaLonDA only finds the association

between microbial features, time, and phenotypic group.
In the future, we plan to incorporate additional con-
founding factors (age, gender, race, disease severity, etc.)
to the MetaLonDA model. Another limitation of Met-
aLonDA is that when samples are sparse over extended
time intervals, the fitted smoothing spline has large
variation [16]. This causes the identified significant
time intervals to be unreliable and should be excluded
from the analysis. Thus, identification of these extended
intervals based on a statistical method merits further
investigation.
MetaLonDA is publicly available on the CRAN reposi-

tory (https://CRAN.R-project.org/package=MetaLonDA).
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age=MetaLonDA
Source-code available at: https://github.com/aametwa-
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