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Abstract

Osteomyelitis is a major problem worldwide and is devastating due to the potential for limb-

threatening sequelae and mortality. Osteomyelitis pathogens are bone-attached biofilms, making 

antibiotic delivery challenging. Here we describe a novel osteoadsorptive bisphosphonate-

ciprofloxacin conjugate (BV600022), utilizing a “target and release” chemical strategy, which 

demonstrated a significantly enhanced therapeutic index versus ciprofloxacin for the treatment of 

osteomyelitis in vivo. In vitro antimicrobial susceptibility testing of the conjugate against common 

osteomyelitis pathogens revealed an effective bactericidal profile and sustained release of the 

parent antibiotic over time. Efficacy and safety were demonstrated in an animal model of 
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periprosthetic osteomyelitis, where a single dose of 10 mg/kg (15.6 µmol/kg) conjugate reduced 

the bacterial load by 99% and demonstrated nearly an order of magnitude greater activity than the 

parent antibiotic ciprofloxacin (30 mg/kg, 90.6 µmol/kg) given in multiple doses. Conjugates 

incorporating a bisphosphonate and an antibiotic for bone-targeted delivery to treat osteomyelitis 

biofilm pathogens constitute a promising approach to providing high bone-antimicrobial potency 

while minimizing systemic exposure.

Graphical abstract

INTRODUCTION

Infectious bone disease, or osteomyelitis, is a major problem worldwide in human1 and 

veterinary2 medicine and can be devastating due to the potential for limb-threatening 

sequelae3 and mortality.4 The current approach to treat osteomyelitis is mainly antimicrobial 

and often intravenous and long-term, with surgical intervention in many cases to control 

infection. The causative pathogens in the majority of long bone osteomyelitis cases are 

biofilms of Staphylococcus aureus; these microbes are bound to bone (Figure 1) in contrast 

to their planktonic (free-floating) counterparts.5

The biofilm-mediated nature of osteomyelitis is important in clinical and experimental 

settings because many biofilm pathogens are uncultivable and exhibit an altered phenotype 

with respect to growth rate and antimicrobial resistance.5,6 The difficulty in eradicating 

biofilms with conventional antibiotics partly explains why the high success rates of 

antimicrobial therapy in general have not yet been realized for orthopedic infections, along 

with the development of resistant biofilm pathogens, poor penetration of antimicrobial 

agents into bone, and adverse events related to systemic toxicity.3

To overcome the many challenges associated with osteomyelitis treatment,7 there is 

increasing interest in drug delivery approaches using bone-targeting conjugates to achieve 

higher or more sustained local therapeutic concentrations of antibiotic in bone while 

minimizing systemic exposure.8 Conjugation of fluoroquinolone antibiotics to 

osteoadsorptive bisphosphonates (BPs) (Figure 2) represents a promising approach because 

of the long clinical track record of safety of each constituent and their advantageous 

biochemical properties.9,10 Ciprofloxacin (Figure 2) has several advantages for repurposing 

in this context: (1) it can be administered orally or intravenously with relative 

bioequivalence; (2) it is already FDA approved and indicated for bone and joint infections 

caused by Pseudomonas aeruginosa and several other pathogens; (3) it has broad spectrum 

antimicrobial activity that includes the most commonly encountered osteomyelitis pathogens 

like S. aureus, P. aeruginosa for long bone osteomyelitis,11 and Aggregatibacter 
actinomycetemcomitans for jawbone osteomyelitis;12 (4) it demonstrates bactericidal 
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activity in clinically achievable doses;13 and (5) it is the least expensive drug in the 

fluoroquinolone family. However, like most antibiotics, fluoroquinolones suffer from 

reduced activity against biofilms as compared to the same bacteria in planktonic forms; this 

has been shown specifically for ciprofloxacin against S. aureus in addition to many other 

bacterial strains and antibiotic classes.14–17 Such studies have demonstrated that biofilms 

can be one to several orders of magnitude more resistant to the same antimicrobial agents, as 

compared to their planktonic counterparts. This highlights the importance of a bone-targeted 

approach for treating osteomyelitis, in order to achieve higher local concentrations of 

antibiotic against causative biofilms and overcome potential resistance.

The specific bone-targeting properties of the BP family make these drugs ideal carriers for 

targeting antibiotics to bone in osteomyelitis pharmacotherapy.18–20 BPs form strong 

bidentate or tridentate bonds with calcium phosphate mineral, and as a result concentrate in 

hydroxyapatite (HA), particularly at skeletal sites of active metabolism including sites of 

infection and inflammation.21 BPs also exhibit exceptional stability against both chemical 

and biological degradation.22 BP-fluoroquinolone antimicrobial activity is complex and is 

related to the specific strain of pathogen tested, the choice of antibiotic and covalently bound 

BP moiety, the tether length between the two constituents, the bone binding affinity of the 

BP, the adsorption–desorption equilibria of the BP, and the stability/lability and kinetics of 

the linkage moiety used for conjugation.18–20 Therefore, accumulating evidence suggests 

that a “target and release” linker strategy (Figure 2) where a conjugate is stable in 

circulation, but labile at the bone surface, may offer more opportunities for optimization and 

success in this context. We thus hypothesized that conjugation of ciprofloxacin to a phenyl 

BP moiety, through metabolically hydrolyzable carbamate linkers, should mitigate the 

problems seen with antibiotic dosing in osteomyelitis pharmacotherapy. The cleavable 

carbamate linkage is a key functionality in many drugs designed for target and release in 

specific tissues23,24 and confers pharmacokinetic advantages such as stability in serum and 

lability at infected bone surfaces in the presence of an acidic and enzymatic environment 

(e.g., inflammation or infection).25

A recent apparent success utilizing a bone-targeting and release strategy is provided by 

Morioka et al.26 who designed an estradiol analog conjugate using a cleavable variant 

(carbamate) of the more stable amide peptide bond. Several versions of this linkage were 

attempted before the identification of a pharmacologically active variant (aryl carbamate). 

Importantly, they demonstrated that a single dose of a similarly linked BP-estradiol 

conjugate (at a dose nearly 5600 times lower than the total dose of estradiol alone) produced 

a similar effect on bone to that of the estradiol dosed alone.26 The conjugate also provided 

an even greater therapeutic index, as there were minimal effects systemically and in uterine 

tissues compared to the estradiol alone. Pharmacokinetic studies completed by Arns et al.27 

are in agreement with this dramatic enhancement of potency in studies based on a BP-

prostaglandin with a more labile linker. Other synthetic examples of this approach in the 

antimicrobial field are reported for the macrolide class;28 however, only alkyl carbamates 

were explored, and the lack of further success suggests that target and release strategies are 

likely chemical class-dependent (taking into consideration compatibilities of the functional 

groups of each component) as well as biochemical target dependent, and the design for any 

particular chemical class must be customized for its use.
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Here, we describe a novel aryl carbamate BP-ciprofloxacin conjugate 6 (BV600022), 

evaluate its antimicrobial activity in vitro against common osteomyelitis pathogens, and 

assess its in vivo safety and efficacy in an animal model of peri-prosthetic osteomyelitis. 

Importantly, the studies presented herein utilize biofilm models and methodology, in 

addition to planktonic cultures, to provide greater clinical or translational relevance.

RESULTS

Chemistry

The overall synthetic route to 6 is shown in Scheme 1, starting from the relatively 

pharmacologically inert 4-hydroxyphenylethylidene BP (3). The rationale for this BP design 

was to retain the bone-seeking ability of the BP moiety while suppressing its unneeded 

antiresorptive activity, minimizing confounding factors to focus on evaluating the 

antimicrobial effect due to the parent ciprofloxacin compound. BP ligands can also be 

designed to have antiresorptive functionality (of varying potency) if needed to provide a 

dual-action effect of bone tissue protection in addition to antimicrobial effects at the 

anatomic site of infection. We also chose this phenyl BP with consideration of bone binding 

affinity and tether length, as previous studies have demonstrated that weak binding affinity 

decreases targeting efficiency.13,14 Importantly, we postulated that the use of an aryl 

carbamate as a linker might offer optimized stability in plasma and adequate release on bone 

for this biochemical target as compared to previously derived BP-fluoroquinolone 

conjugates.

Additionally, we synthesized a similar BP-ciprofloxacin conjugate having an amide linkage 

as opposed to a carbamate linkage as outlined in Scheme 2 as a control conjugate 11 
(BV600026). Previous investigations have indicated that amide conjugates are not able to 

release the parent antibiotic and are thus less effective in vitro and in vivo,11 which we 

sought to verify in this instance.

Antibacterial Properties of BP-Ciprofloxacin Conjugates

Minimal Inhibitory Concentration Assays—The antimicrobial activity of both 

conjugates (6 and 11) and the parent antibiotic ciprofloxacin in standard laboratory 

planktonic culture systems was evaluated against a panel of S. aureus clinical strains 

associated with bone infections, including methicillin-sensitive S. aureus (MSSA) and 

methicillin-resistant S. aureus (MRSA). Following European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) guidelines,29 results from disc diffusion inhibition zone 

assays revealed diameters ranging from 25 to 40 mm (mean 31.5, SD ± 5), and every strain 

demonstrated antimicrobial susceptibility to the parent antibiotic ciprofloxacin according to 

EUCAST clinical breakpoints. Minimal inhibitory concentration (MIC) results for 6 and 11 
against eight S. aureus strains using microdilution methodology are shown in Table 1. MICs 

for the parent compound ciprofloxacin were determined concurrently for reference (see 

Table 1) and were found to be consistent with established clinical breakpoints.29 

Antimicrobial and MIC results for conjugates 6 and 11 in the in vitro experiments were 

calculated based on the amount of the parent antibiotic to allow molar comparison to 

ciprofloxacin.
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Hydroxyapatite Binding Assay—Having established the antimicrobial efficacy of 6, we 

next sought to evaluate HA binding ability. We added HA spherules to our microbiological 

media and then introduced 6 at various concentrations similar to those used in the 

antimicrobial testing. Quantitative spectroscopic analysis of supernatant (without HA 

spherules) confirmed significant adsorption and retention of the conjugate by HA (Figure 3).

pH Effect in Antimicrobial Susceptibility Testing (AST) on Planktonic S. 
aureus Strain ATCC-6538—We selected S. aureus strain ATCC-6538 for further 

investigation because it demonstrated the lowest MIC profile for both ciprofloxacin and 6 
(see Table 1) compared to the other strains tested. This ATCC strain is also a well-known 

and robust biofilm-forming pathogen. Consequently, we could test our conjugates against the 

most challenging pathogen to limit bias and overestimated results, while also facilitating 

assessment of antimicrobial activity in biofilm-based and clinically relevant models. 

Antimicrobial susceptibility testing (AST) on planktonic S. aureus strain ATCC-6538 with 6 
under both acidic and physiological pH was performed to assess the effect of pH on 

conjugate activity. Quantitative results from standard microdilution methodology indicated 

that under acidic conditions (pH 5), the antimicrobial activity of 6 was improved overall as 

the MIC50 was reached at half the conjugate concentration required to reach MIC50 under 

physiological conditions (Figure 4). It is important to note that in these results and in results 

presented later in this paper, the minimum inhibitory concentration terms MIC50 or MIC90 

refer to a reduction of 50% or 90% of bacterial load, respectively, and the biofilm-related 

terms of minimum biofilm inhibitory concentrations (MBIC50 or MBIC90) refer to similar 

reductions (50% or 90%) but in biofilm bacterial load.

Time-Kill Assays of 6

Next, kinetic assays were performed with 6 according to Clinical Laboratory Standards 

Institute (CLSI) methods.30 Results indicated that this conjugate was bactericidal at the 

previously established MIC for methicillin-susceptible (ATCC-6538) and methicillin-

resistant (MR4-CIPS) isolates of planktonic S. aureus within 1 h and up to 24 h, preventing 

100% of bacterial growth; these kinetic studies also revealed that at half the MIC value, 

prevention of bacterial growth became evident after 2 h and inhibition was at 50% of control 

after 24 h (Figure 5).

Evaluation of Antimicrobial Efficacy of 6 against Biofilms—We then tested 6 
against preformed bacterial biofilms on two different substrates (polystyrene and HA discs) 

to evaluate antimicrobial efficacy against biofilms and to also determine if substrate binding-

specificity plays any role in the observed antimicrobial efficacy. Biofilms of S. aureus 
(ATCC-6538), and additionally biofilms of P. aeruginosa (ATCC-15442), were grown on 

polystyrene or HA as substrates and were subjected to varying concentrations of 6 for 

assessment of antimicrobial activity. We tested P. aeruginosa here because it is a Gram-

negative pathogen and the second most common clinical pathogen in osteomyelitis, though 

less frequent in prevalence than Gram-positive S. aureus. Figure 6 shows results for 

polystyrene as the substrate for biofilm growth, and the minimal biofilm inhibitory 

concentration (MBIC50) of 6 was 15.6–31.2 µg/mL for S. aureus ATCC-6538, which was 

comparable to the MIC for this strain in planktonic cultures. No MBIC50 was observed for P. 
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aeruginosa ATCC-15442 in the tested range of concentrations, and no MBIC90 was observed 

for either pathogen.

However, when HA discs were used as the biofilm substrate, marked bactericidal activity 

was observed with 6. As shown in Figure 7, all tested concentrations of this conjugate 

resulted in statistically significant (p < 0.05, Kruskal–Wallis test) bactericidal activity and 

reduction of colony forming units (CFUs). The MBIC50 of 6 was 16 µg/mL, and the 

MBIC90 was 100 µg/mL against S. aureus strain ATCC-6538; the MBIC90 for the parent 

drug ciprofloxacin was 8 µg/mL against this pathogen. However, against the P. aeruginosa 
strain ATCC-15442, ciprofloxacin had no inhibitory or bactericidal activity in this setting, 

while the conjugate was bactericidal in acidic and physiological conditions at 50 µg/mL and 

showed improved bactericidal activity in physiological conditions as compared to S. aureus, 

where improved antimicrobial activity was observed in acidic conditions.

Preventative Antimicrobial Assays—Next, we performed antimicrobial tests with 6 in 

a preventative type of experimental setting with planktonic and biofilm cultures, which could 

also have clinical relevance in antibiotic prophylactic scenarios for osteomyelitis 

pharmacotherapy. Here HA spherules were introduced to varying concentrations of 6 and 

then inoculated with S. aureus for 24 h, and quantitative assessments indicated no bacterial 

growth at concentrations as low as 15.6 µg/mL and up to 250 µg/mL of 6, and minimal 

bacterial growth with strong inhibition at conjugate concentrations ranging from 0.24 to 7.8 

µg/mL as shown in Figure 8.

Next, we tested the amide conjugate (11) for ability to treat the S. aureus strain ATCC-6538 

biofilms in experimental conditions similar to those used to test the carbamate conjugate 6. 

When evaluating the activity of 11 against established S. aureus biofilms grown on HA and 

HA pretreated with 11 prior to biofilm growth in a preventative experimental setting, 

antimicrobial activity of 11 even at higher doses than those used to test 6 was insignificant in 

both cases as shown in Figure 9.

When 6 was tested for the ability to prevent S. aureus ATCC-6538 biofilms from forming on 

pretreated HA, the conjugate showed superior antimicrobial activity as compared the parent 

antibiotic and in contrast to 11, which showed no significant antimicrobial activity. Table 2 

shows results of quantitative biofilm cultures and CFU counts after 24 h of growth, and at 

100 µg/mL, the parent drug ciprofloxacin inhibited all biofilm growth, whereas at 10 µg/mL, 

6 inhibited all growth. Since the molecular mass of ciprofloxacin is approximately half that 

of 6, 6 was 20 times more active in achieving complete bactericidal action as compared to 

ciprofloxacin alone.

In Vivo Safety and Efficacy—Since 6 demonstrated promising activity in vitro, we 

sought to assess drug safety and efficacy in vivo in an animal model of periprosthetic 

osteomyelitis. This model is a unique in-house jawbone peri-implant osteomyelitis model 

that was developed specifically for translational value to study biofilm-mediated disease and 

host response in vivo.31 Because a systemic treatment regimen is utilized, this assay also 

serves to model any infected bone surface, since the resulting osteolysis involved is key to 

attracting (targeting) high concentrations of a BP-conjugate, like any high turnover site on 
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bone, and to subsequently release the active ciprofloxacin component of the conjugate at this 

diseased bone surface. Briefly, biofilms of the jawbone osteomyelitis pathogen 

Aggregatibacter actinomycetemcomitans (Aa; wild-type rough strain D7S-1; serotype a), 

which is not indigenous to rat normal flora and specific to jawbone infections, were 

preinoculated on miniature titanium implants at 109 CFU. To confirm Aa sensitivity to the 

parent drug ciprofloxacin prior to our animal studies, we performed AST and MIC assays as 

performed for the long bone osteomyelitis pathogens described previously. Disc diffusion 

inhibition zone assays revealed diameters >40 mm, and the MIC90 was 2 µg/mL, indicating 

strong susceptibility of this microbe to the parent drug ciprofloxacin. Aa has also been tested 

previously for susceptibility to a pH-sensitive biotinylated ciprofloxacin prodrug and was 

found to be sensitive to the parent antibiotic.32 As with previous pathogens in this study, we 

also tested Aa biofilm pathogens grown on HA for sensitivity to 6 and found our conjugate 

displayed effective antimicrobial activity as shown in Figure 10.

After Aa biofilms are established on implants in vitro, they are surgically transferred to the 

jawbone of each rat. Animals are anesthetized, the cheeks are retracted, and a transmucosal 

osteotomy is performed so the implants can be manually inserted into the osteotomy and 

secured. Two biofilm-inoculated implants are placed in each rat (n = 12 rats, 24 implants 

total) in the palatal bone bilaterally. This model allows standardized and reproducible 

quantities of viable bacteria to be formed as well-established biofilms on each implant, 

which we have previously demonstrated persists in vivo for several weeks after placement 

and causes infection, inflammation, and bone destruction locally.31

Once the peri-implant infection was established 1 week post-operatively, the animals were 

dosed with 6, ciprofloxacin alone as a positive control, and sterile endotoxin-free saline as a 

negative control at the dosing regimens specified in the Experimental Section. To determine 

appropriate dosing concentrations, we calculated approximate initial doses for the conjugate 

based on previous studies and pharmacokinetic data using other target and release strategies 

also in rodents.26 We expected that increasing doses of 0.1, 1, and 10 mg/kg molar 

equivalents of 6 will allow us to determine antimicrobial activity in 2 test animals per group 

based on sample size estimations and previous experience with the animal model.32 Animals 

were dosed via intraperitoneal injection under general anesthesia, and all compounds were 

constituted in sterile physiological injectable saline at appropriate pH. Intraperitoneal 

injection was used because of the ease of administration in small rodents as compared with 

other parenteral methods like tail vein injection and because the pharmacokinetics of 

ciprofloxacin following gastrointestinal administration shows excellent bioavailability; 

serum drug levels achieved after such administration are slightly less but comparable to 

those with intravenous dosing with no substantial loss after first pass metabolism.33 One 

week after pharmacotherapy, all animals were sacrificed and en bloc resection of peri-

implant hard and soft tissues was performed and homogenized for quantitative assessment of 

microbial load.

All animals tolerated the pharmacotherapy well with no cutaneous injection-site reactions or 

inflammation. There were no signs of gross tolerability issues during therapy. Treatment 

efficacy was quantitatively measured in terms of the logarithmic reduction of the amount of 

viable bacteria (mean log10 CFU/gram of tissue) as shown in Figure 11.
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In vivo, the single dose of 6 at 10 mg/kg showed the highest efficacy with a 2 log reduction 

in bacterial count (99% bacterial killing) and nearly an order of magnitude greater activity 

than ciprofloxacin alone given at the same per dose concentration (mg/kg) but in multiple 

doses (30 mg/kg total dose). Thus, given the greater molecular weight of 6 (~2× of 

ciprofloxacin), the administered single dose of 6 at 10 mg/kg could deliver roughly 5 mg/kg 

of effective ciprofloxacin assuming full release, which is one-sixth of the ciprofloxacin 

molar dose of the control ciprofloxacin arm (30 mg/kg total). Ciprofloxacin alone in a 

multiple dosing regimen resulted in a 1 log reduction in bacterial counts (90% bacterial 

killing). Concentrations of 6 at 0.1 and 1 mg/kg had little effect, suggesting that a minimum 

dose is necessary for clinical effect and that further chemistry optimization may be possible 

in this context.

To validate our animal study findings and to provide for greater power and larger sample 

size for statistical analysis, we conducted a second animal experiment nearly identical to the 

first except for allocation of dosing regimens. Based on dosing data and antimicrobial results 

from our first animal study described above, we focused this second animal study on three 

treatment groups: negative control (n = 5 rats), 6 at a single high dose of 10 mg/kg (n = 5 

rats), and 6 at a multiple low dose regimen of 0.3 mg/kg 3×/week (n = 2 rats). Dosing groups 

of 0.1 and 1 mg/kg were excluded, as they showed no efficacy previously, and the parent 

antibiotic alone was also excluded since robust historical data exist for ciprofloxacin 

efficacy, which we also confirmed in our initial animal study. The multiple dosing regimen 

was utilized again to ascertain whether the lack of recoverable bacteria could be attributed to 

treatment effect or experimental and sampling error. All other experimental parameters were 

identical to the first animal experiment, and each animal had two implants placed as before, 

allowing for two results per animal and providing sufficient power for statistical analyses as 

determined by sample size estimations.

All animals again tolerated treatment and pharmacotherapy well, and there were no signs of 

gross tolerability issues during therapy. Clinically during euthanasia and surgical resection, 

we observed that the majority of the animals in the control group demonstrated evidence of 

localized peri-prosthetic inflammation as compared to the majority of the animals in the 

treatment groups which had non-inflamed peri-implant tissues, and implant retention was 

23/24 implants (96%), which is a high retention rate and provided robust power for 

subsequent analyses. Quantitative antimicrobial results from this second animal experiment 

are shown in Figure 12. Single factor ANOVA testing (α = 0.05), comparing CFUs between 

treatment groups, resulted in a p-value = 0.006 for significance between groups, and post-

hoc testing utilizing an unpaired t test (p = 0.0005; df = 20) and Dunnett’s multiple 

comparisons test (p < 0.05) revealed significance for the single high dose of 6 treatment as 

compared to the control, but not for the multiple low-dose group (p > 0.05) when compared 

to the control or to the single high-dose treatment group.

DISCUSSION

Targeting antibiotics to bone by conjugation to a BP moiety (via a releasable carbamate 

linker) is a promising approach for the treatment of osteomyelitis biofilms. Results of AST 

testing and MIC data presented herein indicate that against planktonic S. aureus, 
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ciprofloxacin and 6 have effective bactericidal activity, and that the conjugation linkage 

impacts antimicrobial activity of the parent drug as evidenced by the weaker activity of 11 
(Table 1). Higher concentrations of 6 were required to reach MIC, which is anticipated since 

conjugation is a chemical modification that can alter the biochemical interactions of the 

antibiotic prior to release from the conjugate. As a result, properties of the parent drug, 

including its pharmacodynamic effect, can be altered by such modification. MIC results for 

6 were consistent with previous literature indicating that conjugates in this class can retain 

the antibacterial activity of the parent compound, although at slightly lower levels.9,10

Of interest was the wide distribution of MIC values for both conjugates against tested S. 
aureus strains, as compared to ciprofloxacin alone which demonstrated little variance in 

antimicrobial efficacy against the same strains (Table 1). There are several possible 

explanations for these results. Different strains of bacteria within the same species are 

known to show significant variance in terms of virulence and antimicrobial susceptibility/

resistance to an antibiotic. It is well-established that strain-specific variances exist in 

antibiotic transport and efflux mechanisms, bacterial cell wall density, enzymatic activity 

levels, resistance mechanisms, and ability to alter pH of the environment.34 Ciprofloxacin 

bactericidal activity results from intracellular inhibition of enzymes required for DNA 

replication – topoisomerase II and IV.35 The mechanisms underlying the conjugate 

antimicrobial activity have not yet been elucidated. It is unclear whether these conjugates are 

completely cleaved outside the bacterial cell and the antibiotic is then transported inside, or 

whether the intact conjugate can enter the cell wall and is then cleaved to active drug, or if 

both scenarios occur significantly; in all cases, a difference between species or strains may 

occur. Specific microbial biochemistries are likely to play an important role in determining 

conjugate activities.

It has been established that intact conjugates in this class generally lack significant intrinsic 

antibacterial activity18,19 and that any BP-related antimicrobial effect is negligible; 

therefore, at least partial release of the parent drug is a prerequisite for significant 

antimicrobial activity, as observed with 6. This is consistent with the low antimicrobial 

activity of 11 differing in its more stable amide linkage, which resulted in 2–64× the 

concentration of the more labile carbamate-linked conjugate 6 to achieve the same 

antibacterial effect in the assay.

After evaluating the antimicrobial efficacy of 6, we sought to assess the bone-binding 

functionality of the BP moiety and found effective adsorption and retention to HA spherules 

by the conjugate in a concentration-dependent manner. These results are consistent with 

previously reported analogs in this class containing BP moieties.13,19 We then tested 

whether the activity of 6 would vary in different pH conditions and found a slightly 

improved profile in acidic conditions, which may be explained at least partially by the fact 

that the linker is more labile at pH 5 than at pH 7.4, thus releasing more ciprofloxacin at the 

lower pH. This could be useful for clinical osteomyelitis applications where biofilm 

pathogens along with host inflammation and osteoclastogenesis produce an acidic local 

milieu. Other investigators have suggested, however, that although an acidic pH brought on 

by infecting organisms and inflammation could result in some drug release in bone, the 

efficacy of such a process in providing a significant concentration of the antimicrobial agent 
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is doubtful, and that prodrug design, conjugation scheme, and susceptibility to local 

enzymatic hydrolysis likely have greater impact on linker cleavability and efficacy.26 Our 

findings also support such conclusions.

Investigation of time-kill kinetics for 6 demonstrated an efficient rate of bactericidal activity 

against tested bacteria with sustained bactericidal activity over 24 h, supporting cleavage 

activity of the parent antibiotic with a steadily sustained release profile over time. The 

antibiotic release kinetics observed here may be different than those observed with currently 

used biodegradable and non-biodegradable delivery systems for osteomyelitis therapy, which 

generally demonstrate an initial high bolus of antibiotic release at the site with a smaller 

percentage of the remaining antibiotic dissipating over an extended period of time.36,37

Importantly, in this study, we present evidence for antimicrobial efficacy of conjugates such 

as 6 in biofilm-relevant models in vitro and in vivo for osteomyelitis treatment. When 

osteomyelitis biofilms (S. aureus and P. aeruginosa) were grown in vitro on different 

substrates such as polystyrene or HA and then treated with 6, the conjugate was more 

effective against biofilms in the presence of HA versus polystyrene. This indicates that 

substrate binding-specificity plays a role in antimicrobial activity in addition to factors like 

strain of pathogen tested and mode of bacterial growth (planktonic versus biofilm). The fact 

that 6 was effective against osteomyelitis pathogens on HA, but not effective against the 

same strains on polystyrene as a substrate, indicates that to effectively treat osteomyelitis 

biofilms, it is necessary to bind to the substrate (e.g., HA) and release the antibiotic directly 

underneath or within a biofilm rather than just flow the antibiotic along the biofilm surface 

(as was the case with the parent antibiotic alone or 6 on polystyrene, where no substrate 

binding occurs and no activity was seen against established surface biofilms). The improved 

activity of 6 found in experimental settings using HA discs in comparison to the setting 

using polystyrene as a substrate is likely due to the fact that the BP moiety of the conjugate 

possesses high affinity to HA structures, and therefore bacteria adhering to HA were likely 

subjected to a relatively higher concentration of the parent antibiotic due to localization of 6 
to the disc. Also, cleavage of 6 at bone under biofilm bacterial cells may be similar to 

carbamate cleavage under osteoclast cells as previously shown,22 suggesting that the local 

environment plays a role in this context and further indicating that the environment under 

bacteria, that also causes osteolysis, has similarities to the environment under osteoclasts on 

bone, since these environments both seem to be able to cleave the aryl carbamate linkage to 

release the active ciprofloxacin, probably due to a combination of pH and enzymatic 

hydrolysis. Previous work by Arns et al.27 with BP (radiolabeled) prostaglandin conjugates 

suggests that, as with most BPs,38 the half-life of the conjugate in the bloodstream is <15 

min. Thus, in that time, the conjugate is either bound to bone or excreted. This research 

study also demonstrates that the half-life of release of the active drug (prostaglandin in this 

case) from the BP on the bone surface, with linkages related to our carbamate, is between 5 

and 28 days. We believe our linkage must release closer to the 5 day half-life to achieve the 

exciting in vivo result reported here. Arns et al. and others27 have speculated that the 

mechanism of cleavage is most likely enzymatic under bone cells. In the presence of bacteria 

on mineral surfaces, it is also likely to be an enzymatic-based cleavage. As is already noted 
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in the manuscript during in vitro antimicrobial studies devoid of osteoclasts, our carbamate 

based conjugate is active, but our non-cleavable amide-based conjugate is far less active.

We also tested our conjugates in osteomyelitis preventative experiments against S. aureus 
and found that 6 was 20 times more active in achieving complete bactericidal action as 

compared to ciprofloxacin alone (Table 2), whereas any antimicrobial activity of 11 was not 

detectable (Figure 9). These findings support an efficient mechanism of cleavage and release 

over time of the parent antibiotic from 6 as compared to 11. Efficient binding to HA and 

release of the parent antibiotic is requisite for conjugates in this class to demonstrate 

substantial antimicrobial efficacy comparable or better than the parent antibiotic alone,18–20 

as we observed with the more labile 6 but not with the more stable 11 even at high doses of 

exposure, confirming that cleavage is necessary at some point for antimicrobial efficacy.

Finally, we sought to test in vivo safety and efficacy of 6 in a jawbone peri-implant 

osteomyelitis rat model using the model jawbone pathogen Aa. To confirm Aa sensitivity to 

the parent drug ciprofloxacin prior to our animal studies, we performed in vitro AST and 

MIC assays as performed for the long bone osteomyelitis pathogens in this study. Aa 
demonstrated strong susceptibility to the parent drug ciprofloxacin consistent with findings 

from other investigators.12,32 We also tested Aa biofilms grown on HA (similar to S. aureus 
and P. aeruginosa) for sensitivity to 6 and found our conjugate displayed effective 

antimicrobial activity (Figure 10). Therefore, we performed two consecutive animal 

experiments utilizing our peri-implant jawbone osteomyelitis model. In the first in vivo 

study, a single dose of 6 at 10 mg/kg showed the highest efficacy with 2 log reduction of 

CFU or 99% bacterial killing and nearly an order of magnitude greater activity than 

ciprofloxacin alone given at the same per dose concentration (mg/kg) but in multiple doses 

(Figure 11). Lower concentrations of 6 in this experiment were ineffective. To validate these 

results, we performed a second larger and more statistically powered in vivo experiment 

focusing on the efficacious dosing regimen (10 mg/kg) of 6 as compared to control and 

multiple dosing regimens of 6. Again we found the greatest CFU reduction and efficacy at 

the single high dose (10 mg/kg) of conjugate.

In vivo experiments confirmed the ability of 6 at a safe and adequate single dose to target 

infected peri-implant bone and generate a sufficient concentration of the parent antibiotic for 

bactericidal activity against established Aa biofilms when the activity of the parent antibiotic 

alone had already diminished. Importantly, since microbial quantification involved an en 

bloc resected tissue homogenate, even biofilm bacteria within canaliculi of the three-

dimensional osseous architecture are included for analysis and not just surface pathogens (as 

the methodology did not involve surface scraping for plating and assessment). This suggests 

efficacious BP absorption/adsorption to peri-prosthetic bone and antibiotic release as 

evidenced by the considerable reductions in CFU of biofilm bacteria.

These results along with other studies in this field are also indicating that direct comparisons 

between these conjugates and their parent compound are somewhat arbitrary, as conjugates 

have unique pharmacometric parameters and predominantly localize to bone due to the BP 

moiety. This is in contrast to the parent antibiotics (the fluoroquinolone class in general) 

which demonstrate much greater muscle and tendon uptake than bone uptake in humans,39 
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and thus correlate with adverse events such as Achilles tendon rupture in susceptible 

populations. Any future pharmacokinetic modeling and testing for conjugates in this class 

should include a skeletal compartment of distribution mathematically, which is not generally 

done with ciprofloxacin and most other antibiotic pharmacokinetic studies. We established 

the importance of such an approach in human populations for accurately determining bone 

pharmacokinetics of BP drugs.40 Such approaches will provide more accurate and necessary 

pharmacological data in this context and also inform clinical dosing approaches.

CONCLUSIONS

In summary, we successfully designed and synthesized a BP-ciprofloxacin conjugate 6 
utilizing a target and release strategy and systematically evaluated the functionality of each 

constituent of this compound (as well as the conjugate as a whole) in vitro and in vivo. In 

vitro antimicrobial investigations of 6 tested against common osteomyelitis pathogens 

revealed a strong bactericidal profile, and safety and efficacy was demonstrated in vivo in an 

animal model of peri-prosthetic osteomyelitis. An amide variant of the conjugate (11) was 

also synthesized and tested in vitro and the results confirmed a lack of antimicrobial activity 

of this non-releasing conjugate variant. When biofilm models were used to test 6 in vitro 

(and in all in vivo studies), the conjugate demonstrated the greatest bactericidal activity in 

treatment and preventative experiments. For translation to practice, a targeting and release 

strategy utilizing 6 could prove useful by reducing overall dosing concentrations for patients 

and improving therapeutic index and also by limiting systemic exposure (e.g., muscle/

tendon) through bone targeting. In essence, because biofilm bacteria inhabit internal and 

external surfaces of bone three-dimensionally, and BPs also target such bone surfaces, this 

therapeutic could be considered a biofilm-targeting antibiotic in the context of osteomyelitis 

or infectious bone disease. Antimicrobial activity of conjugates in this class is associated 

with many parameters, including the species and strains of pathogens tested, mode of growth 

(biofilm versus planktonic), substrate for biofilm colonization, pH of the local milieu, drug 

concentration, bone binding affinity, linkage scheme, and release kinetics. This class of 

conjugates using BPs as biochemical vectors for the delivery of antimicrobial agents to bone 

(where biofilm pathogens reside) should represent an advantageous approach to the 

treatment of osteomyelitis and provide for improved pharmacokinetics while minimizing 

systemic exposure or toxicity.

EXPERIMENTAL SECTION

All manipulations were performed under nitrogen atmosphere unless stated otherwise. 

Anhydrous ethyl ether, anhydrous tetrahydrofuran, anhydrous citric acid, chloroform, and 

magnesium sulfate were purchased from EMD. 4-Benzyloxy benzyl alcohol, 

bromotrimethylsilane, 4-nitrophenyl chloroformate, hydrochloric acid (37%), anhydrous 

ethanol, anhydrous N,N-dimethylformamide, and thionyl chloride were purchased from 

Sigma-Aldrich. Sodium sulfate was purchased from Amresco. Sodium hydride (57–63% oil 

dispersion), tetraisopropyl methylenediphosphonate, 10% palladium on activated carbon, 4-

(bromomethyl)benzoate, lithium hydroxide monohydrate, and Nethyldiisopropylamine were 

purchased from Alfa Aesar. Ethyl acetate, hexane, and dichloromethane were purchased 

from VWR. Anhydrous methyl alcohol, trimethylamine, and sodium carbonate were 
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purchased from Macron. Hydrogen gas was purchased from Airgas. Ciprofloxacin was 

purchased from Enzo Life Sciences. Acetonitrile (HPLC grade) was purchased from 

Spectrum. All reagents were used as received, unless stated otherwise. All solvents were 

dried using 3 Å molecular sieves (20% m/v).41 Silica gel was purchased from Silicycle 

(SilicaFlash P60, 40–63 Å, 40–63 µm, 230–400 mesh).

Nuclear magnetic resonance spectra were recorded on Varian 400-MR 2-channel NMR 

spectrometer with 96-spinner sampler changer and analyzed using TopSpin and 

MestReNova. Chemical shifts (δ, ppm) for 1H were referenced to residual solvent peaks. 

Mass spectra were obtained on a Thermo-Finnigan LCQ Deca XP Max mass spectrometer 

equipped with an ESI source under positive and/or negative modes using Tune Plus version 

2.0 software for data acquisition and Xcalibur 2.0.7 for data processing and reported in m/z. 

Organic elemental analysis was performed on Flash 2000 elemental analyzer by Thermo 

Fisher Scientific.

The purities of the final compounds 6 and 11 as well as commercial ciprofloxacin were 

≥95% and were determined using 1H, 31P NMR spectrometry, HPLC, and elemental 

analyzer. Analytical HPLC of final compounds were performed on a SHIMADZU HPLC 

system equipped with diode array detector. LabSolution software was used for both data 

collection and analysis.

HPLC Method A: Phenomenex Luna 5 µ C18(2) 100 Å analytical column (250 × 4.6 mm) 

operating at a flow rate of 1.0 mL/min was used. The following solvent gradient was 

employed: (Buffer A = 20% ACN in 0.1 M NH4OAc (pH 7.53), Buffer B = 70% ACN in 0.1 

M NH4OAc (pH 7.16)) 0–7 min 0% B, 7–25 min 100% B, and 25–100 min 100% B.

Synthesis

1-(Benzyloxy)-4-(bromomethyl)benzene (1)—4-Benzyloxy benzyl alcohol (1.00 g, 

4.67 mmol) was dissolved in anhydrous diethyl ether (25 mL) in an oven-dried flask under 

nitrogen. The flask was cooled in an ice bath. Bromotrimethylsilane (BTMS) (1.26 mL, 9.52 

mmol, 2 equiv) was added by syringe. The flask was allowed to slowly warm to room 

temperature. After 17 h of stirring, the reaction mixture was poured into water (50 mL), and 

the organic phase was separated. The aqueous phase was washed with diethyl ether (2 × 20 

mL), and then the combined organic phase was washed with brine (2 × 20 mL) and dried 

over sodium sulfate. Evaporation of the solvent afforded compound 1 as a white crystalline 

solid (1.23 g, 95% yield). 1H NMR (400 MHz, chloroform-d) δ 7.47–7.28 (m, 7H), 6.98–

6.90 (m, 2H), 5.07 (s, 2H), 4.50 (s, 2H).

Tetraisopropyl (2-(4-(Benzyloxy)phenyl)ethane-1,1-diyl)bis-(phosphonate) (2)
—Under nitrogen protection, anhydrous THF (2 mL) was added to sodium hydride (57–63% 

dispersion in mineral oil) (75 mg, 1.80 mmol, 1 equiv). Tetraisopropyl methylene 

diphosphonate (570 µL, 1.80 mmol, 1 equiv) was added dropwise with stirring at room 

temperature. Gas was evolved, and the gray suspended solid was consumed leaving a clear 

solution. The mixture was stirred a further 10 min. Compound 1 (500 mg, 1.80 mmol, 1 

equiv) was added in one portion under nitrogen counterflow. The solution remained clear for 

1 min and then became turbid. Stirring was maintained for 2 h, and the reaction progress was 
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monitored by TLC (100% EtOAc visualized by UV and cerium ammonium molybdate 

(CAM) stain). The reaction mixture was poured into 5% aqueous citric acid (30 mL) and 

extracted with ether (2 × 30 mL), washed with brine (30 mL), and evaporated. The residue 

was purified by flash chromatography using a EtOAc:Hexane gradient (10–100%) to afford 

2 as a colorless oil (0.508 g, 52% yield). 1H NMR (400 MHz, chloroform-d) δ 7.44−7.27 

(m, 5H), 7.18 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.04 (s, 2H), 4.86−4.63 (m, 4H), 

3.15 (td, J = 16.6, 6.1 Hz, 2H), 2.44 (tt, J = 24.2, 6.1 Hz, 1H), 1.48−1.01 (m, 24H). 31P 

NMR (162 MHz, chloroform-d) δ 21.11.

Tetraisopropyl (2-(4-Hydroxyphenyl)ethane-1,1-diyl)bis-(phosphonate) (3)—
Compound 2 (0.508 g, 0.925 mmol) was dissolved in 13 mL of methanol, and 10% 

palladium on activated carbon (70 mg, 0.066 mmol, 0.07 equiv) was added. The flask was 

flushed with nitrogen, then hydrogen, and stirred overnight with a hydrogen balloon in 

place. The reaction mixture was filtered through Celite with 100 mL of methanol. 

Evaporation of the filtrate gave the desired compound 3 as a slightly yellow oil (0.368 g, 

88% yield) that was used without further purification. 1H NMR (400 MHz, chloroform-d) δ 
7.07 (d, J = 8.2 Hz, 2H), 6.69 (d, J = 8.2 Hz, 2H), 4.71 (m, 4H), 3.11 (td, J = 16.9, 6.0 Hz, 

2H), 2.47 (tt, J = 24.4, 6.0 Hz, 1H), 1.32−1.21 (m, 24H). 31P NMR (162 MHz, chloroform-

d) δ 21.06.

4-(2,2-Bis(diisopropoxyphosphoryl)ethyl)phenyl(4-nitrophenyl) Carbonate (4)
—Compound 3 (7.91 g, 15.9 mmol) was dissolved in 150 mL of dichloromethane, and then 

triethylamine (6.70 mL, 47.9 mmol, 3 equiv) was added followed by p-nitrophenyl 

chloroformate (3.54 g, 17.6 mmol, 1.1 equiv) in one portion. Reaction mixture was stirred 

for 2.5 h while being monitored with TLC (5% MeOH in EtOAc, UV visualization). After 

disappearance of starting material, the reaction was stopped, and the target compound was 

purified by flash chromatography (1:1 ethyl acetate:hexane) to afford compound 4 (4.33 g, 

44% yield). 1H NMR (400 MHz, chloroform-d) δ 8.29 (d, J = 9.1 Hz, 2H), 7.46 (d, J = 9.1 

Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 4.84−4.58 (m, 4H), 3.22 (td, J = 

16.5, 6.2 Hz, 2H), 2.47 (tt, J = 24.1, 6.2 Hz, 1H), 1.33−1.14 (m, 24H).

7-(4-((4-(2,2-Bis(diisopropoxyphosphoryl)ethyl)phenoxy)-carbonyl)piperazin-1-
yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (5)—
Ciprofloxacin (2.76 g, 8.34 mmol, 1.2 equiv) was suspended in 74.7 mL of water in a flask. 

Then 8.30 mL of 1 M HCl was added, and the flask was stirred to dissolve ciprofloxacin, 

giving a clear colorless solution. Na2CO3 was added to adjust the pH to 8.5, and a thick 

white precipitate formed. The flask was placed in an ice bath, and compound 4 (4.28 g, 6.95 

mmol, 1 equiv) dissolved in 83 mL of THF was added slowly over about 5 min. The flask 

was then removed from the ice bath, protected from light, and stirred overnight at room 

temperature. The reaction mixture was concentrated under vacuum to approximately half the 

original volume and filtered through a fine glass frit funnel. The retained solid was washed 

with water until no yellow color remained. The solids were then dissolved and washed from 

the frit with DCM, and the solution was loaded onto a flash silica column and eluted with 

MeOH:DCM gradient (2–5%) to afford compound 5 (3.47 g, 51.5% yield) as a white solid. 
1H NMR (400 MHz, methanol-d4) δ 8.79 (s, 1H), 7.93 (d, J = 13.3 Hz, 1H), 7.54 (s, 1H), 
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7.30 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 4.70 (dpd, J = 7.4, 6.2, 1.3 Hz, 4H), 3.90 

(m, 4H), 3.65 (s, br, 1H), 3.39 (s, br, 4H), 3.18 (td, J = 16.6, 6.4 Hz, 2H), 2.65 (tt, J = 24.3, 

6.3 Hz, 1H), 1.43−1.34 (m, 2H), 1.34−1.19 (m, 24H), 1.18−1.10 (m, 2H). 31P NMR (162 

MHz, methanol-d4) δ 20.71. MS (ESI+) m/z: 808.2 (M + H), 830.2 (M + Na) calcd for 

C38H53FN3O11P2
+: 808.3.

1-Cyclopropyl-7-(4-((4-(2,2-diphosphonoethyl)phenoxy)-carbonyl)piperazin-1-
yl)-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (6).42,43—Compound 5 
(10.0 mg, 1.24 µmol) was dissolved in DCM (200 µL) in a 1.5 mL glass vial, BTMS (200 

µL, 1.52 mmol, 122 equiv) was added, and the vial was quickly capped and immersed in a 

35 °C oil bath. After stirring for 24 h, solvent and BTMS were removed under vacuum, 1 

mL of MeOH was added, and the vial stirred overnight. Solvent was removed under vacuum 

to afford pure compound 6 as a pale yellow solid with green fluorescence (6.82 mg, 86.1% 

yield). 1H NMR (400 MHz, deuterium oxide) δ 8.51 (s, 1H), 7.92 (d, J = 12.2 Hz, 1H), 7.67 

(s, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 3.98 (s, 2H), 3.79 (s, 2H), 3.67 (s, 

1H), 3.42 (s, 4H), 3.16 (td, J = 15.5, 6.8 Hz, 2H), 2.21 (tt, J = 6.9, 21.6 Hz, 1H), 1.37 (d, J = 

6.9 Hz, 2H), 1.15 (s, 2H). 31P NMR (162 MHz, deuterium oxide) δ 19.16 MS (ESI−) m/z: 

638.06 (M – H) calcd for C26H27FN3O11P2
−: 638.1. HPLC (Method A, UV 190, 274, 330 

nm): tr = 11.62 min.

Methyl 4-(2,2-bis(diisopropoxyphosphoryl)ethyl)benzoate (7).44—Under nitrogen 

atmosphere, in a 25 mL round-bottom flask, THF (5 mL) was added to 57–63% dispersion 

of sodium hydride in mineral oil (0.163 g, 4.07 mmol, 1.4 equiv). The suspension was 

cooled to 0 °C, while stirring, and tetraisopropyl methylenediphosphonate (0.926 mL, 2.90 

mmol, 1 equiv) was added gradually. The reaction was allowed to reach ambient 

temperature, and once hydrogen gas stopped bubbling out of the reaction mixture, the 

solution was cooled to 0 °C again. Methyl 4-(bromomethyl)benzoate (0.465 g, 2.03 mmol, 

0.7 equiv) was dissolved in THF (2 mL) and added to the reaction dropwise. The resulting 

solution was stirred overnight while slowly reaching ambient temperature. The reaction 

mixture was then cooled to 0 °C and quenched with EtOH (1 mL). A 5% aqueous solution 

of citric acid in water (30 mL) was added, and the mixture was extracted with Et2O (3 × 30 

mL). The combined organics were washed with brine (50 mL), dried on Na2SO4, filtered, 

concentrated under reduced pressure, and purified by silica gel column chromatography 

using a EtOAc:Hex gradient (10–100%) to afford 7 as a faint yellow oil (0.371 g, 37.0% 

yield). 1H NMR (400 MHz, chloroform-d) δ 7.93 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4, 2H), 

4.79−4.68 (m, 4H), 3.88 (s, 3H), 3.24 (td, J = 16.0, 6.4 Hz, 2H), 2.50 (tt, J = 24.0, 6.2 Hz, 

1H), 1.34− 1.24 (m, 24H). 31P NMR (162 MHz, chloroform-d) δ 20.57.

4-(2,2-Bis(diisopropoxyphosphoryl)ethyl)benzoic Acid (8).44—To a solution of 7 
(0.131 g, 0.278 mmol) in MeOH (1.5 mL) in a 8 dram glass vial, LiOH·H2O (0.058 g, 1.39 

mmol, 5 equiv) was added, and the resulting solution was stirred at room temperature 

overnight. The reaction mixture was evaporated to dryness, the residue was dissolved in 

water (30 mL), and HCl(aq) (1 M) was added slowly to reach pH 3. The resulting mixture 

was extracted with CHCl3 (3 × 30 mL). Combined organics were dried on MgSO4 and 

concentrated under reduced pressure to afford 8 as a thick clear oil (0.115 g, 90.6% yield). 
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1H NMR (400 MHz, chloroform-d): δ = 7.96 (d, J = 8.0, 2H), 7.37 (d, J = 8.0, 2H), 

4.82−4.74 (m, 4H), 3.28 (td, J = 16.6, 6.1, 2H), 2.60 (tt, J = 24.2, 6.2, 1H), 1.33−1.26 (m, 

24H). 31P NMR (162 MHz, chloroform-d) δ 20.57.

Tetraisopropyl(2-(4-(chlorocarbonyl)phenyl)ethane-1,1-diyl)bis-(phosphonate) 
(9)—Under nitrogen atmosphere, compound 8 (0.162 g, 0.339 mmol) was dissolved in 

chloroform (1 mL), and a catalytic amount of DMF (1.30 µL, 0.017 mmol, 0.05 equiv) was 

added. Thionyl chloride (49.2 µL, 0.678 mmol, 2 equiv) was added slowly, and the reaction 

was allowed to stir for 2 h at room temperature. Solvents were removed under vacuum to 

afford 9 as clear oil. The product was immediately used in the next step without further 

manipulation (quantitative yield).

7-(4-(4-(2,2-Bis(diisopropoxyphosphoryl)ethyl)benzoyl)piperazin-1-yl)-1-
cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (10)—
Ciprofloxacin (0.112 g, 0.339 mmol, 1 equiv) was suspended in chloroform (1 mL), and 

N,N-diisopropylethylamine (DIPEA) (354 µL, 2.03 mmol, 6 equiv) was added. Freshly 

made compound 9 (168 mg, 0.338 mmol, 1 equiv) was dissolved in chloroform (1 mL) and 

gradually added to the ciprofloxacin:DIPEA suspension. The reaction mixture was covered 

with foil and stirred at room temperature overnight. The following day, solvents were 

removed under vacuum, and the resulting crude was dissolved in DCM (5 mL), filtered 

through a medium grade frit funnel, and washed with more DCM (3 × 5 mL). The filtrate 

was concentrated under vacuum and further purified by silica gel column chromatography 

using a MeOH:DCM gradient (0–10%) to afford 10 as a viscous oil that gradually solidified 

(0.226 g, 65.1% yield, 1.8 equiv DIPEA salt). 1H NMR (400 MHz, chloroform-d) δ = 8.79 

(s, 1H), 8.06 (d, J = 12.8, 1H), 7.38 (m, 5H), 4.80−4.73 (m, 4H), 4.00 (s, br, 4H), 3.56−3.53 

(m, 1H), 3.33−3.20 (m, 6H) 2.50 (m, 1H), 1.45−1.38 (m, 2H), 1.32−1.25 (m, 24H), 

1.23−1.19 (m, 2H). 31P NMR (162 MHz, chloroform-d) δ 20.77.

1-Cyclopropyl-7-(4-(4-(2,2-diphosphonoethyl)benzoyl)piperazin-1-yl)-6-
fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (11).42,43—In a 8 dram glass 

vial, compound 10 (0.108 g, 0.136 mmol) was dissolved in DCM (700 µL), and BTMS (686 

µL, 5.20 mmol, 38 equiv) was added. The vial was capped and heated overnight at 35 °C 

while covered with foil and stirring. The following day, solvent was removed under vacuum, 

and the crude was quenched with MeOH (2 mL). The resulting solution was stirred at room 

temperature for 30 min. Solvent was removed under vacuum to afford an orange oil. A few 

drops of water were added to produce a yellow solid. More MeOH (2 mL) was added, and 

the resulting suspension was filtered using a medium-grade fritted glass funnel. The 

resulting solid was further washed with MeOH to afford 11 as a yellow powder (0.070 g, 

82.0% yield). 1H NMR (400 MHz, deuterium oxide, pH 7.5): δ = 8.54 (s, br, 1H), 7.90−7.87 

(m, 1H), 7.65−7.63 (m, 1H), 7.54 (d, J = 8.0, 2H), 7.44 (d, J = 8.0, 2H), 4.79 (m, overlap 

with D2O, 4H), 4.00 (s, br, 2H), 3.79 (s, br, 2H), 3.47 (s, br, 3H), 3.34 (s, br, 2H), 3.21 (td, J 
= 14.0, 6.4, 2H), 2.30 (tt, J = 22.0, 6.6, 1H), 1.38−1.33 (m, 2H), 1.15 (s, br, 2H). 31P NMR 

(162 MHz, deuterium oxide, pH 7.5) δ 19.12. MS (ESI−) m/z: 622.24 (M − H) calcd for 

C26H27FN3O10P2
−: 622.12. HPLC (Method A, UV 190, 274, 330 nm): tr = 4.43 min.
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Antibacterial Properties of Bisphosphonate-Ciprofloxacin Conjugates

Experimental Strains—Seven S. aureus clinical osteomyelitis strains of methicillin-

susceptible profile and one of methicillin-resistant profile were tested. These pathogens are 

part of the strain collection of the Department of Pharmaceutical Microbiology and 

Parasitology Wroclaw Medical University, Poland. Additionally, the following American 

Type Culture Collection (ATCC) strains were chosen for experimental purposes: S. aureus 
6538 and P. aeruginosa 15442.

HA Discs—For custom disc manufacturing, commercially available HA powder was used. 

Powder pellets of 9.6 mm in diameter were pressed without a binder. Sintering was 

performed at 900 °C. The tablets were compressed using the Universal Testing System for 

static tensile, compression, and bending tests (Instron model 3384; Instron, Norwood, MA). 

The quality of the manufactured HA discs was checked by means of confocal microscopy 

and microcomputed tomography (micro-CT) using an LEXT OLS4000 microscope 

(Olympus, Center Valley, PA) and Metrotom 1500 microtomograph (Carl Zeiss, 

Oberkochen, Germany), respectively.

Disc Diffusion Test To Evaluate Sensitivity of Tested Strains to Ciprofloxacin
—This procedure was performed according to EUCAST guidelines.29 Briefly, 0.5 

McFarland (MF) of bacterial dilution was spread on Mueller–Hinton (MH) agar plate. The 

discs containing 5 mg of ciprofloxacin were introduced, and the plate was subjected to 

incubation at 37 °C/24 h. Next, inhibition zones were recorded using a ruler. Obtained 

values (mm) were compared to appropriate values of inhibition zones from EUCAST tables.
29

Evaluation of the MIC of Tested Compounds against Planktonic Forms of 
Clinical Staphylococcal Strains Analyzed—To assess the impact of parent antibiotic 

and conjugates on microbial growth, 100 µL of microbial solutions of density 1 × 105 

CFU/mL were placed into wells of 96-well test plates together with appropriate 

concentrations of tested compounds. Immediately after that, the absorbance of solutions was 

measured using a spectrometer (Thermo Scientific Multiscan GO) at 580 nm wavelength. 

Subsequently, plates were incubated for 24 h/37 °C in a shaker to obtain optimal conditions 

for microbial growth and to prevent bacteria from forming biofilms. After incubation, the 

absorbance was measured once again. The following control samples were established: 

negative control sample one: sterile medium without microbes; negative control sample two: 

sterile medium without microbes implemented with DMSO (Sigma-Aldrich) to final 

concentration of 1% (v/v); positive control sample one: medium + microbes with no 

compound tested; positive control sample two: medium + microbes with no compound 

tested but implemented with DMSO to final concentration of 1% (v/v). Rationale for use of 

1% DMSO was that ciprofloxacin dissolves efficiently in this solvent, however, 

concentrations of DMSO >1% could be detrimental for microbial cells. To assess relative 

number of cells, the following calculations were performed. The value of absorbance of 

control samples (medium + microbes for conjugate, medium + microbes + DMSO for 

ciprofloxacin) was estimated at 100%. Next, the relative number of cells subjected to 
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incubation with tested compounds were counted as follows: value of control sample 

absorbance/value of tested sample × 100%.

To confirm results obtained by spectrophotometric assessments, treated bacterial solutions 

were transferred to 10 mL of fresh medium and left for 48 h at 37 °C. The occurrence of 

opacification or lack of opacification of media was proof of pathogen growth or lack of 

growth, respectively. Additionally, bacterial solutions were cultured on the appropriate stable 

medium. Growth or lack of growth of bacterial colonies together with above-mentioned 

results from liquid cultures served as confirmation of results obtained 

spectrophotometrically. Antimicrobial and MIC results for the conjugate here and in 

upcoming in vitro experiments were calculated based on the amount of the parent antibiotic 

to allow molar comparison to ciprofloxacin.

Spectroscopic Analysis of 6 and 11 in Tryptic Soy Broth (TSB) Microbiological 
Media with the Addition of HA Spherules—Various conjugate concentrations were 

introduced to HA powder (spherules) suspended in TSB microbiological medium. Solutions 

containing BP-ciprofloxacin and HA spherules were introduced to wells of a 24-well plate. 

Final concentration of powder was 10 mg/1 mL, while final concentration of conjugates was 

0.24–250 mg/L. Immediately afterward, the absorbance of solutions was measured using a 

spectrometer (Thermo Scientific Multiscan GO) at 275 nm wavelength. Plates were shaken 

automatically in the spectrometer prior to assessment. Next, plates were left for 24 h/37 °C/

shaking. After 24 h, absorbance was measured once again. To assess the relative 

concentration of the conjugate at 0 and 24 h, values of absorbance taken in the beginning 

and at the end of experiment were compared. The excitation slit, emission slit, integration 

time, and increment were optimized based on the concentration of samples.

Antimicrobial Susceptibility Testing of 6 against Planktonic Cultures of S. 
aureus Strain ATCC-6538 in Acidic versus Physiological pH—This experimental 

setting was performed in the same manner as described previously for disc diffusion testing, 

but microbiological media was adjusted to pH 7.4 and pH 5 using KOH or HCL solution and 

measured using a universal pH-indicator (Merck, Poland).

Time-Kill Assay for 6 against S. aureus Strain ATCC-6538 (MSSA) and Clinical 
MRSA Strain (MR4-CIPS)—This experiment was performed in the same manner as 

described previously in the Evaluation of MIC of Tested Compounds against Planktonic 

Forms of Clinical Staphylococcal Strains Analyzed section, but absorbance assays (at 580 

nm wavelength) were taken in hours 0, 1, 2, 4, 8, 16, and 24.

Antimicrobial Susceptibility Testing of 6 against Preformed Biofilms of S. 
aureus Strain ATCC-6538 and P. aeruginosa Strain ATCC-15442—Strains cultured 

on appropriate agar plates (Columbia agar plate for S. aureus; MacConkey agar plate for P. 
aeruginosa) were transferred to liquid microbiological media and incubated for 24 h/37 °C 

under aerobic conditions. After incubation, strains were diluted to the density of 1 MF. The 

microbial dilutions were introduced to wells of 24-well plates containing HA discs as a 

substrate or simply to polystyrene wells where the bottom surface of the wells served as the 

substrate for biofilm development. Strains were incubated at 37 °C for 4 h. Next, the 
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microbe-containing solutions were removed from the wells. The surfaces, HA discs and 

polystyrene plates, were gently rinsed to leave adhered cells and to remove planktonic or 

loosely bound microbes. Surfaces prepared in this manner were immersed in fresh TSB 

medium containing 0.24–125 mg/L of 6 and ciprofloxacin as a control. After 24 h of 

incubation at 37 °C, the surfaces were rinsed using physiological saline solution and 

transferred to 1 mL of 0.5% saponin (Sigma-Aldrich, St Louis, MO). The surfaces were 

vortex-mixed vigorously for 1 min to detach cells. Subsequently, all microbial suspensions 

were diluted 10−1 to 10−9 times. Each dilution (100 mL) was cultured on the appropriate 

stable medium (MacConkey, Columbia for P. aeruginosa and S. aureus, respectively) and 

incubated at 37 °C for 24 h. After this time, the microbial colonies were counted, and the 

number of cells forming biofilm was assessed. Results were presented as the mean number 

of CFU per square millimeter surface ± standard error of the mean. To calculate the surface 

area of HA discs, X-ray tomographic analysis was applied. For estimation of the area of test 

plate bottoms, the equation for circle area: πr2 was applied.

Preventative Ability of 6 and 11 To Inhibit S. aureus 6538 Adherence to HA—
Various concentrations of 6 and 11 were introduced to HA powder (spherules) suspended in 

TSB microbiological medium. Solutions containing 6 and HA spherules were introduced to 

wells of 24-well plates. Final concentrations of powder were 10 mg/1 mL, while final 

concentrations of the conjugate were 0.12–250 mg/L. Suspensions were left for 24 h/37 °C/

shaking. After 24 h, suspensions were removed from the wells and impulse centrifuged to 

precipitate HA powder. Next, supernatant was very gently discarded, and a fresh 1 mL of S. 
aureus of density 105 CFU/mL was introduced to the HA spherules. Subsequently, this 

solution was shaken, and absorbance was measured using 580 nm wavelength and left for 24 

h/37 °C/shaking. After incubation, the absorbance was measured again, and values from 0 

and 24 h were compared to assess reduction of bacterial growth with regard to control 

sample one (bacterial suspension but no spherules) and control sample two (bacterial 

suspension + spherules but with no conjugate added). Additionally, solutions were impulse 

centrifuged, and the supernatant was gently discarded, while bacteria-containing HA 

spherules were culture plated as before and quantitatively assessed. For testing of 11, 

solutions containing HA spherules and higher concentrations of 11 ranging from 1 to 400 

µg/mL and ciprofloxacin concentrations ranging from 0.5 to 400 µg/mL were prepared and 

again compared to the control sample (bacterial suspension but no HA) for ability to inhibit 

biofilm formation. Higher concentrations of 11 were tested because of the demonstrated 

weaker activity of an amide conjugate as compared to the carbamate conjugate.

Survival of S. aureus after 24 h of Incubation on HA Pretreated with 6—HA 

discs were immersed in 2 mL of solution containing various concentrations of BP-

ciprofloxacin or ciprofloxacin alone and left for 24 h/37 °C. HA discs incubated in DMSO 

or phosphate buffer served as control samples. Next, discs were rinsed 3 times with sterile 

water. After rinsing, 2 mL of 0.5 MF of S. aureus ATCC6538 were introduced to wells 

containing HA discs as a substrate for biofilm development, and biofilms were formed as 

before.
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Ethics Statement—All animal protocols and procedures were approved and performed in 

accordance with the Institutional Animal Care and Use Committee (IACUC) of the 

University of Southern California (USC) and in accordance with the Panel on Euthanasia of 

the American Veterinary Medical Association. USC is registered with the United States 

Department of Agriculture (USDA), has a fully approved Letter of Assurance (#A3518-01) 

on file with the National Institutes of Health (NIH), and is accredited by the American 

Association for the Accreditation of Laboratory Animal Care (AAALAC). The title of our 

IACUC approved protocol is “Bone targeted antimicrobials for biofilm-mediated osteolytic 

infection treatment”, and the protocol number is 20474. All animal protocols, and 

investigators and staff involved in the animal studies presented herein, adhered to the Guide 

for the Care and Use of Laboratory Animals, the USDA Animal Welfare Regulations (CFR 

1985) and Public Health Service Policy on Humane Care and Use of Laboratory Animals 

(1996).

In Vivo Animal Study—For this study 12 five-month-old, virgin, female Sprague–Dawley 

rats weighing approximately 200 g each were used in this study. Two to three animals were 

housed per cage in a vivarium at 22 °C under a 12 h light/12 h dark cycle and fed ad libitum 

with a soft diet (Purina Laboratory Rodent Chow). All animals were treated according to the 

guidelines and regulations for the use and care of animals at USC. Animals were under the 

supervision of full-time veterinarians on call 24 h/day who evaluate the animals personally 

on a daily basis. All animal experiments are described using the ARRIVE45 guidelines for 

reporting on animal research to ensure the quality, reliability, validity, and reproducibility of 

results.

This animal model is an in-house jawbone peri-implant osteomyelitis model designed 

specifically to study biofilm-mediated disease and host response in vivo.31 Biofilms of the 

jawbone osteomyelitis pathogen Aa were preformed on miniature titanium implants at 109 

CFU. To confirm Aa sensitivity to the parent drug ciprofloxacin prior to our animal studies, 

we performed AST and MIC assays against planktonic Aa in addition to the biofilm HA 

assay as described for the long bone osteomyelitis pathogens. After biofilms were 

established on the implants in vitro, they were surgically transferred to the jawbone of each 

rat. For surgery, animals were anesthetized with 4% isoflurane inhalant initially followed by 

intraperitoneal injection of ketamine (80–90 mg/kg) plus xylazine (5–10 mg/kg). Then local 

anesthesia was given via infiltration injection of bupivicaine 0.25% at the surgical site. 

Buprenorphine sustained release (1.0–1.2 mg/kg) was then given subcutaneously as 

preemptive analgesia before making initial incisions. Once anesthetized, the buccal mucosa 

of each rat was retracted, and a transmucosal osteotomy was performed with a pilot drill into 

the alveolar ridge in the natural diastema of the anterior palate. Implants were then manually 

inserted into the osteotomy and secured into the bone until the platform is at mucosal level. 

Two biofilm-inoculated implants were placed in each rat (n = 12 rats) in the palatal bone 

bilaterally.

One week post-operatively, isoflurane 4% was given again to briefly anesthetize the rats, 

check implant stability, and document clinical findings at the implant and infection site, such 

as presence or absence of inflammation. The animals were then dosed via intraperitoneal 

injection with BP-ciprofloxacin (6 at 0.1, 1, or 10 mg/kg as a single dose and at 0.3 mg/kg 
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3×/week for a multiple dosing group) or ciprofloxacin alone (10 mg/kg 3×/week also as a 

multiple dosing group) as a positive control, and sterile endotoxin-free saline as a negative 

control. Allocation of animals to treatment and control groups was done through a 

randomization process. The multiple dosing group animals were anesthetized as before prior 

to each additional injection over the course of the week. All compounds were of 

pharmacological grade and constituted in sterile physiological injectable saline at 

appropriate pH. One week after pharmacotherapy, all animals were euthanized in a CO2 

chamber (60–70% concentration) for 5 min, followed by cervical dislocation. Resection of 

peri-implant tissues (1 cm2) was performed en bloc, and implants were removed. Clinical 

parameters were noted at surgery and resection, such as presence or absence of peri-

prosthetic inflammation. Rat allocations to treatment and control groups were de-identified 

and concealed from subsequent investigators analyzing the microbial data.

For microbial analysis, resected peri-implant soft tissue and bone was homogenized and 

processed immediately after surgical resection by placement in 1 mL of 0.5% saponine and 

vortexed for 1 min before being serially diluted. Serial dilutions at a dilution factor of 10 

(e.g., 0.1 mL of saponine solution transferred to 0.9 mL of 0.9% sterile isotonic saline 

solution) ranging from 100 to 10−9 were prepared, and 0.1 mL of solution from each of the 

dilutions was cultured on plates using a spread plate method. The medium for culturing Aa 
consisted of modified TSB, and frozen stocks were maintained at −80 °C in 20% glycerol, 

80% modified TSB. All culturing was performed at 37 °C in 5% CO2 for 48 h. The numbers 

of viable Aa bacteria cultured (number of CFUs per gram of tissue) was counted manually, 

and the reduction in the mean log10 number of CFU per gram as a function of treatment was 

recorded. In order to confirm Aa bacterial morphotype and also rule out contamination, 

Gram staining and histologic evaluation were performed by sampling of colonies from plates 

once CFU counting was completed.

Statistical Analysis

Statistical calculations were performed with SPSS 22.0 (IBM, Armonk, NY) and Excel 2016 

(Microsoft Corporation, Redmond, WA). Power analyses were performed to determine 

sample size estimation for in vitro and in vivo studies prior to experimentation using G 

Power 3 software.46 Quantitative data from experimental results for each group were 

analyzed first with descriptive statistics to understand the distribution of the data (parametric 

or non-parametric) and to generate the mean, standard error, standard deviation, kurtosis and 

skewness, and 95% confidence levels. The data were then analyzed using the Kruskall–

Wallis test or one-way ANOVA as applicable, and statistical significance was accepted at p < 

0.05 when comparing treatments to controls. Additionally, for in vivo experiments, post-hoc 

testing using unpaired t tests and Dunnett’s test for multiple comparisons was performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

Aa Aggregatibacter Actinomycetemcomitans

AAALAC American Association for the Accreditation of Laboratory Animal Care

ANOVA analysis of variance

ARRIVE Animal Research: Reporting of in Vivo Experiments

AST antibiotic sensitivity test

ATCC American Type Culture Collection

BP bisphosphonate

BTMS bromotrimethylsilane

CFU colony-forming units

CLSI Clinical Laboratory Standards Institute

EUCAST European Committee on Antimicrobial Susceptibility Testing

HA hydroxyapatite

IACUC Institutional Animal Care and Use Committee

MBC mean bactericidal concentrations

MBIC50 minimal biofilm inhibitory concentration required to inhibit the growth of 

50% of organisms

MF McFarland

MH Mueller–Hinton

MIC50 minimal inhibitory concentration required to inhibit the growth of 50% of 

organisms

MSSA methicillin-sensitive S. aureus

Pd/C palladium on activated carbon

SD standard deviation

BTMS bromotrimethylsilane
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DCM dichloromethane

SOCl2 thionyl chloride

SEM scanning electron microscopy
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Figure 1. 
Scanning electron micrograph of a surgical bone specimen from a patient with chronic 

osteomyelitis (100× magnification). Characteristic multilayered and matrix-enclosed 

biofilms colonizing bone surfaces internally and externally can be visualized; inset top right 

shows high-power view (5000× magnification) of the causative staphylococcal biofilm 

pathogens. [The sample was processed for SEM, sputter coated with platinum, and imaged 

with an XL 30S SEM (FEG, FEI Co., Hillsboro, OR) operating at 5 kV in the secondary 

electron mode].
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Figure 2. 
Design of bisphosphonate-ciprofloxacin conjugate via a “target and release” strategy.
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Figure 3. 
Spectroscopic analysis of 6 in TSB microbiological media with the addition of HA 

spherules. The significant decreases from 0 to 24 h confirm conjugate adsorption to HA 

since the measurement is only performed in the supernatant where the conjugate adsorbed to 

the HA spherules is absent. [Results for 1.95–250 µg/mL are all statistically significant: p < 

0.05, ANOVA; triplicate; *results for 0.12–0.48 µg/mL (with a horizontal bar above) are 

inconclusive relative to control medium].
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Figure 4. 
Antimicrobial susceptibility testing of 6 against planktonic cultures of S. aureus strain 

ATCC-6538 in acidic (top graph) and physiological (bottom graph) pH. Results show an 

improved bactericidal profile in acidic versus physiological pH as half the concentration of 

conjugate is required to reach the MIC50 in acidic conditions as compared to physiological 

conditions. Note that the MIC90 of 31.25 µg/mL in this assay in acidic and physiological 

conditions is consistent with the MIC results shown in Table 1 for 6 against the same strain.
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Figure 5. 
Time-kill results for 6 against S. aureus strain ATCC-6538 (top graph) and MRSA strain 

MR4-CIPS (bottom graph) at their established MIC values (see Table 1) and at half that 

value. Kinetic results reveal that at half the MIC value, prevention of bacterial growth 

became evident after 2 h and inhibition was at 50% of control after 24 h.
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Figure 6. 
Antimicrobial susceptibility testing of 6 against biofilms of S. aureus strain ATCC-6538 (top 

graph) and P. aeruginosa strain ATCC-15442 (bottom graph) formed on polystyrene as a 

substrate. The conjugate demonstrates minimal activity against biofilms on polystyrene, and 

no MBIC90 is observed for either pathogen.
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Figure 7. 
Antimicrobial susceptibility testing of 6 against biofilms of S. aureus strain ATCC-6538 (top 

graph) and P. aeruginosa strain ATCC-15442 (bottom graph) formed on HA discs as the 

substrate. All tested concentrations of 6 (dotted bars top graph) and the parent antibiotic 

ciprofloxacin resulted in statistically significant bactericidal activity against S. aureus; c = 

negative control comparator. Against P. aeruginosa, 6 was most effective at physiological pH 

at 50 µg/mL and also effective at acidic pH at this concentration, but ciprofloxacin was 

inactive under either acidic or physiological conditions compared to the controls [*p < 0.05, 

Kruskal–Wallis test; triplicate].
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Figure 8. 
Results from preventative experiments where HA spherules were pretreated with 6 and then 

inoculated with S. aureus. Controls (black bars) represent cultured bacteria without HA and 

without conjugate treatment. After 24 h, significant increase in planktonic growth is 

observed when the supernatant is measured. Control + HA (C+HA bar) represents cultured 

bacteria with HA, but still without treatment. After 24 h, some bacterial growth is observed 

but not as much as in the HA negative control (red bar), because bacteria bind to HA and 

form biofilms which are not measured in the HA-free supernatant. Comparing controls to 

treatments, at 15.6 to 250 µg/mL of the conjugate, there is complete bacterial inhibition after 

24 h (right graph); at lower concentrations ranging from 0.24 to 7.8 µg/mL, bacteria grew 

slightly but were still strongly inhibited.
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Figure 9. 
Antimicrobial susceptibility testing (top graph) of 11 at increasing concentrations against 

biofilms of S. aureus strain ATCC-6538 formed on HA as the substrate. No significant 

activity is observed at any concentration as compared to the control C+ [p > 0.05, Kruskal–

Wallis test; triplicate]. The bottom graph shows results from preventative experiments where 

HA is pretreated with 11 or the parent antibiotic ciprofloxacin and then inoculated with S. 
aureus, and again no antimicrobial activity is observed for 11. The only significant reduction 

is seen with the parent drug at a relatively high dose of 400 µg/mL [*p < 0.05, Kruskal–

Wallis test; triplicate].
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Figure 10. 
Antimicrobial susceptibility of 6 against biofilms of Aa strain D7S-5 grown on HA shows an 

effective antimicrobial profile for conjugate 6 at >15 µg/mL.
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Figure 11. 
Antimicrobial results from in vivo animal testing. Data show efficacy of tested compounds 

for reducing bacterial load. The greatest efficacy was observed at a single high dose (10 

mg/kg) of 6 where a 2 log reduction (99% bactericidal activity) was seen as compared to the 

negative control.
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Figure 12. 
Antimicrobial results from the second animal experiment. Data show efficacy of 6 for 

reducing bacterial load or mean CFU/gram of tissue (y-axis). The greatest efficacy was 

observed at a single high dose (10 mg/kg) of the conjugate compared to the control and the 

multiple low-dose group (0.3 mg/kg × 3) [*p = 0.0005; unpaired t test, errors bars represent 

standard error].
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Scheme 1. Overall Synthetic Scheme of Aryl Carbamate BP-Ciprofloxacin Conjugate 6a

aReagents and conditions: (a) BTMS (2 equiv), Et2O, 0 °C to rt, 17 h, yield 95%. (b) (i) 

tetraisopropyl methylene bisphosphonate (1 equiv), NaH (1 equiv), THF, rt, 10 min; (ii) 1 (1 

equiv), rt, 2 h, yield 52%. (c) Pd/C (catalyst) (0.07 equiv), H2, MeOH, rt, overnight, yield 

88%. (d) 4-nitrophenyl chloroformate (1.1 equiv), Et3N (3 equiv), DCM, rt, 2.5 h, yield 

44%. (e) Ciprofloxacin (1.2 equiv), water (pH 8.5), THF, 0 °C to rt, overnight, yield 52%. (f) 

(i) BTMS (excess), DCM, 35 °C, 24 h, (ii) MeOH, rt, overnight, yield 86%.

Sedghizadeh et al. Page 38

J Med Chem. Author manuscript; available in PMC 2018 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. Overall Synthetic Scheme of Amide BP-Ciprofloxacin Conjugate 11b

bReagents and conditions: (a) (i) NaH (1.4 equiv), THF, 0 °C to rt, 1 h; (ii) methyl 4-

(bromomethyl)benzoate (0.7 equiv), THF, 0 °C to rt, overnight, yield 37%. (b) LiOH·H2O (5 

equiv), MeOH, rt, overnight, yield 91%. (c) SOCl2 (2 equiv), DMF (0.05 equiv), DCM, rt, 2 

h, yield quantitative. (d) Ciprofloxacin (1 equiv), DIPEA (6 equiv), CHCl3, rt, overnight, 

yield 65%. (e) (i) BTMS (excess), DCM, 35 °C, overnight, (ii) MeOH, rt, 30 min, yield 

82%.
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Table 1

Antimicrobial Susceptibility Testing Results for Ciprofloxacin, 6, and 11 Tested against a Panel of Clinically 

Relevant S. aureus Osteomyelitis Pathogensa

S. aureus strain

antibiotic
sensitivity (S)
or resistance

(R)

MIC for
ciprofloxacin
[µg/mL]

MIC
for 6
[µg/
mL]

MIC for 11
[µg/mL]

MSSA1 S 1 3.9 31.2

MSSA2 S 0.25 0.49 31.2

MSSA3 S 0.25 0.49 15.6

MSSA4 S 1 3.9 62.5

MSSA5 S 0.5 1.9 7.8

MSSA6 S 1 7.8 15.6

MSSA:ATCC-6538 S 1 31.2 62.5

MRSA:MR4-CIPS S 1 15.6 Not tested

a
MSSA = methicillin-susceptible S. aureus; MRSA = methicillin-resistant S. aureus.
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