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Summary

While the origin of the phrase “birds of a feather flock together” is unclear, it has been in use for 

centuries and is typically employed to describe the phenomenon that people with similar tastes or 

interests tend to seek each other out and congregate together. In this review, we have co-opted this 

phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because 

they very often accumulate together in tissue sites under both homeostatic and inflammatory 

conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell 

surface phenotype, mediator release profiles and roles in diseases have been compared and 

contrasted. What emerges is a sense that these two cell types often interact with each other and 

their tissue environment to provide synergistic contributions to a variety of normal and pathologic 

immune responses.
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1 Introduction

Mast cells (MCs) and eosinophils are immune cells well known for their roles in initiating 

allergic responses. These cells are developmentally and functionally similar and participate 

in many of the same diseases, often in a synergistic manner. They have been described as 
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key players in atopic dermatitis, food allergies, asthma and rhinitis, all of which have 

increased in prevalence in recent decades. Since the late 1980’s, MCs and eosinophils have 

been the subject of many human and animal research studies that consistently demonstrate 

their important contributions to disease pathogenesis. It is therefore not surprising that the 

majority of approved biologicals for the treatment of these diseases target MCs and 

eosinophils, for example through IgE and IL-5.

This review will focus on MC and eosinophil similarities during differentiation and 

maturation and their response to external stimuli. While they do have a comparable 

repertoire of surface receptors, their responses and reactions often vary. Replete with 

granules, both MCs and eosinophils harbor a unique collection of pre-stored mediators to be 

released upon their activation. They also have overlapping but distinct patterns of newly 

formed lipid and protein mediators. Thus, key similarities and differences will be 

highlighted while summarizing what is known about their paired roles in allergies and other 

relevant disorders.

2 Origin and development

2.1 Hematopoietic lineage

MCs and eosinophils both arise from CD34+ hematopoietic stem cells in the bone marrow. 

Hematopoietic stem cells can exist as long-term self-renewing cells or as cells capable of 

differentiating into multiple cell lineages, i.e. multipotent progenitors. Classic models of 

hematopoiesis highlight a bifurcation downstream of multipotent progenitors where 

commitment towards a myeloid or lymphoid lineage occurs. In humans, eosinophil-

committed progenitors branch directly from common myeloid progenitors 1. However, the 

origin of human MC-committed progenitors is still controversial. Studies in mice suggest 

they come from granulocyte/monocyte progenitors downstream of common myeloid 

progenitors 2. To make matters more complicated distinct developmental pathways and 

tissue microenvironments govern MC phenotypes, i.e. tryptase-positive (MCT) and tryptase/

chymase-positive (MCTC) 3.

2.2 Differentiation and maturation

Differentiation of progenitors, towards a terminal MC or eosinophil fate, is a complex 

process regulated by transcription factors and extrinsic signals such as cytokines. The most 

pertinent transcription factors in eosinophil differentiation are GATA-1 and C/EBPα, 

because their forced expression in human myeloid progenitors results in eosinophil 

formation 4,5. In addition, PU.1 and FOG-1 indirectly contribute to the emergence of 

eosinophils because augmentation of either one shifts progenitors towards an alternate fate 
6–9. Recent studies in mice have identified additional transcription factors important for 

eosinophil differentiation; Helios and Aelios, which regulate gene expression during 

development 10 and Xbp1, critical for eosinophil differentiation and granulogenesis 11. 

Another protein necessary for eosinophil granularity and survival in mice is cystatin F 12. In 

MCs, GATA-1 and GATA-2 drive differentiation and regulate transcription of FcεRI and kit 

genes 3. PU.1 also promotes MC development, but expression becomes weaker as MCs 
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mature 9. Similar to eosinophils, FOG-1 inhibits MC differentiation redirecting progenitors 

towards other cell lineages 9,13.

MCs and eosinophils both originate in the bone marrow, however eosinophils enter the 

circulation as mature cells while MCs circulate as progenitors and become mature once they 

reach the tissues where they ultimately reside (as reviewed in 13,14). Growth factors are 

important for regulating a variety of cellular processes including differentiation and 

proliferation. Eosinophil maturation and proliferation is dependent on cytokines IL-3, IL-5 

and GM-CSF, for which receptors are expressed on eosinophil precursors and feature a 

common β chain. While different combinations of these cytokines generally can promote 

eosinophilic differentiation and proliferation, the three together greatly enhance both 15. It is 

well established that IL-5 is selective for eosinophil production and also mediates their 

release from the bone marrow 16. The importance of IL-5 to eosinophil development has 

been further demonstrated in recent trials of now approved anti-IL-5 monoclonal antibodies 

that attenuated eosinophil numbers 17. Of note, it was recently reported in mice that IL-33 

can expand eosinophil progenitors upstream of IL-5 and promote upregulation of IL-5Rα 
18. IL-5R is a critical component of eosinophil lineage commitment and is responsible for 

the occurrence of increased eosinophil numbers observed in allergic inflammation (e.g. 

increased blood and sputum eosinophils in asthmatic patients following allergen challenge) 
19. Interestingly, IL-4Rα supports IL-5 mediated maturation of eosinophils, but in the 

absence of IL-5 CCL3 (from eosinophil precursors) can promote cell differentiation through 

CCR1 20. In homeostatic conditions, eosinophils are most commonly found in the 

circulation. However, eosinophils also home to tissues where eotaxin-1 (CCL11) is 

constitutively expressed, such as the GI tract, thymus, mammary glands and uterus 21.

Bone marrow and blood MC precursors are CD13+, CD34+and CD117+ (c-Kit, receptor for 

SCF discussed below) and express low levels of FcεRIα 13,22,23. Other cytokines, including 

IL-4, IL-9, IL-10, TGFβ and nerve growth factor, can also contribute to the maturation and 

proliferation of human MCs. Interestingly, a key growth factor for bone marrow-derived 

mouse MCs, IL-3 24, promotes survival of human cord blood-derived MCs 25 but not human 

lung MCs 26, suggesting that differences in developmental pathways are species-specific and 

governed by MC phenotype. During an inflammatory or allergic event, tissue-resident MC 

numbers increase due to recruitment of precursors 27, which is chemokine-driven22. MC 

precursors also respond to other chemotactic factors, including histamine leukotriene B4 

(LTB4), 28 TGF-β1 and fractalkine, the latter produced by endothelial cells and by smooth 

muscle cells in human airways during asthma 27,29.

3 Cell Surface Receptors

3.1 Immunoglobulin and immunoglobulin-like receptors

Immunoglobulin or immunoglobulin-like receptors are a family of receptors that feature 

extracellular immunoglobulin domains comprised of 2 antiparallel β sheets. The most 

common types are Fc receptors that exist on a variety of cells, including MCs and 

eosinophils, and serve a protective role by recognizing pathogen-associated antibodies and 

virally-infected cells. Different classes of Fc receptors exist, named for the antibody to 

which they bind. Fc gamma (Fcγ) receptors recognizing IgG make up the largest family of 
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Fc receptors. Human MCs express both FcγRI (CD64) and FcγRII (CD32). FcγRI 

expression can be upregulated by IFNγ 30 and engagement triggers the release of 

inflammatory mediators such as histamine, prostaglandins, leukotrienes and type 1 cytokines 
31. FcγRII is constitutively expressed on human skin MCs 32 and its aggregation is known to 

inhibit histamine release 33. Human eosinophils lack FcγRI, but do express FcγRII 34. 

However, unlike MCs, internalization of FcγRII on eosinophils results in activation 35,36 and 

promotes survival 37. Of note, there are several different isoforms of FcγRII, including 

FcγRIIa and FcγRIIb 38. Human MCs and eosinophils express FcγRIIa, which features an 

activating immunoreceptor tyrosine-based activation motifs (ITAM) domain and has been 

shown to play a role in allergic responses 32,39. ITIM-bearing FcγRIIb is expressed by some 

but not all MCs and when present and co-engaged can inhibit IgE-dependent activation and 

proliferation in mice 40,41. The other IgG receptor, FcγRIII (CD16), is normally internally 

expressed in eosinophils, but can translocate to the surface during allergic inflammation 42 

or in the presence of mediators such as IFNγ, C5a or platelet activating factor 43,44. In 

humans there are two Fc receptors to which IgE can bind. The high-affinity IgE receptor, 

FcεRI, features an immunoglobulin-binding α chain, while the low-affinity receptor, FcεRII 

(CD23), does not and is instead characterized as a C-type lectin. Canonical activation of 

MCs occurs upon antigen cross-linking of FcεRI-bound IgE. MC-expression of FcεRI is 

upregulated in the presence of IgE, IL-4 and IL-13 45–47 and downregulated by granulocyte 

macrophage colony-stimulating factor (GM-CSF) and TGFβ1 48,49. In addition, a 

monoclonal antibody that targets the high-affinity binding site on IgE, called omalizumab, 

reduces FcεRI expression 50. Human MCs express FcεRI (which consists of α, β, and γ 
subunits) either as tetrameric αβγ2 or trimeric αγ2 51. Expression of FcεRI is γ chain-

dependent, while the β chain enhances MC signaling through ITAM located within the 

cytoplasmic tails of both the γ and β chains 51,52. Interestingly, when ITAM-containing 

FcεRI is cross-linked with the ITIM-bearing FcγRII receptor on MCs, IgE-mediated 

activation is inhibited 53. Expression of FcεRI on the surface of human eosinophils is still 

controversial, but the majority of studies suggest that surface expression, if present at all, is 

low and unaffected by IgE levels 54. There may also be an intracellular pool of α chain 

albeit with unknown function 55. Like for MCs, IL-4 can stimulate FcεRI expression on 

human eosinophils, however receptor engagement does not induce degranulation 56. 

Eosinophils also express the low-affinity IgE receptor FcεRII (CD23) intracellularly at 

homeostasis. Upon activation, FcεRII is translocated to the cell surface, followed quickly by 

reinternalization 57. There is one IgA-binding receptor, FcαR, which features 2 

immunoglobulin domains that are homologous to FcγR and FcεRI 58. IL-4, IL-5 and 

corticosteroids have been shown to enhance IgA/ FcαR binding on eosinophils, triggering 

release of peroxidase 59,60. A study by Bracke et al. found that human eosinophil priming 

with GM-CSF, IL-4 or IL-5 is necessary for IgA binding to occur 59.

Sialic acid-binding immunoglobulin-like lectins (Siglecs) also feature extracellular domains 

that resemble immunoglobulins. Siglecs are expressed by a variety of immune cells, 

including MCs and eosinophils. It has been reported that CD34+ MC progenitors express a 

variety of Siglecs during differentiation and maturation, including Siglec-2, -3, -5, -6, -8 and 

-10. We found that as MCs mature, expression of Siglec-5 and Siglec-10 decrease, while 

Siglec-6 and Siglec-8 appear de novo around the same time as FcεRIα, perhaps indicating a 
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more functional role for these Siglecs in MCs 61. Another study reported that Siglec-7 is 

expressed by human MCs 62. Siglec-8 exists as two distinct isoforms with differing 

cytoplasmic regions, dependent on splicing 62, while its extracellular domains preferentially 

bind 6′-sulfo-sialyl Lewis X 63. In humans, Siglec-8 engagement has profound functional 

consequences on both MCs and eosinophils 64. For example, IL-5 priming in human 

eosinophils leaves them much more susceptible to Siglec-8 mediated apoptosis 65,66, 

whereas in MCs Siglec-8 ligation inhibits FcεRIα-dependent MC activation and calcium 

flux in an ITIM-dependent manner 67. Other studies have highlighted the contribution of 

IL-33 priming to Siglec-8 mediated eosinophil apoptosis and demonstrated how Siglec-8 

ligation promoted eosinophil adhesion via β2 integrins that was necessary for apoptosis 
66,68. In addition to Siglec-8, Siglec-10 expression has also been detected on human 

eosinophils 69, however further studies are needed to determine its functional relevance.

CD300 receptors are transmembrane proteins which feature IgV-like extracellular domains. 

These receptors are expressed on many different immune cells, including MCs and 

eosinophils, and can be activating or inhibitory. CD300a features several ITIM domains and, 

once activated by endogenous ligands (i.e. phosphatidylserine and 

phosphatidylethanolamine), can inhibit IgE- and SCF-mediated functions in cord blood-

derived MCs 70. A bispecific antibody targeting both CD300a and c-Kit inhibits activation in 

cord blood-derived MCs and in human MC leukaemia cell line (HMC-1) 70. The inhibitory 

effects of CD300a was also highlighted in CD300a KO mice, where IgE activation of MCs 

triggered an increased release of cytokines and chemokines compared to MCs in WT control 

mice 71. In human peripheral blood eosinophils, activation of CD300a inhibits chemotactic 

responses to eotaxin-1 and IL-5 and GM-CSF-associated survival and cytokine release 72. 

CD300c is also expressed on human MCs 73 and is characterized by the presence of a 

cytoplasmic ITAM-bearing FcRγ chain 74 and its ligation results in MC activation 73. Lastly, 

MCs and eosinophils both express inhibitory CD300f 75. Increased expression of CD300f 

has been detected on eosinophils from allergic rhinitis patients 76. The primary ligands for 

CD300f are sphingolipids, such as sphingomyelin and ceramide 77,78. Activated CD300f can 

inhibit FcεRI-driven MC activation 77. Of note, CD300f can also display an activating 

phenotype when cross-linked with mutated ITIM-expressing receptors 75.

Leukocyte immunoglobulin-like receptors (LILRs) are another group of cell surface proteins 

with both activating and inhibitory properties. Human eosinophils express activating 

LILRA2 and inhibitory LILRB1, B2 and B3 on their surface 79. MC precursors express 

LILRB1, B2, B3, B4 and A1 80, while mature MCs express LILRB5 on their granules. In 

MCs, it is suggested that LILRs play a role in down-regulating inflammatory responses 80. 

However, studies suggest they promote activation in eosinophils 79. To date, therapeutics 

targeting LILRs have yet to be developed, but theoretically targeting of these receptors might 

be useful in treating cancer and autoimmune diseases.

3.2 Cytokine receptors

One important form of cell communication is governed by cytokine receptors that trigger 

cellular responses to external stimuli. When cytokines bind to their receptor, transduced 

signals lead to changes in gene expression, release of inflammatory mediators and other 
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reactions. Type 2 inflammatory responses prominently feature MCs and eosinophils and are 

defined by production of the cytokines IL-4, IL-5 and IL-13. The IL-4 receptor is 

constitutively expressed on eosinophils. A study by Wedi et al. reported that IL-4 may 

participate in inflammatory resolution by inhibiting eosinophil survival by promoting 

apoptosis 81. In MCs, IL-4 priming enhances IL-13 and histamine production following IgE-

dependent activation 82,83. A study by Oskeritzian et al. found that MCs cultured with 

recombinant IL-4 experienced increased apoptosis 84. The receptor for IL-5 is a heterodimer 

complex which consists in a unique α subunit, required for signaling, and a common β 
subunit shared with IL-3 and GM-CSF receptors, that regulates binding affinity 85. Human 

eosinophils express IL-5R throughout development and maturation 86 and both IL-5 and its 

receptor have been successfully targeted in several clinical trials utilizing anti-IL-5 

antibodies i.e. reslizumab 87, mepolizumab 88 and benralizumab, the latter unique since it 

specifically targets the IL-5 receptor α subunit with an antibody engineered to have 

enhanced antibody-dependent cellular cytotoxicity (ADCC) activity 89. There have been 

reports that human MCs also express IL-5R; however, its functional role is not yet 

understood 90. Of note, Otani et al. demonstrated that MCs numbers were reduced in 

pediatric EoE patients undergoing mepolizumab therapy 91, an effect not observed in 

mepolizumab-treated adult patients 92. The most common IL-13 receptor contains α chain 1 

and has weak binding capacity that is strengthened upon formation of a heterodimer 

complex with IL-4Rα 93. Human eosinophils express low levels of IL-13Rα1, which can be 

upregulated by TGFβ or IFNγ 94. Human lung MCs and the immature MC line HMC 1.1 

also express IL-13Rα1. MCs primed with IL-13 display increased FcεRI expression and 

proliferation 45,95.

Together with FcεRI, c-kit is a particularly important receptor on MCs playing a central role 

in their differentiation, regulation of cell growth, priming and chemotaxis. It is a type 3 

tyrosine kinase receptor, which in humans exists in four different isoforms 96. It is expressed 

by a variety of cells including mature MCs during homeostasis and inflammation. SCF is the 

high-affinity ligand of c-kit. Interestingly, SCF can be released by eosinophils via a 

mechanism involving MC-derived chymase 97, highlighting the importance of MC-

eosinophil crosstalk (i.e. the allergy effector unit, AEU 98,99, discussed in detail below). 

Eosinophils have also been shown to express c-kit, where it is suggested to have a role in 

promoting cellular adhesion 100. In disease, c-kit is involved in cancer and asthma. 

Activating mutations in c-kit, especially the D816V mutation, is the main cause of systemic 

mastocytosis, which involves widespread proliferation and accumulation of MCs in 

numerous organs 101,102. Of note, mutations of c-kit have also been found in patients with 

hypereosinophilic syndromes 103. Additionally, imatinib, a tyrosine kinase inhibitor mostly 

used to treat leukemias and some forms of hypereosinophilic syndromes, has recently been 

shown to modestly decrease MC numbers and airway hyperresponsiveness in patients with 

severe asthma 104.TSLP signaling is associated with many MC and eosinophil prominent 

diseases. Receptors for TSLP are heterodimeric complexes that consist in TSLPRα chain 

and IL-7 receptor α chain 105. TSLP is released from stimulated epithelium and mediates 

MC-driven type 2 inflammation in response to physical trauma or allergen exposure 106,107. 

Of note, activated MCs can also produce TSLP 108. In eosinophils, expression of TSLPR is 

elevated in the presence of IL-3 or TNFα 109. TSLP promotes eosinophil survival, adhesion 
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and release of eosinophil-derived neurotoxin (EDN), IL-6 and several chemokines 110. 

Tezepelumab (AMG-157), an anti-TSLP monoclonal antibody, has been successful in 

improving lung function in mild asthmatic patients 111 and decreasing the number of asthma 

exacerbations, blood eosinophil levels and total serum IgE in subjects with moderate-to-

severe asthma 112. Additionally, the finding that Tezepelumab attenuated both the early and 

late phase response to inhalational allergen challenge in humans implies potential effects of 

TSLP antagonism on both eosinophils and MCs 111.

Another important cytokine receptor expressed by both MCs and eosinophils is the IL-33 

receptor, interleukin-1 receptor-like 1 (IL1R1, commonly called ST2). This receptor also 

exists as soluble ST2 (sST2) upon differential splicing of the ST2-encoding gene 113,114. 

ST2 is expressed by MCs, independent of maturation status, and IgE/allergen activation or 

IL-33 stimulation induces sST2 production 115,116. In mice, IL-33-dependent MC activation 

triggers release of many pro-inflammatory mediators including IL-1β, IL-6, IL-13, TNFα, 

CCL2 and PGD2 117,118. IL-33 can induce secretion of IL-5, IL-6, IL-13 and TNFα from 

human MCs, an effect that can be enhanced by TSLP 119. MCs do not only respond to 

IL-33, but can produce it upon IgE/allergen activation in a calcium-dependent manner 
120,121. Eosinophils also express ST2 and respond to IL-33, but by producing superoxide 

anion 122. IL-33 is necessary for eosinophil hematopoiesis, homeostasis and promotes cell 

survival via the MyD88 pathway 18,123. IL-33 promotes eosinophil-mediated inflammation 

and our lab has recently demonstrated that Siglec-8 engagement on IL-33-primed 

eosinophils results in apoptosis 68,124. Lately it has been shown that eosinophil progenitors 

express a functional IL-33 receptor capable of producing pro-inflammatory cytokines at 

levels that far surpass those observed in mature eosinophils 125.

3.3 Cell migration

Integrins are a family of heterodimeric transmembrane cell adhesion receptors composed of 

α and β subunits. In humans, 18 α subunits and 8 β subunits can differentially combine to 

form at least 24 receptors 126,127. Ligation of integrin receptors modulates a variety of 

cellular responses including proliferation, degranulation, survival and cell motility. Integrin 

actions via the cytoskeleton drive vascular adhesion, endothelial transmigration and other 

aspects of cell trafficking and extravasation. Inflammatory pathways often feature α4 

integrins. For example, the α4β1 integrin, or very late antigen-4 (VLA-4), is expressed by 

MCs and eosinophils 128,129 and binds VCAM-1 and fibronectin 130 to promote eosinophil 

migration and extravascular accumulation, and contributes to the perivascular localization of 

MCs 131–133. Another α4 integrin expressed by eosinophils and MCs is α4β7, which binds 

mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and VCAM-1 and is important 

for homing of cells to mucosal tissues such as the intestine 134–137. Recent studies have 

shown that β2 integrins are necessary for release of granule proteins and cell death 66,138 and 

can mediate eosinophil-MC crosstalk through their activation on MCs by eosinophil-

produced major basic protein-1 (MBP-1) 139.

Prostaglandin D2 (as described below) is a pro-inflammatory mediator with a role in allergic 

responses. Its high affinity G-protein coupled receptor, CRTH2, is expressed by eosinophils. 

Activated MCs are a major producer of PGD2, which promotes eosinophil recruitment and 
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activation 140–142. Eosinophils can also produce PGD2 but at much lower levels per cell 143. 

Recent studies have reported that MC CRTH2 expression is internal 144 so its function is still 

unknown. It is worth noting that small molecule CRTH2 antagonists are showing some 

promising efficacy in early clinical trials 145–148.

Anaphylatoxins C3a and C5a are produced following activation of the complement system, 

and both eosinophils and MCs can respond to these proteins via expression of C3aR and 

C5aR. In eosinophils, C3a and C5a can trigger an increase in intracellular Ca2+ and release 

of reactive oxygen species (ROS) 149. Furthermore, they promote eosinophil rolling and 

adhesion and C5a influences eosinophil transmigration, integrin expression and superoxide 

anion production 150,151. Complement proteins C3a and C5a are also MC chemotaxins. 

Interestingly, C3a is more effective than C5a at recruiting MCs and can also stimulate 

production of CCL2 and CCL5, which have been shown to be important for early 

inflammatory responses 152–155. Recently another receptor for C5a was described in MCs, 

called C5aR2, which can stimulate release of certain cytokines, namely TNF, GM-CSF, 

CCL2 and CXCL10, and can mediate chemoattractant functions 156. While C5aR2 is 

expressed by mouse eosinophils, its expression in humans is unknown 157.

Sphingosine-1-phosphate (S1P) is important for cell trafficking, proliferation and survival 

responses. Crosslinking of high affinity FcεRI on MCs by IgE activates sphingosine kinases 

(SphK) that produce S1P, whose pleiotropic properties can be attributed to the fact that S1P 

binds to 5 different G-protein coupled receptors 158. MCs express S1PR1 and when activated 

it promotes MC movement. S1PR2 activation halts MC movement and initiates 

degranulation and release of pro-inflammatory mediators 159,160. The MC/S1P/S1PR2 axis 

was recently shown to be crucial for propagating early inflammatory responses in murine 

models of pulmonary and cutaneous allergic responses 154,155. Additionally, S1PR2 ligation 

leads to production of tissue remodeling matrix metalloproteinase-2 (MMP2) and vascular 

endothelial growth factor (VEGF)-α from human MCs 161. Eosinophils express S1PR1, 3, 4 

and 5 and can therefore be recruited to inflamed tissues by MCs and other S1P-producing 

cells. Eosinophil chemotaxis towards S1P can be abrogated in the presence of the S1P 

receptor antagonist FTY-720, which has pharmacologically significant affinity for all S1PR 

except S1PR2 162.

Histamine is another MC-produced mediator that stimulates eosinophil recruitment through 

G-protein coupled histamine receptors 163. For eosinophils, histamine can act as a 

chemoattractant through H1R 164 and inhibit chemotaxis through H2R (when histamine 

concentration is high) 165. Histamine influences eosinophil adhesion, Ca2+ mobilization and 

cytoskeleton rearrangement via H4R 166,167. MC-expressed H4R regulates calcium 

mobilization and release of inflammatory mediators 168. Studies in mice found that 

antagonism of H4R resulted in inhibition of IgE-induced upregulation of FcεRI, suggesting 

H4R regulates FcεRI expression and function 163 andH4R antagonists have been shown to 

reduce histamine-mediated pruritus 169 in AD patients 170. In addition to H4R, human skin 

MCs express H2R, which negatively regulates histamine production, while H1R is expressed 

on HMC-1 cells 171.
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Cannabinoid receptors exist as part of the endocannabinoid system and respond to 

endogenous ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG). There are 2 

distinct cannabinoid receptors CB1 and CB2, and while AEA can bind to both, 2-AG is a 

specific agonist of CB1 expressed by cells of the nervous system. MCs express both CB1 

and CB2 (Samson, 2003), while eosinophils and most immune cells express CB2 alone 

(Oka, 2004). Studies have shown that 2-AG acts as a chemoattractant for peripheral blood 

eosinophils 172, increasing their migration towards inflamed tissues 173.

3.4 Toll-like Receptors and others

Toll like receptors (TLRs) are important for pathogen recognition for innate and adaptive 

immunity 174,175. Both human MCs and eosinophils express TLRs 1–10, except TLR 8. 

Studies show contradicting evidence of TLR expression on both MCs and eosinophils as 

sometimes mRNA is expressed that does not translate to protein production (reviewed in 
176,177). MCs and eosinophils respond to different TLR ligands, such as LPS and flaggelin 

which bind TLR-4 and TLR-5 respectively (reviewed in 176,177). Levels of TLR2 and TLR3 

are elevated in the epithelium in fatal asthma specimens, suggesting that they may contribute 

to disease severity. Moreover, in asthma eosinophil density has been negatively correlated 

with TLR2 and TLR4 levels, while TLR3 seems to promote eosinophil numbers 178.

CD48 and 2B4 are receptors belonging to the CD2 family that are expressed on MCs and 

eosinophils. They are rather unique because they are high-affinity ligands for each other. 

CD48 is a GPI-anchored activating receptor, present in two forms: membrane associate 

(mCD48) and soluble (sCD48). 2B4 (CD244) is a SLAM family receptor and a CD2-like 

cell surface protein. CD244 is not expressed on human MCs, but is expressed on murine 

MCs where it has inhibitory activity. It was shown to have an activating effect on both 

murine and human eosinophils 179. Triggering of the CD48 on MCs and eosinophils induces 

activation (186, 188). S. aureus can activate MCs through CD48, causing bacterial uptake 

and TNF-α release 180, and on eosinophils, causing increasing of CD48 expression,the 

release of granular proteins, and of cytokines (188). CD48 expression is increased on both 

peripheral blood and bronchial eosinophils in asthma patients 181. CD48 on eosinophils from 

the skin of atopic dermatitis patients is upregulated as well 182. Activation of CD244 on 

eosinophils contributes to cell adhesion and migration 183 and induces degranulation 72. In 
vivo activation of human eosinophils by the S. aureus endotoxin B (SEB) leads to the 

formation of sCD48 and upregulates transcription of CD48 182,184. Interactions between 

CD48 on MCs and CD244 on eosinophils are an important part of the physical formation of 

the AEU and its pro-inflammatory properties. The AEU comprises physical and soluble 

interactions between MCs and eosinophils that promotes their survival and activation and 

can augment the intensity and duration of allergic inflammation (reviewed in 185). The 

importance of CD48 and CD244 in the AEU and in the interactions of MCs and eosinophils 

with S. aureus highlight the potential importance of these receptors in allergic inflammatory 

diseases in which there is superinfection with S. aureus 186.
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4 Mediators released upon activation

4.1 Cytokines and chemokines

MCs and eosinophils can both store and synthesize de novo a wide array of cytokines, 

chemokines, eicosanoids, lipids and other inflammatory mediators. Cytokines and 

chemokines are most often released upon cell activation during the process of degranulation. 

The main mechanism for the release of these mediators from MCs is via antigen/allergen 

cross-linking of IgE receptors 144. Eosinophils on the other hand can release GM-CSF, IL-2, 

IL-10, IL-12, IL-13, RANTES (CCL5) and eotaxin (CCL11) among others 187, upon their 

activation 187 by Th2 cytokines such as IL-5 188. Notably, some mediators are produced by 

both MCs and eosinophils, such as SCF, IL-4, IL-5, IL-6 and TNFα, although quantities 

released per cell vary and can often be quite small 187,189,190. The evidence that MCs and 

eosinophils release some common cytokines and chemokines points out their shared 

capacity to influence similar pathophysiological processes and even each other via paracrine 

mechanisms. MCs store and release preformed TNFα 191. Eosinophils, on the other hand, 

do not store TNFα, but can synthesize it once activated 192. Moreover, since both MCs and 

eosinophils produce TNFα, they can potentially be important regulators of carcinogenesis 

since TNFα has cytotoxic and cytostatic effects against tumour cell lines 193. IL-4 is another 

key cytokine of Th2-driven immune responses that, together with SCF, can regulate MC 

proliferation and cytokine production 194. Eosinophil-derived IL-4 may therefore be 

important for MC regulation. Interestingly, recent studies have highlighted the importance of 

the eosinophil/IL-4 axis in limiting obesity in mice by promoting adipocyte beiging (i.e. a 

healthy and lean phenotype) through activation of M2 macrophages 195–197. IL-5, the main 

cytokine regulating eosinophils 198, can be produced by MCs, and it has been reported that 

PrMCs express IL-5R 90, suggesting that this mediator could be involved in the mutual 

regulation of these two cells.

4.2 Eicosanoids

Prostaglandins are arachidonic acid derivatives produced by the activity of phospholipase A2 

and cyclooxygenase enzymes (COX 1 and 2) from membrane phospholipids. MCs and 

eosinophils have both COX 1 and 2 and release prostaglandins within seconds following 

their activation. MCs are the main producer of PGD2 involved in allergic reactions 199. It is 

produced from PGH2, synthesized by COX 1 or 2, which is converted into PGD2 via PGD2 

synthase 200. Moreover, since activated MCs are the primary source of PGD2, this mediator 

and its metabolites are used as biomarkers for those pathologies characterized by activation 

of MCs, such as mastocytosis 201 and asthma, in which there is enhancement of the PGD2 

pathway 202. Eosinophils can also produce PGD2, but in quantities that are much lower than 

for MCs 143, thus their contribution of PGD2 in disease seems less likely. PGD2 exerts its 

biological effect via DP1 and DP2/CRTH2, both G-protein coupled receptors (GPCRs) 144. 

On MCs, PGD2 triggers the synthesis of Th2 mediators through DP1 203, while the functions 

of CRTH2 receptor on MCs are controversial 144. On eosinophils, DP1 and CRTH2 have 

some overlapping and cooperative functions, since both receptors are able to induce the 

egress of eosinophils from bone marrow, and mediate chemotactic activity and production of 

leukotriene C4 (LTC4) 204. In asthma models, PGD2 activation of eosinophils increases their 
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degranulation, mobilization and recruitment in the lungs through CRTH2. Currently, a 

CRTH2 antagonist, fevipiprant, is being tested in advanced clinical asthma trials 205,206.

Leukotrienes (LTs) are also rapidly synthesized and released following MC and eosinophil 

activation 207. The main leukotrienes produced by MCs and eosinophils are products of 

lipoxygenase 5 activity on arachidonic acid and they comprise the cysteinyl leukotriene 

(CysLT) LTC4 and LTB4. LTC4 is formed via the addition of a molecule of glutathione to 

LTA4. LTC4 is then transported outside of the cell where it can be converted to LTD4 and 

then to LTE4 by specific enzymes 208. Receptors for CysLTs are GPCRs called CysLT1R 

and CysLT2R. These receptors are expressed on eosinophils and MCs 209. Recently it was 

found that an ADP receptor, P2Y12, on LAD-2 MCs can also function as a receptor for 

LTE4, with powerful pro-inflammatory effects 210. On MCs, CysLTs trigger activation and 

induce proliferation and cytokine secretion 209. LTC4 and LTD4 have been shown to increase 

Ca2+ influx in MCs 211, enhance cytokine production 212 and, together with LTE4, increase 

MC proliferation 213. On eosinophils, CysLTs induce chemotaxis, migration and secretion of 

mediators; moreover, binding of CysLT1R can increase survival of eosinophils. While MCs 

and eosinophils are important sources of CysLTs, LTB4 is mainly produced by neutrophils 

and macrophages, with MCs and eosinophils producing only modest quantities 214. The 

effects of LTB4 are mediated by two GPCRs, BLT1 and BLT2, expressed on human HMC-1 

and perhaps normal MCs, while human eosinophils express only BLT1 209. On eosinophils, 

binding of LTB4 to BLT1 induces their recruitment and chemotaxis; on MCs, both receptors 

induce chemotaxis and migration in a dose-dependent fashion 215. Given the relevance of 

leukotrienes and their receptors in inflammation, antagonists of CysLT1R have been 

developed for treatment of asthma 210 as well as drugs that target 5-lipoxygenase and 

thereby inhibit the synthesis of multiple leukotrienes 216.

4.3 Reactive oxygen species

Reactive oxygen species (ROS) include hydrogen peroxide (H2O2), nitric oxide (NO) and 

others 217,218. The primary role of ROS in inflammation is probably to eradicate invaders 

through their toxic effects 218,219. Both human MCs and eosinophils can produce ROS upon 

IgE-dependent activation and by activation of FcγR, Siglec-8 or other receptors, respectively 
66,149,220,221. ROS plays a role in the regulation of airway inflammation and remodeling by 

MCs, through their involvement in the VEGF production cascade 222. Unlike MCs, ROS 

production in eosinophils is involved in the resolution of inflammation. In a preclinical 

model of asthma, mice with decreased ability to produce ROS showed no resolution 

compared to WT mice where resolution was observed regularly after 72h 218. Mice treated 

with H2O2 showed decreased allergic inflammation 218, and death induced by Siglec-8 

activation in cytokine-primed eosinophils is completely dependent on internal ROS 

generation 66. The opposite effects of ROS production by MCs and eosinophils are 

interesting and raise questions about the possible effect of treatment with ROS scavengers.

4.4 Histamine

MCs, together with basophils, are the only eukaryotic cell sources of preformed histamine 

that they release promptly upon activation 223. Histamine is involved not only in allergy and 

anaphylaxis, but it is also important for immunomodulation, cell proliferation, wound 
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healing, neurotransmission, stimulation of gastric secretion, regulation of blood pressure and 

perception of pain 224. There are four receptors for histamine, H1-4R, some of which are 

expressed on MCs and eosinophils (discussed above and in another review of this series).

5 Mast cells and eosinophils in allergic disease

5.1 Atopic dermatitis

Atopic dermatitis (AD) is a chronic eczematous disease characterized by itchy, dry and 

inflamed skin, which affects 10–20% of the world’s population including both adults and 

children 225. MC and eosinophil activation is a main characteristic of this disease. AD is 

often the first manifestation of allergies and is considered the first step in the atopic march 

because affected individuals are likely to develop other allergies such as asthma or rhinitis 
226. Mutations in FLG, the gene encoding human filaggrin, are the most known and accepted 

risk factor for genetic predisposition of AD. Filaggrin is a protein involved in maintenance 

of the epidermal architecture and keratinocyte development. Thus, mutations in this gene 

can disrupt the structure of the skin barrier, resulting in increased sensitivity to allergens 226. 

Interestingly, skin barrier impairment correlates with infections from S. aureus 227, a main 

player in AD, by producing toxins such as enterotoxin A, B, C, D, etc., which can act like 

superantigens 224,228,229. Activated MCs are found in AD lesions and eosinophils can be 

activated by S. aureus directly via TLRs or CD48 180,182. MCs are in part responsible for the 

itching and skin dryness experienced by AD patients due to their release of histamine, 

tryptase and other pro-inflammatory mediators 230. Moreover, MCs produce IL-4 and IL-13, 

which promote eosinophil recruitment, via stimulation of chemokine production from 

keratinocytes and fibroblasts. Eosinophils recruited to AD lesional skin by MCs, once 

activated discharge several mediators that contribute to AD symptoms. For example, ECP, 

EDN and MBP have the ability to increase permeability of blood vessels and neurotoxic 

properties, while chemokines such as CCL11 can increase eosinophil recruitment 226.

5.2 Asthma

Atopic asthma is characterized by allergic, eosinophilic inflammation (reviewed in 231). One 

of the main players in the development of atopic asthma are MCs, which have a central role 

in eliciting the early asthmatic reaction and also contribute to the late phase, likely due to 

production of substances such as cytokines, chemokines and arachidonic acid metabolites. 

Even though the number of airway MCs of atopic and non-atopic patients is similar to what 

is observed in healthy controls, the density of FcεRI on MCs is increased, probably due to 

the presence of higher levels of serum IgE. The fact that omalizumab can effectively reduce 

exacerbations further supports the role of MCs in late-phase responses (reviewed in 232). 

Moreover, MC-derived substances contribute to the recruitment of other immune cells such 

as lymphocytes, macrophages and eosinophils 190. The release of mediators such as 

histamine, PGD2, LTC4, cytokines and others by MCs contribute to bronchoconstriction, 

mucus secretion and mucosal edema 232. The role of eosinophils in asthma, via release of 

granule proteins and other substances, is probably multifactorial (reviewed by 198). Based on 

clinical trials employing eosinophil targeting agents anti-IL-5 and anti-IL-5R, the most 

consistent finding is that of ≈50% reduction in asthma exacerbations, with little to no effect 

on lung function or airways hyperreactivity 233. The notable role of MCs and eosinophils in 
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asthma makes them useful as biomarkers for diagnosis and treatment. For example different 

eosinophil and MC products, including Charcot-Leyden crystal protein and 

carboxypeptidase A3 respectively, have the potential to predict patient responses to oral 

corticosteroids treatment 234. Patients who successfully respond to treatment have high 

levels of these proteins initially, which decrease following treatment 234. Another possible 

marker for asthma is CD48 expressed by MCs and eosinophils. Moderate asthma patients 

exhibit increased CD48 compared to healthy controls, while CD48 levels in patients with 

severe asthma are decreased compared to moderate asthma patients. In contrast, sCD48 

levels were higher in patients with mild asthma compared to control and decreased levels 

were detected in moderate patients compared to mild and even lower levels in patients with 

severe asthma 181. More studies are needed to provide the ideal combination of biomarkers 

to direct asthma care.

5.3 Rhinitis

Allergic rhinitis, or hay fever, manifests as inflammatory conditions that affect the nasal 

mucosa, usually accompanied by sneezing, itching, watery discharge and/or blockage 235. 

Approximately 10–40% of the population within industrialized countries, including 8–15% 

of children, experiences these symptoms. Episodes usually occur seasonally or perennially 

in geographical regions with defined seasons, but inflammation and symptoms can exist 

year-round in situations where continual exposure to allergens such as dust mites and pet 

dander are relevant. The nasal cavity is lined with epithelium that forms a barrier between 

the environment and underlying tissues. This epithelial layer comprises basal cells, ciliated 

cells, and mucus-producing goblet cells and is protective against external allergens (e.g. 

pollens, molds and others) 236. Epithelial cells play a key role in the pathogenesis of rhinitis, 

initiating type-2 inflammatory responses through secretion of TSLP, IL-25 and IL-33 237,238. 

Release of these inflammatory mediators can trigger production of IL-5 and IL-13 from 

ILC2s, directly and indirectly affecting eosinophils and MCs. Human studies have identified 

MCs as major effector cells driving early inflammatory responses following activation 

through their high-affinity IgE receptor, FcεRI 239. Eosinophils, however, are among the 

initial cells recruited to the nasal mucosa during the late or chronic phase of inflammation 
240,241. Eosinophil activation following nasal allergen challenge was reported by Bascom et 
al. through the detection of eosinophil-derived proteins (MBP and ECP) in nasal fluids 242. 

Kountakis et al. found that the presence of nasal polyps, often a feature of chronic rhinitis, 

correlates with increased eosinophil activation and more severe clinical features 243. In some 

patients, eosinophils can make up 20% or more of total cell counts in nasal smears 244.

5.4 Food allergy and eosinophilic gastrointestinal disorders

Food allergies have recently gained a great deal of attention as the leading cause of 

anaphylaxis in the United States. Approximately 8% of children and 2–3% of adults are 

affected by food allergies 245,246. Common allergens include wheat, egg, shellfish, peanuts, 

tree nuts, soy and cow’s milk. Adverse reactions to food can be classified as food 

intolerance, a reaction that may not be reproducible and is usually dose-dependent, or food 

allergy that is reproducible. Patients with food allergies can be further classified into 3 sub-

categories: 1) IgE-mediated, 2) cell-mediated, or 3) IgE and cell-mediated. There has been a 

steady increase in the number of individuals affected by food allergies, particularly in the 
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last 20 years. Generally, symptoms of food allergy and anaphylaxis appear very soon after 

food consumption and can include urticaria, wheezing or coughing, nausea, vomiting and/or 

diarrhea, and in extreme cases, hypotension and even death. Whether such immediate 

reactions are due to MCs activation in tissues, as opposed to basophil activation in the 

circulation, cannot be easily determined, but in mouse models these are primarily MC-

dependent reactions.

Histamine and tryptase levels in the blood can both increase during food-induced 

anaphylaxis, directly implicating MCs in food allergy 247. Furthermore, platelet activating 

factor, which has been linked to disease severity, can also be produced and released by MCs 
247. MC activation through IgE had been linked to IL-9 and IL-33 production, both of which 

have been shown to play a role in disease pathogenesis. Eosinophils are more predominantly 

featured within the inflamed GI tract of patients with non-IgE mediated food allergies (e.g. 

eosinophilic esophagitis, EoE) 245. EoE features include painful swallowing (dysphagia) and 

sometimes food impaction. More common in males, EoE is predominantly associated with 

non-IgE-mediated hypersensitivity to foods 245. Inflammation is primarily driven by 

eosinophils but also MCs and is defined by presence of at least 15 eosinophils/HPF in 

biopsy sections 248. The EoE transcriptome was described, with CCL26 (eotaxin-3), an 

eosinophil chemoattractant, being the most highly induced gene 249. Of note, CD11c, 

CRTH2, ICAM-1 and the low affinity IgE receptor FcεRII (CD23) are also upregulated on 

eosinophils in EoE 250,251. As mentioned, MCT are elevated in esophageal tissue of EoE 

patients compared to healthy controls 252. Surprisingly, MCs may also drive the 

pathophysiology of EoE as Omani et al. demonstrated that MC numbers were attenuated 

within a group of pediatric EoE patients undergoing anti-IL-5 treatment 91. They also 

discovered that both eosinophils and MCs were producing the MC growth factor IL-9 and 

that MC numbers correlated with disease severity 91.

5.5 Urticaria

Urticaria, or hives, occurs in 15–25% of the population sometime during their lifetime and is 

characterized by pruritic lesions containing a pale center also known as a wheal with 

surrounding redness known as a flare 253. Associated inflammation can be acute, but nearly 

30% of urticaria patients experience chronic lesions defined by recurrent episodes for at 

least 6 weeks 253. While urticaria can result from physical stimuli (i.e. temperature or direct 

stroking of the skin), non-physical cases are often categorized as autoimmune or most 

commonly idiopathic 254. MCs are considered a primary effector cell responsible for 

initiation of inflammation, in part due to release of histamine and cell-recruiting 

chemokines. While the exact contribution and trigger of MCs in urticaria remains 

controversial 255,256, it has been shown that histamine release correlates with an autoimmune 

phenotype 254. Recent guidelines agree that anti-histamines are the mainstay of initial 

treatment for chronic urticaria, even though responses can vary 257. Omalizumab, an anti-

IgE monoclonal antibody, is another approved treatment option that is effective in over 60% 

of antihistamine-refractory patients 258. Eosinophils also participate in chronic urticaria, 

primarily in patients lacking an autoimmune component, and accumulate in urticarial lesions 

where MBP and ECP can also be detected 259. Marques et al. recently conducted a study 
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where they found that tissue eosinophilia was linked to disease severity in patients with 

chronic urticaria 260.

6 Mast cells and eosinophils during bacterial, viral and parasitic infections

Beyond their involvement in allergic inflammation, MCs and eosinophils also serve a 

protective role during infection and host defense against viruses, bacteria and parasites. MCs 

and eosinophils are uniquely placed at the interface between the outer environment and 

tissues, allowing for their response to penetrating pathogens via production of 

immunoregulatory mediators. Eosinophils can also be recruited by activated MCs in 

inflamed tissues.

The role of MCs in viral infections is still poorly understood. However, it is known that 

some viruses, such as HIV, respiratory syncytial virus (RSV) and Dengue virus, can infect 

MCs 261–263 and remain latent. Troupin et al. recently demonstrated that Dengue virus can 

directly induce degranulation in human skin MCs. Furthermore, they found that the virus 

localized to MC secretory granules rendering them infectious, suggesting that MCs are key 

players in the systemic spread of Dengue 263. Eosinophils can recognize viruses via TLRs 

and release their mediators after activation. The mechanisms through which eosinophils 

promote antiviral effects are still unclear, but it is known that eosinophils cannot propagate 

viruses after being infected and eosinophil-derived nitrous oxide can inhibit viral proteases 

and alter host cell functions by promoting nitrosylation of thiol and tyrosine groups, which 

can impair the protein and RNA synthesis 264. Ribonuclease activity in certain eosinophil 

granules may also be antiviral 187,264. The role of MCs and eosinophils in viral defense still 

needs clarification, but the finding that reductions of eosinophils via biological therapies do 

not appear to increase risk of infections is reassuring.

MCs and eosinophils are also participants in fungus-associated inflammation. For example, 

MCs express PRRs specific for fungi, including Aspergillus and Fusarium species, 

highlighting their capacity to mediate antifungal responses 265. Some fungi can also infect 

MCs. Candida albicans can induce MCs degranulation, triggering production of pro-

inflammatory cytokines. Interestingly, C. albicans can also be internalized by MCs, where it 

is able to grow and germinate leading to disruption of MC membranes and ultimately cell 

death 266. Eosinophils can directly interact with β-glucans, a component of fungal cell walls, 

via CD11b integrin 267. This interaction leads to eosinophil activation and release of granule 

proteins resulting in fungal cell death 267. Alternatively, eosinophils can be activated via 

proteinase-activated receptors (PARs) 268, or by products released by fungal cells 269.

Besides allergies, MCs and eosinophils are most well known for their roles in parasitic 

infections. When MCs recognize parasites, they form clusters around them and become 

activated 270, leading to release of parasite-killing mediators and tissue damage 271. For 

example, histamine released by activated MCs during P. falciparum infection, initiates 

inflammatory responses and increases vascular permeability and associated damage, driving 

the pathogenesis of malaria 271. During infections from T. cruzi, the number of MCs, and 

levels of MC-derived mediators such as chymase, is increased in the myocardium of patients 

with Chagas disease, resulting in myocardial fibrosis 271. During helminth infections, MCs 
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accumulate at sites of infestation where they are involved in initiating Th2 responses, 

contributing to helminth expulsion 270. However, the majority of studies focusing on the role 

of MCs in helminthic infections are conducted in rodents, thus more studies should aim to 

focus on human infections to better understand the specific contribution of MCs. Helminthic 

infections are also characterized by high IgE production and marked blood and tissue 

eosinophilia 272. Comparable to MCs, eosinophils can form aggregates around parasites and 

kill them by ADCC 273 or through the release of granule proteins and ROS production 272. 

In contrast, there may be situations where eosinophils may instead benefit parasitosis and be 

detrimental to host cells and tissues 274, since their granule proteins and other mediators 

have strong cytotoxic activity 272.

In addition to viral, fungal and parasitic infections, MCs and eosinophils may be involved in 

bacterial immune responses. Eosinophils granule proteins EPO, ECP and MBP-1 are toxic to 

microorganisms. For example, ECP can reduce bacterial survival following recognition of 

LPS and/or peptidoglycans. EPO can generate ROS, leading to the production of hypohalous 

acids, with bactericidal activity 275. Both MCs and eosinophils are capable of direct and 

indirect killing of microbes via phagocytosis or enzymes or by recruiting other immune 

cells. Bacteria can trigger MC degranulation and/or selective cytokine release via pattern 

recognition receptors (PRRs), such as TLRs, Fc receptors, Nod-like receptors, C-type 

lectins, and CD48, 276. Furthermore, MC granules contain tryptase and chymase proteases 

that contribute to microbial killing 277. Eosinophils exhibit phagocytic activity, and both 

MCs and eosinophils can release their DNA to create traps 187,278,279. Whether the 

successful targeting of MCs and eosinophils will result in increased risks of developing 

parasitic or other infections remains to be seen.

7 Conclusions

MCs and eosinophils are complex immune cells that develop and function similarly in many 

ways. They can be beneficial when protecting us from pathogens, but they can also be 

detrimental in when activated inappropriately. They have overlapping immunomodulatory 

roles in both acute and chronic inflammation and can help orchestrate recruitment of other 

cells through release of pre-stored mediators, with the added capacity to synthesize 

additional mediators de novo. Within recent decades, the percentage of individuals affected 

by allergies has steadily increased and several MC/eosinophil-targeting biologics have been 

approved for use in allergic individuals in the last five years. These drugs are quite effective 

in select patient cohorts, but they are quite expensive, do not work in everyone and can have 

undesirable side effects. Thus, it is important to continue studying these cells, especially in 

humans, because they do vary in important ways from their rodent counterparts. Ultimately, 

an improved understanding of these closely related cells and their roles in homeostasis, and 

in both favorable and unfavorable immune responses, should allow us to best determine 

when targeting of these cells is warranted or best avoided to maintain optimal health.
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Table 1

Comparison of a broad selection of cell surface molecules expressed by mast cells and eosinophils.

Mast Cells Eosinophils

Fc Receptors FcγRI (CD64) + 30,31 —

FcγRII (CD32) + 32,33 + 34–37

FcγRIIa + 32,39 + 39

FcγRIIb + 40,41 —

FcγRIII (CD16) — + 42–44

FcεRI + 45–49,51–53,280 —

FcεRII (CD23) — + 57

FcαRI — + 59,60

Siglecs Siglec-2 + 61 —

Siglec-3 + 61 + 281

Siglec-5 + 61 —

Siglec-6 + 61 —

Siglec-7 + 62 + 281

Siglec-8 + 61,64,67 + 64–66,68

Siglec-10 + 61 + 69

CD300 Receptors CD300a + 70,71 + 72

CD300c + 73 —

CD300f + 75,77 + 75,76

Leukocyte Ig-like Receptors (LILR) LILRA1 + 80 —

LILRA2 — + 79

LILRB1 + 80 + 79

LILRB2 + 80 + 79

LILRB3 + 80 + 79

LILRB4 + 80 —

LILRB5 + 80 —

Cytokine Receptors IL-4R + 82–84 + 20,81

IL-5R ± 90 + 19,86

IL-13Rα1 + 45,95 + 94

c-kit (CD117) + 96,101,102 + 100

TSLPR + 106,107 + 109,110

IL1RL1 (ST2) + 115–119 + 18,68,122–125

Migratory Receptors and Others α4β1 integrin (VLA-4) + 129,131 + 128,132,133

α4β7 integrin + 131,134,135,139 + 66,136–138

CRTH2 ± 144 + 140–142

C3aR + 152,153 + 149,150
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Mast Cells Eosinophils

C5aR + 152 + 150,151

C5aR2 + 156 ± 157

S1PR1 + 159 + 162

S1PR2 + 154,155,159–161 —

S1PR3 — + 162

S1PR4 — + 162

S1PR5 — + 162

H1R + 171 + 164

H2R + 171 + 165

H4R + 163,168 + 166,167

CB1 + 282–284 —

CB2 + 283 + 172,173

TLRs ± 176,177 ± 176,177

CD48 + 180 + 181,182,184

2B4 (CD244) ± 98 + 72,179,183

Abbreviations: Immunoglobulin (Ig) G receptor (FcγR), IgE receptor (FcεR), IgA receptor (FcαR), (Sialic acid-binding Ig-type lectin (Siglec), 
Leukocyte Ig-like receptor (LILR), Interleukin 1 receptor-like 1 (IL1RL1), Prostaglandin D2 receptor 2 (CRTH2), Sphingosine-1-phosphate 
receptor (S1PR), Histamine receptor (HR), Cannabinoid receptor (CB), Toll-like receptor (TLR), Natural killer cell receptor (2B4).
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