
1α,25-dihydroxyvitamin D3 mitigates cancer cell mediated 
mitochondrial dysfunction in human skeletal muscle cells

Zachary C. Ryana,b, Theodore A. Craiga,b, Xuewei Wangc, Philippe Delmotted, Jeffrey L. 
Salisburye, Ian R. Lanzaa,f, Gary C. Sieckd, and Rajiv Kumara,b,e,f,*

aDepartment of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA

bDivision of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 
55905, USA

cDepartment of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 
55905, USA

dDepartment of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, 
Rochester, MN 55905, USA

eBiochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, 
USA

fDivision of Endocrinology/Metabolism, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, 
USA

Abstract

Cancer cachexia is associated with muscle weakness and atrophy. We investigated whether 1α,25-

dihydroxyvitamin D3 (1α,25(OH)2D3), which has previously been shown to increase skeletal 

myoblast oxygen consumption rate, could reverse the deleterious effects of tumor cell conditioned 

medium on myoblast function. Conditioned medium from Lewis lung carcinoma (LLC1) cells 

inhibits oxygen consumption, increases mitochondrial fragmentation, inhibits pyruvate 

dehydrogenase activity, and enhances proteasomal activity in human skeletal muscle myoblasts. 

1α,25(OH)2D3 reverses the tumor cell-mediated changes in mitochondrial oxygen consumption 

and proteasomal activity, without changing pyruvate dehydrogenase activity. 1α,25(OH)2D3 might 

be useful in treatment of weakness seen in association with CC.
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1. Introduction

Cancer cachexia (CC) is associated with decreased skeletal muscle mass and function, 

increased morbidity and mortality, and reduced response to chemotherapy and survival 

following surgery [1,2]. Altered regulation of inflammatory, activin A-myostatin, ubiquitin-

proteasome, and autophagy-lysosome pathways is observed in CC in vivo [3–8]. Skeletal 

muscle mitochondrial volume density, dynamics, and oxidative protein expression are 

altered in CC models in vivo [9]. Tumor cell-derived mediators such as TNFα, IL-6, 

TWEAK, myostatin, PTHrp and extra-cellular vesicle HSP have been postulated to play a 

role in the pathogenesis of CC [3–6,10–15]. Therapy with reagents that block effects of 

various mediators e.g. anti-IL6 antibody [16], anti-activin/myostatin reagents [10], and anti-

TNFα reagents [17,18], however, has not resulted in clinical improvement of CC. Other 

therapeutic approaches are needed to reverse or mitigate CC. In an earlier report [19], we 

showed that the active vitamin D metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), 

increased cellular oxygen consumption rate (OCR), mitochondrial volume and branching in 

association with changes in expression of mitochondrial pro-fusion and profession proteins 

and pyruvate dehydrogenase activity in human skeletal muscle myoblasts. The salutary 

effects of 1α,25(OH)2D3 on skeletal muscle function led us to investigate its ability to block 

deleterious effects of tumor conditioned medium (CM) on muscle cells. We show that 1α,

25(OH)2D3 attenuates the deleterious effects of tumor CM on human skeletal muscle 

myoblasts.

2. Methods

2.1. Cell culture

Human skeletal muscle cells (Lonza, CC-2561) were grown at 37°C in 5% CO2 in CC-3161 

medium [19]. Lewis lung carcinoma-1 cells (LLC1 ATCC® CRL-1642, Manassas, VA 

20110 USA) were cultured in Dulbecco's MEM containing 10% FBS. MLE12 cells 

(ATCC®: CRL-2110) were cultured in HITES medium supplemented with 2% FBS. 

HEK-293 cells (ATCC®: CRL-1573) were cultured as recommended.

2.2. Measurement of oxygen uptake by cells

An XF24 Extracellular Flux Analyzer (Seahorse Biosciences) was utilized to measure OCR 

and proton production rate (PPR) as previously described [20]. Cells were seeded on a 

microplate (10,000 cells/well). At ~80–90% confluence, cells were treated with CM with or 

without added 1α,25(OH)2D3 (10−8M) or ethanol, which was added 24 h prior to the 

experiment. LLC1 and MLE12 CM was filtered with 0.45 μM filters prior to use. OCR was 

measured following sequential addition of oligomycin (0.5 μg/ml), FCCP (1 μM) and 

rotenone (0.5 μM)/antimycin A (1 μM). Baseline respiration rate, coupled respiration rate, 

maximal respiration rate and oxidative reserve were calculated [21].

2.3. Assessment of mitochondrial morphology and fragmentation

Myoblasts were plated on 8-well glass-bottom plates (LabTek), treated with LLC1 CM with 

or without added 1α,25(OH)2D3 (10−8M) or ethanol for 24 h, and incubated with 500 nM 

Mito-Tracker Green FM (Life Technologies; Ex 490 nm/Em 516 nm) for 5 min at 22 °C. 
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Cells were imaged using a Nikon A1R confocal system [19]. Mitochondrial morphometric 

analysis was performed as described by Koopman et al. [22,23]. Form factor and aspect ratio 

were calculated [24]. A decrease in aspect ratio and/or form factor indicates mitochondrial 

fragmentation [22–24]. For electron microscopy (EM), cells were fixed in Trump's fixative, 

post-fixed with 1% OsO4, washed in H2O, en-bloc stained with 2% uranyl acetate, 

dehydrated through an ascending ethanol series, and infiltrated with Embed-812. Sections 

were stained with lead acetate and observed on a JEOL 1400 electron microscope operated 

at 80 kV.

2.4. Assessment of mitochondrial protein expression

We assessed changes in mitochondrial protein expression using Western blotting with 

antibodies (from Abcam, unless otherwise noted) directed against the following 

mitochondrial proteins or complexes: VDAC1/Porin (ab15895), PDH antibody cocktail 

(ab110416), PDH E1-α-subunit, phospho-293 (ab177461), PDP2 (ab133982), PDK4 

(ab71240), total OXPHOS (ab110411), Mfn-1 (ab57602), Mfn-2 (ab56889), OPA1 

(ab42364), Drp-1 (ab56788), and Fis1 (sc-98900, Santa Cruz Biotechnology) as described 

[19].

2.5. Assessment of mitochondrial and nuclear DNA

Total DNA was prepared from treated myoblasts was used to measure mitochondrial genes 

ND1 and ND6 and nuclear genes BECN1 and NEB using a NovaQUANT™ human 

mitochondrial to nuclear DNA ratio kit (EMD Millipore).

2.6. Measurement of pyruvate dehydrogenase in cell homogenates

Pyruvate dehydrogenase (PDH) was measured in 96-well plates with a colorimetric assay 

(BioVision, Milpitas, CA).

2.7. Measurement of proteasomal activity

Chymotrypsin-like proteasomal activity was measured with the Proteasome-Glo kit from 

Promega (G8660). Myoblasts were scraped from a T175 fiask, re-suspended in growth 

medium, and added to a 96-well white-walled plate at a seeding density of 10,000 cells/ 

well. At 80–90% confluence, cells were treated with LLC1 CM or non-CM with or without 

added 1α,25(OH)2D3 (10−8M) or ethanol for 24 h prior to the experiment. 100 μL of 

Proteasome-Glo cell-based reagent was added to 100uL of sample and incubated for 10 min. 

Luminescence was measured on a SpectroMax M2e.

2.8. Preparation of libraries

mRNA-seq libraries were prepared using 200 ng of total RNA with a TruSeq RNA Sample 

Prep Kit v2 (Illumina) as described previously [19]. Libraries were sequenced at 

approximately 75 million reads/sample following Illumina's protocol using the Illumina 

cBot and HiSeq 3000/4000 PE cluster kit. The flow cells were sequenced as 100 X 2 paired 

end reads on an Illumina HiSeq 4000 using Hiseq 3000/4000 sequencing kits and HCS 

v3.3.20 data collection software. Base-calling was performed using Illumina's RTA version 

2.5.2.
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2.9. mRNA-seq data analysis

Processing of the mRNA-seq data was performed using MAP-RSeq workflow (v1.2.0.0) 

[25] and RSeQC software (v2.3.2) [26]. Paired-end reads were aligned by TopHat (v2.0.12) 

against the hg19 and mm10 genome build for human and mouse samples [27]. Gene counts 

were generated using FeatureCount software (v1.4.4); the gene annotation files were 

obtained from Illumina. Differential expression analysis was performed with edgeR v2.6.2 

to identify genes with altered expression between treatment groups [28]. A cutoff for false 

discovery rate–adjusted p-value was set at 0.01. MetaSecKB (http://bioinformatics.ysu.edu/

secretomes/animal/index.php) was used to determine the secretome from differentially 

expressed genes.

2.10. Pathway analysis

Pathway enrichment analysis was performed with Ingenuity Pathway Analysis program 

(IPA, Ingenuity Systems; cut-off P value = .05).

2.11. Analysis of genes that encode mitochondrial proteins

Mitochondrial proteins were identified based on a compendium from MitoCarta [29].

2.12. Statistical methods

Statistical differences between samples were analyzed using Student's two-tailed t-test, 

assuming equal variance. A P value of <0.05 was regarded as statistically significant.

2.13. Data sharing

All sequencing data in this report have been deposited in Gene Expression Omnibus 

database, accession number GEO103550.

3. Results

3.1. The inhibitory effects of LLC1 CM on mitochondrial oxygen uptake in human skeletal 
muscle myoblasts are mitigated by the addition of 1α,25(OH)2D3

Mitochondrial OCR in human myoblasts following the addition of LLC1 CM (25% (v/v) for 

a period of 24 h) was compared to OCR in cells treated with LLC1 culture medium alone 

(non-CM) (Fig. 1, panels A–E) or to the OCR in cells treated with CM from MLE12 cells. 

Maximal respiration and reserve capacity were inhibited by the addition of LLC1 CM 

compared to non-CM (P =.038 and .004, respectively). Coupled OCR tended to decrease 

(Fig. 1D). Basal respiration was unchanged (P =.585). Similar data were obtained when the 

effects of CM from highly tumorigenc LLC1 cells and less invasive MLE12 CM were 

compared. Basal respiration, maximal respiration, coupled OCR, and reserve capacity were 

all reduced (P =.012, .013, 0.003, and 0.025, respectively) by LLC1 CM when compared to 

MLE12 CM. Interestingly, the effects of LLC1 CM were not observed in human embryonic 

kidney cells (HEK293). In association with the decrease in OCR, the proton production rate 

(PPR) in human myoblasts increased following treatment of myoblasts with LLC1 CM 

compared to LLC1 non-CM (13.194 ± 1.06 pmole and 8.171 ± 0.783 H+/min/μg protein 
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following oligomycin treatment of cells (P =.003), and 8.674 ± 0.560 and 4.541 ± 0.703 

pmol H+/min/μg protein (P < .001).

To assess whether the addition of 1α,25(OH)2D3 to LLC1 CM mitigates the inhibition of 

mitochondrial OCR, we added 10−8M 1α,25(OH)2D3 to LLC1 CM prior to the addition of 

CM to myoblast cultures. There are no significant differences between basal, maximal, 

coupled OCR or reserve capacity between LLC1 non-CM or LLC1 CM + 1α,25(OH)2D3 

treated human skeletal muscle myoblasts (Fig. 2).

3.2. The effects of LLC1 CM on mitochondrial morphology in cultured human skeletal 
muscle myoblasts are mitigated by the addition of 1α,25(OH)2D3 to LLC1 CM

We imaged labeled cells using confocal microscopy following the addition of LLC1 CM or 

LLC1 non-CM. MitoTracker Green labeled myoblast mitochondria normally appear 

elongated and filamentous following the addition of LLC1 non-CM to human skeletal 

muscle myoblasts (Fig. 3A, upper panel), a finding confirmed with EM (Fig. 3B, upper 

panel). In contrast, following the addition of LLC1 CM to myoblasts, mitochondria appeared 

rounded and fragmented, a finding also confirmed by EM (Fig. 3C and D, upper panel). 

Aspect ratio and form factor analysis of mitochondria in myoblasts treated with LLC1 non-

CM or LLC1 CM demonstrated a decrease in the aspect ratio and form factor in myoblasts 

treated with LLC1 CM (P < .001, Fig. 4A and B).

To examine whether the addition of 1α,25(OH)2D3 prevents the fragmentation of 

mitochondria seen by the addition of LLC1 CM, we added 10−8M 1α,25(OH)2D3 to CM 

prior to the addition of LLC1 CM to myoblasts. Following the addition of 1α,25(OH)2D3 to 

LLC1 CM, mitochondrial morphology appeared more normal with less mitochondrial 

fragmentation (Fig. 3A–D, lower panel). These data were confirmed by quantitative 

assessment of mitochondrial morphology. No differences in aspect ratio and form factor 

were quantitatively apparent (Fig. 4A, B). These results suggest that 1α,25(OH)2D3 restores 

mitochondrial morphology in human skel etal muscle myoblasts when added to LLC1 CM.

Concomitant with changes in mitochondrial morphology, the expression of the fission 

mediator, FIS1, assessed during whole transcriptome sequencing (GEO103550) was 

increased (FDR = 0.044) following treatment of myoblasts with LLC1 CM, whereas, 

expression of the fusion mediators DRP-1, OPA1, MFN 1 and MFN 2 expression decreased 

(FDR = 0.0003, FDR = 0.0147, FDR = 0.06, and FDR = 0.0005, respectively). The mRNA 

expression data for FIS1 were confirmed by Western blot analysis using a FIS1 antibody. 

Addition of 1α,25(OH)2D3 to LLC1 CM did not change expression levels of FIS1, DRP2, 
OPA1 or MFN1 and MFN2 in myo-blasts compared to LLLC1 CM alone, suggesting the 

normalization of mitochondrial morphology by 1α,25(OH)2D3 is not associated with 

changes in known mediators of mitochondrial fission and fusion.

There were no changes in the amount of mitochondrial DNA relative to the amount of 

cellular DNA (ND1+ND6/BECN1+NEFD) in cells treated with LLC1 CM, LLC1 CM along 

with 1α,25(OH)2D3 or LLC1 non CM (P values: LLC1 CM vs. LLC1 CM + 1α,

25(OH)2D3,10−8M = 0.46, LLC1 non-CM vs. LLC1 CM = 0.34, LLC1 non-CM vs. LLC1 

CM + 1α,25(OH)2D3, 10−8M = 0.50).
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3.3. 1α,25(OH)2D3 partially reverses the inhibitory effect of LLC1 CM on pyruvate 
dehydrogenase (PDH)

LLC1 CM inhibits PDH activity (LLC1 CM = 21.63 ± 0.32 nmoles of NADH/min/

milligram protein vs. non-CM = 25.52 ± 0.74 nmoles of NADH/min/milligram protein (N = 

5), P < .0014) (Fig. 1A, supplementary data). The decrease in PDH activity is associated 

with an increase in the amount of inactive S293 phospho-PDH in myoblasts assessed by 

Western blotting (P =.05, Fig. 1B, supplementary data). The decrease in PDH activity is 

associated with a decrease in PDHA1 mRNA expression (FDR = 0.043, Fig. 1C, 

supplementary data). There is a 40-fold increase in the expression of PDK4 mRNA (FDR = 

0.001, Fig. 1D, supplementary data) and a decrease in the expression of PDP2 mRNA (FDR 

= 0.039, Fig. 1E, supplementary data). SIRT4 mRNA expression is increased (FDR = 0.003, 

Fig. 1F, supplementary data). The addition of 1α,25(OH)2D3 to LLC1 CM suppresses PDK4 
expression and tends to increase the expression of PDP2 and phospho-PDH. These changes 

are not, however, associated with a statistically significant increase in PDH activity (LLC1 

CM = 21.63 ± 0.32 nmole NADH/min/mg protein vs LLC1 CM + 1α,25(OH)2D3 = 21.46 

± 0.19 n mole NADH/minutes/mg protein, P =.66).

3.4. The inhibitory effect of LLC1 CM on proteasomal activity in myoblasts is mitigated by 
the addition of 1α,25(OH)2D3 to LLC1 CM

Proteasome activity in human skeletal muscle myoblasts is enhanced by incubation of cells 

with LLC1 CM. These effects are corrected by the addition of 1α,25(OH)2D3 to LLC1 CM 

(Supplemental Fig. 2).

3.5. Identification of potential mediators of changes in myoblast OCR secreted by LLC1 
cells

We analyzed the expression of mRNAs for secreted proteins from LLC1 and MLE12 cell 

lines. A total of 609 mRNAs were differentially regulated between LLC1 and MLE12 cells. 

Supplementary Table 1 shows results of up-regulated or down-regulated mRNAs encoding 

secreted proteins of significance. Up-regulated mRNAs encoding proteins that could 

potentially alter muscle metabolism include those for Gdf15, Il11; Il27, Il34, Pthlh; Tgfβi, 
TgfBr3, CCl2, CCl28, CCl7, and Tnfrsf18.

4. Discussion

Cancer cachexia is associated with muscle weakness and increased morbidity, mortality and 

reduced response to chemotherapy and surgical interventions [1,2,30,31]. In the current 

report we demonstrate that lung cancer cell CM from the highly tumorigenic cell line Lewis 

lung carcinoma 1 cell line [32], directly reduces cellular OCR in human skeletal muscle 

myoblasts when compared to non-CM and CM from a distal respiratory epithelial cell line 

(MLE12) with low metastatic potential and a low propensity to cause cachexia [33]. We 

observed that mitochondria appeared more fragmented when treated with LLC1 CM. 

Mitochondrial fragmentation is associated with a reduction in mitochondrial O2 

consumption [34–38] and it is plausible that the observed reduction in OCR following 

treatment of skeletal muscle cells with LLC1 CM is at least partly due to an increase in 

mitochondrial fragmentation. The increased expression of mRNA and protein for FIS1, a 
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mediator of mitochondrial fission [34,39,40] and the reduced expression of mRNAs for the 

mitochondrial fusion mediators, OPA1 and MFN2 [35,41,42] might account for the increase 

in mitochondrial fragmentation.

Earlier, we demonstrated increases in cellular OCR in human skeletal muscle myoblasts 

following treatment with the active metabolite of vitamin D, 1α,25(OH)2D3 [19]. We 

hypothesized that 1α,25(OH)2D3 might ameliorate the deleterious effects of LLC1 tumor 

medium on mitochondrial performance. We observed an increase in cellular OCR when 1α,

25(OH)2D3 was added to LLC1 CM prior to its being used to treat human skeletal muscle 

myoblasts. Additionally, we observed that mitochondrial fragmentation induced by LLC1 

CM in human skeletal muscle myoblasts was attenuated by the addition of 1α,25(OH)2D3 to 

LLC1 CM. The less fragmented appearance of myoblast mitochondrial morphology induced 

by 1α,25(OH)2D3 upon addition to LLC1 CM is likely to be associated with increased 

mitochondrial OCR. The change in fragmentation cannot be accounted for by changes in the 

expression of known fission or fusion mediators as concentrations of these mediators were 

minimally changed by the addition of 1α,25(OH)2D3 addition to LLC1 CM.

The activity of mitochondrial enzymes was altered by LLC1 CM and partially reversed by 

1α,25(OH)2D3. Pyruvate dehydrogenase which catalyzes the oxidative decarboxylation of 

pyruvate to acetyl-CoA and links the glycolytic pathway to Krebs's cycle was inhibited by 

LLC1 CM [43,44]. The decrease in activity induced by LLC1 cell medium is associated with 

a decrease in the expression of PDHA1 mRNA and an increase in inactive phospho-PDH 

concentrations. Elevated phospho-PDH concentrations were associated with an increase in 

the expression of PDK4, and a decrease in the expression of PDP2 mRNA. SIRT4 mRNA 

expression is also increased. SIRT4 enzymatically hydrolyzes lipoamide cofactors from the 

E2 component (dihydrolipoyllysine acetyltransferase (DLAT)) of the PDH complex, 

diminishing PDH activity [45]. The addition of 1α,25(OH)2D3 to LLC1 CM partially 

reversed the deleterious effect of LLC1 CM on PDH in human skeletal muscle myoblasts. 

1α,25(OH)2D3 suppressed PDK4 expression and reduced the amount of inactive phospho-

PDH.

To identify mediators of altered mitochondrial function and morphology secreted by tumor 

cells, we carried out WTSS of highly tumorigenic LLC1 cells and minimally invasive 

MLE12 cells. Messenger RNAs encoding secreted proteins were analyzed to identify 

substances that were secreted only by invasive LLC 1 cells. mRNAs encoding a large 

number of secreted proteins were expressed in much higher amount in LLC1 cells. The 

protein products encoded by such mRNAs included proteins that could potentially mediate 

cancer cell cachectic effects and proteins associated with increased metastatic potential. We 

identified several potential mediators of cachexia including Gdf15, a secreted ligand of the 

TGFβ superfamily, members of the interleukin family of proteins (IL11, Il27, Il33, and Il34) 

and parathyroid hormone-related protein (PTHrP) based on the expression of larger amounts 

mRNA in LLC1 cells vs. MLE12 cells. Interleukin 6 has been implicated as a mediator of 

cachexia in a variety of clinical situations. Parathyroid hormone related protein which 

activates the PTH receptor has been implicated in recent studies as a mediator of CC [15]. 

Several of the mRNAs that are increased in LLC1 cells, encode secreted proteins that may 

be relevant to the metastasis of tumors (for example MMP mRNAs). Isolation of the relevant 
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proteins with testing of their biological properties in model systems will be helpful in 

identifying the main mediators of CC.

There is need for additional therapeutic approaches for CC because of a lack of effective 

therapeutic modalities for its treatment [10,16–18]. We found that 1α,25(OH)2D3 inhibited 

the deleterious effects of tumor cell CM on skeletal muscle cells by reversing altered 

mitochondrial function, morphology and enzyme activity. Our data suggest that 1α,

25(OH)2D3 may be useful in the treatment of weakness seen in tumor cachexia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Oxygen consumption rate (OCR) was measured in human myoblasts following the addition 

of LLC1 non-conditioned medium (NCM, □) or LLC1 conditioned medium (CM, ▲) for 24 

h. A. OCR in myoblasts in the presence or absence of indicated reagents. B: Basal 

respiration. C: maximal respiration. D: coupled OCR. E: reserve capacity. * = statistically 

significant change.
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Fig. 2. 
OCR was measured in myoblasts following the addition of LLC1 non-conditioned medium 

(NCM, □) or LLC1 conditioned medium to which was added 1α,25(OH)2D3 (CM + 1α,

25(OH)2D3, ▲) for period of 24 h. A. OCR was measured in human skeletal muscle 

myoblasts in the presence or absence of re-agents as indicated. B: Basal respiration. C: 
maximal respiration. D: coupled OCR. E: reserve capacity.
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Fig. 3. 
Upper panel: A Morphology of labeled myoblast mitochondria following addition of LLC1 

non-CM to cells. B: Morphology of mitochondria in myoblasts treated with LLC1 non-CM 

using EM. C: Morphology of labeled myoblast mitochondria following addition of LLC1 

CM to cells. D: Morphology of mitochondria in myoblasts treated with LLC1 CM using 

EM. Note presence of filamentous mitochondria in myo-blasts treated with LLC1 non-CM, 

panels A and B. Following treatment of myoblasts with LLC1 CM, panels C and D, appear 

fragmented.
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Lower panel: A: Morphology of labeled myoblast mitochondria following addition of 

LLC1 CM to cells. B: Morphology of mitochondria in myoblasts treated with LLC1 CM 

using EM. C: Morphology of labeled myoblast mitochondria following addition of LLC1 

CM + 1α,25(OH)2D3, 10−8M to cells. D: Morphology of mitochondria in myoblasts treated 

with LLC1 CM + 1α,25(OH)2D3, 10−8M using EM. Note presence of fragmented 

mitochondria in myoblasts treated with LLC1 CM, panels A and B. Following treatment of 

myoblasts with LLC1 CM + 1α,25(OH)2D3, 10−8M, panels C and D, mitochondria , appear 

filamentous.

Ryan et al. Page 14

Biochem Biophys Res Commun. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
A. Aspect ratio of labeled myoblast mitochondria B. Form factor of labeled myoblast 

mitochondria following addition of LLC1 non-conditioned medium (NCM), LLC1 

conditioned medium (CM) or LLC1 conditioned medium (CM) + 1α,25(OH)2D3,10−8M.
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