Skip to main content
. Author manuscript; available in PMC: 2018 Feb 14.
Published in final edited form as: Comput Stat Data Anal. 2010 Oct 21;55(4):1617–1628. doi: 10.1016/j.csda.2010.10.001

Table 6. Estimated power of several tests for clustered right-censored data.

Clustered Odds ratio=2 Odds ratio=3
τ n %cens NaiC LogC LlogC ArcsC LogitC Pseudo NaiC LogC LlogC ArcsC LogitC Pseudo


0 30 10 0.286 0.249 0.249 0.277 0.256 0.342 0.599 0.549 0.562 0.588 0.567 0.621
40 0.273 0.227 0.236 0.260 0.243 0.306 0.522 0.459 0.482 0.509 0.485 0.548
60 0.243 0.184 0.190 0.227 0.203 0.252 0.443 0.370 0.384 0.424 0.392 0.415
60 10 0.467 0.437 0.439 0.459 0.444 0.519 0.831 0.811 0.817 0.826 0.819 0.848
40 0.412 0.384 0.394 0.410 0.398 0.470 0.758 0.727 0.743 0.752 0.741 0.787
60 0.314 0.282 0.285 0.307 0.290 0.355 0.637 0.595 0.602 0.627 0.609 0.652
100 10 0.635 0.618 0.622 0.633 0.624 0.683 0.959 0.955 0.957 0.958 0.957 0.969
40 0.585 0.563 0.574 0.582 0.575 0.631 0.933 0.926 0.930 0.932 0.928 0.944
60 0.442 0.417 0.423 0.437 0.426 0.495 0.802 0.779 0.784 0.798 0.787 0.817
0.2 30 10 0.270 0.224 0.235 0.260 0.238 0.325 0.545 0.477 0.508 0.535 0.514 0.576
40 0.254 0.205 0.222 0.250 0.225 0.309 0.522 0.459 0.482 0.509 0.485 0.548
60 0.233 0.173 0.187 0.222 0.192 0.247 0.436 0.360 0.383 0.417 0.389 0.405
60 10 0.397 0.367 0.376 0.391 0.377 0.460 0.790 0.763 0.775 0.785 0.778 0.819
40 0.386 0.356 0.366 0.382 0.370 0.444 0.705 0.667 0.692 0.702 0.693 0.743
60 0.286 0.247 0.264 0.281 0.266 0.325 0.595 0.540 0.563 0.586 0.566 0.614
100 10 0.574 0.552 0.559 0.570 0.563 0.634 0.930 0.922 0.927 0.929 0.927 0.940
40 0.549 0.521 0.537 0.547 0.540 0.600 0.889 0.875 0.885 0.889 0.886 0.913
60 0.431 0.396 0.405 0.426 0.408 0.478 0.789 0.765 0.774 0.784 0.777 0.800
0.5 30 10 0.226 0.177 0.191 0.218 0.200 0.286 0.462 0.379 0.413 0.446 0.423 0.492
40 0.234 0.169 0.197 0.226 0.202 0.280 0.434 0.349 0.396 0.421 0.399 0.461
60 0.206 0.140 0.158 0.194 0.165 0.225 0.379 0.278 0.312 0.356 0.322 0.345
60 10 0.321 0.291 0.299 0.315 0.304 0.399 0.705 0.660 0.689 0.700 0.690 0.738
40 0.333 0.291 0.308 0.327 0.311 0.393 0.651 0.593 0.634 0.645 0.634 0.691
60 0.280 0.229 0.253 0.273 0.254 0.321 0.533 0.479 0.502 0.524 0.508 0.549
100 10 0.502 0.477 0.491 0.501 0.494 0.562 0.893 0.873 0.885 0.891 0.886 0.914
40 0.469 0.438 0.462 0.468 0.462 0.536 0.838 0.811 0.834 0.836 0.833 0.866
60 0.368 0.329 0.350 0.365 0.352 0.404 0.728 0.694 0.713 0.724 0.713 0.753
0.7 30 10 0.218 0.156 0.171 0.209 0.180 0.263 0.422 0.327 0.364 0.402 0.375 0.451
40 0.217 0.148 0.174 0.209 0.181 0.273 0.404 0.292 0.344 0.388 0.353 0.426
60 0.197 0.127 0.141 0.177 0.147 0.202 0.378 0.273 0.296 0.349 0.310 0.342
60 10 0.308 0.271 0.284 0.302 0.289 0.374 0.650 0.594 0.621 0.640 0.626 0.683
40 0.307 0.253 0.276 0.298 0.283 0.373 0.597 0.531 0.574 0.589 0.576 0.638
60 0.241 0.193 0.216 0.235 0.218 0.283 0.529 0.461 0.488 0.517 0.496 0.545
100 10 0.438 0.415 0.423 0.436 0.426 0.501 0.827 0.808 0.815 0.824 0.818 0.856
40 0.429 0.392 0.412 0.423 0.415 0.504 0.788 0.756 0.781 0.816 0.781 0.829
60 0.369 0.322 0.339 0.361 0.345 0.429 0.705 0.667 0.684 0.700 0.688 0.730