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Abstract

BACKGROUND—Kynurenine 3-monooxygenase (KMO) converts kynurenine to 3-

hydroxykynurenine, and its inhibition shunts the kynurenine pathway - which is implicated as 

dysfunctional in various psychiatric disorders - towards enhanced synthesis of kynurenic acid 

(KYNA), an antagonist of both α7 nicotinic acetylcholine and NMDA receptors. Possibly as a 

result of reduced KMO activity, elevated central nervous system levels of KYNA have been found 

in patients with psychotic disorders, including schizophrenia (SZ).

METHODS—In the present study, we investigated adaptive – and possibly regulatory – changes 

in mice with a targeted deletion of Kmo (Kmo−/−) and characterized the KMO-deficient mice 

using six behavioral assays relevant for the study of SZ.

RESULTS—Genome-wide differential gene expression analyses in the cerebral cortex and 

cerebellum of these mice identified a network of SZ- and psychosis-related genes, with more 

pronounced alterations in cerebellar tissue. KYNA levels were also increased in these brain 

regions in Kmo−/− mice, with significantly higher levels in the cerebellum than in the cerebrum. 

Kmo−/− mice exhibited impairments in contextual memory and spent less time than controls 

interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals 

displayed increased anxiety-like behavior in the elevated plus maze and in a light-dark box. After a 

D-amphetamine challenge (5 mg/kg, i.p.), Kmo−/− mice showed potentiated horizontal activity in 

the open field paradigm.
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CONCLUSIONS—Taken together, these results demonstrate that the elimination of Kmo in mice 

is associated with multiple gene and functional alterations that appear to duplicate aspects of the 

psychopathology of several neuropsychiatric disorders.
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Introduction

Kynurenine 3-monooxygenase (KMO), an enzyme of the kynurenine pathway (KP) of 

tryptophan degradation, catalyzes the conversion of L-kynurenine (“kynurenine”) to 3-

hydroxykynurenine (3-HK). 3-HK can both generate and scavenge reactive free radicals (1), 

and is also involved in modulating the neosynthesis of other neuroactive KP metabolites 

such as quinolinic acid (QUIN) and kynurenic acid (KYNA) (2) (Supplemental Figure 1). 

Impaired KMO function has been implicated in the pathophysiology of schizophrenia (SZ)

(3–5), a major psychiatric disorder, which can be traced to abnormal brain development and 

is characterized by deficits in social and emotional functioning, thought disorder, abnormal 

perception of reality, and cognitive dysfunction (6). Specifically, postmortem data show that 

patients with SZ have lower mRNA levels of KMO and decreased KMO activity in the 

cerebral cortex (4, 7), though cortical 3-HK levels do not appear to be abnormal in SZ (8). 

Additionally, the non-synonymous single nucleotide polymorphism (SNP) rs2275163 in the 

gene encoding KMO - originally identified and cautiously linked to SZ by Aoyama and 

collaborators (9) – is associated with two established SZ endophenotypes, namely 

impairments in smooth pursuit eye movement and visuospatial working memory (7). In 

patients with bipolar disorder, a second polymorphism in the KMO gene (rs1053230) is 

associated with reduced KMO expression in the hippocampus and in lymphoblastoid cell 

lines, with higher cerebrospinal fluid (CSF) KYNA concentrations in individuals with a 

history of psychosis (3).

Dysfunctional KMO activity may, in fact, be directly related to the elevated levels of KYNA, 

which are also seen in the CSF and postmortem brains of patients with SZ and bipolar 

disorder (3, 8, 10–15). Thus, as demonstrated both after pharmacological KMO inhibition 

(16–18) and in mice with a genomic elimination of the Kmo gene (19), reduced KMO 

activity induces a shift in KP metabolism towards the pathway branch that produces KYNA 

(Supplemental Figure 1). Notably, after being released into the extracellular compartment, 

newly produced KYNA can act as an endogenous antagonist at ɑ7 nicotinic acetylcholine 

(ɑ7nACh)(20) and N-methyl-D-aspartate (NMDA) receptors (21–23), both of which are 

critically involved in brain development (24) and cognition (25). However, KYNA may also 

target other recognition sites with less understood physiological significance (26, 27), and 

increased levels of endogenous KYNA at any of these sites may be related to the cognitive 

impairments seen in SZ. This link is supported by a considerable number of studies in 

rodents, which found that acute elevations of brain KYNA can induce cognitive 

dysfunctions, including deficits in sensorimotor gating (28, 29), working memory (30), 

contextual learning memory (31, 32), and cognitive flexibility (33).
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The present study was designed to investigate possible changes in gene expression in the 

brain of mice with a targeted deletion of Kmo (Kmo−/− mice), to assess cerebral and 

cerebellar variations in KYNA levels in these mice (19), and to characterize the mutant 

animals behaviorally. Compared to Kmo+/+ (wild-type) animals, Kmo−/− mice exhibited 

differential expression of several SZ- and psychosis-related genes and also showed 

significant impairments in cognition, social interaction, anxiety-like behaviors and D-

amphetamine-induced locomotor activity. These findings support the existence of 

etiologically significant links between KP dysfunction and SZ, and, more generally, indicate 

the heuristic value of Kmo−/− mice for studying the pathophysiology of various psychiatric 

disorders.

Materials and Methods

Animals

Adult male Kmo−/− mice and Kmo+/+ (wild-type) were bred on C57/BL6 or FVB/N 

backgrounds, as previously described (19) and detailed in Supplemental Materials.

Microarray analysis

Whole genome gene-expression analysis was carried out on Kmo−/− and wild-type C57/BL6 

mice as previously described (34, 35). Only differentially expressed transcripts with P<0.05 

and >1.2-fold changes were included in subsequent analyses. Details are provided in 

Supplemental Materials.

qPCR analyses

Experimental details for qPCR analyses are described in Supplemental Materials. The ratio 

of expression in Kmo−/− tissues compared to controls was calculated using the ratiobatch 
function, with the mean Cp value of the two reference genes used as an internal control for 

each sample.

Network and gene ontology analyses

Network analysis was performed using the STRING Database V10 (http://string-db.org/).

(36) All 7 active prediction methods were employed for the analysis (Neighborhood, Gene 

Fusion, Co-occurrence, Co-expression, Experiments, Databases, Textmining), with a 

required confidence level of medium (0.400). An MCL clustering parameter of 2 was 

employed, and all disconnected nodes were removed, as well as nodes within small networks 

that did not form part of the major network identified. STRING was also used for gene 

ontology analysis of enriched biological processes above genome background. Significantly 

enriched processes were sorted by Bonferroni corrected P-values, using a cutoff of 0.05.

Enzyme activity and metabolite analyses

Brains from Kmo−/− and wild-type FVB/N mice were dissected into cerebellum and 

cerebrum and stored at -80°C. On the day of the analyses, tissues were thawed out and 

processed as previously described and detailed in Supplemental Materials.
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Behavioral testing

Experimentally naive Kmo−/− and wild-type (FVB/N) mice were used for each behavioral 

paradigm, as described in detail in Supplemental Materials.

Statistics

All analyses were performed using Prism® 6 (GraphPad Software, Inc. La Jolla, CA, USA), 

or IBM SPSS Statistics 22 (IBM SPSS Inc., Chicago, IL, USA). Significance was set at P < 

0.05. All assumptions of each test were checked prior to the analyses.

All data are reported as the mean ± S.E.M. Statistical details for each experiment are 

provided in Supplemental Materials.

Results

Differential gene expression profiling identifies a network of SZ-related genes in Kmo−/− 

mice

In order to investigate the regulatory changes in the Kmo−/− mice, we performed an unbiased 

screen for differentially expressed genes (DEGs) using Illumina Expression BeadChips 

(MouseWG-6 v2.0). Gene profiling identified a number of DEGs in both cerebrum and 

cerebellum (P ≤ 0.05), with a fold change of 1.2 (Supplemental Tables 1 and 2). To visualize 

these expression changes and to compare the forebrain to the cerebellum, a hierarchical 

clustering map was developed (Supplemental Figure 2). Of the two samples, the cerebrum 

exhibited a greater number of DEGs in Kmo−/− mice, with a total of 120 DEGs (46 

upregulated and 74 downregulated) (Supplemental Figure 2). In the cerebellum, a set of 24 

genes was identified. Interestingly, there was an overlap of only 6 genes between forebrain 

and cerebellum: CNIH4, FCER1G, LYPLAL1, MGST3, MYOC and SLC22A6. Of greater 

interest in the context of the present study, both regions presented changes in several genes 

that have been implicated as dysfunctional in SZ (see Supplemental Table 3 for a 

comprehensive list of supporting references). Strikingly, upon further analysis, ~33% of the 

identified cerebellar DEGs were found to be SZ-associated, and these were particularly 

enriched amongst the upregulated genes (7/16, ~44%). Indeed, when a more stringent cut-off 

of 1.3-fold change was applied, ~63% of the upregulated cerebellar genes were linked to SZ. 

A more modest fraction of SZ-related genes was also identified amongst the cerebrum 

DEGs, with 28/120 (~23%) linked to the disease; however, these were more evenly 

distributed between up- and down-regulated categories.

To ascertain whether the identified DEGs interact in a common network, we performed 

network analyses. Amongst 138 proteins encoded by the differentially expressed genes in 

the Kmo−/− mice, a total of 105 protein-protein interactions were observed, which represents 

a significant ~2-fold increase over the 53 interactions expected (P = 1.45e-10). We found a 

single robust interaction network containing 67 of the hits in several functional clusters 

(Figure 1a). This analysis supports the notion that a large proportion of the DEGs arising 

from genomic elimination of KMO activity – and linked to increased KYNA levels – act in a 

common network. Finally, we analyzed gene ontology (GO) Biological Processes terms 

associated with the DEGs, and found several significantly enriched biological processes – 
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including nervous system development and neurogenesis – which have been previously 

linked to SZ (Supplemental Table 4).

A subset of SZ-implicated DEG changes was assessed by qPCR, and a fold change of 1.4 

for upregulated genes and 0.71 change for downregulated genes was selected as a cutoff for 

further analyses. In the cerebrum, five of six SZ-related DEGs were validated: AVP, EGR2, 

COX8B, INDO, and ENPP2 (Figure 1b). In the cerebellum, two of the four genes – TCF7L2 
and NRGN – remained significantly upregulated when assessed by qPCR, whereas the DEG 

changes of two others, DAO1 and EGR3, were not validated (Figure 1c). Taken together, the 

qPCR analyses supported the microarray data in general, and, specifically, confirmed a 

number of DEGs implicated in SZ.

Brain KYNA levels are elevated in Kmo−/− mice

As we have previously characterized the biochemical profile of Kmo−/− mice in the 

cerebrum, in the present study we compared KP changes specifically in the cerebellum 

versus the cerebrum in Kmo−/− mice and wild-type mice. The activity of KMO (Figure 2a) 

and the amount of its enzymatic product 3-HK (Figure 2b) were drastically reduced in both 

cerebrum and cerebellum of Kmo−/− mice. Conversely, KYNA levels were significantly 

elevated in both brain tissues in Kmo−/− mice, and there was an unexpected higher increase 

in KYNA levels in the cerebellum than in the cerebrum (Figure 2c).

Deficits in contextual memory in Kmo−/− mice

We next investigated the functional impact of KMO elimination using a hippocampus-

mediated behavioral task, the passive avoidance paradigm (PAP). Kmo+/+ and Kmo−/− did 

not differ significantly in approach latencies during the acquisition trial (Figure 3a). Twenty-

four h later, in the retention trial, the avoidance latencies of wild-type animals were 

significantly higher than the approach latencies in the acquisition trial, signifying learning of 

the PAP. Conversely, the avoidance latencies of Kmo−/− mice were not significantly 

improved, suggesting a deficit in contextual memory. Additionally, the avoidance latencies 

of Kmo−/− mice were significantly shorter than those of wild-type animals (Figure 3a).

Impairments in social interaction in Kmo−/− mice

To characterize social interaction, we tested Kmo+/+ and Kmo−/− in the three-chamber social 

approach apparatus (Figure 3b). There was a significant interaction between genotype and 

test chamber (F(2,66)=3.741, P=0.029). Both Kmo+/+ and Kmo−/− mice spent more time in 

the chamber containing the stranger (Kmo+/+: 393 ± 21 sec; Kmo−/−: 348 ± 26 sec) than in 

the chamber containing the novel object (Kmo+/+: 129 ± 16 sec; Kmo−/−: 184 ± 19 sec)

(P<0.001). Compared to wild-type animals, Kmo−/− mice spent a lower percentage of total 

time with the stranger mouse versus the novel object, suggesting a deficit in social 

interaction (Figure 3b).

Kmo−/− mice display anxiety-like behaviors

The elevated plus-maze, the light-dark box, and open field tests were used to assess anxiety-

like behaviors in Kmo−/− mice. In the elevated plus-maze, Kmo−/− mice showed significant 

reductions in the percentage of time spent in the open arm (Figure 4a) and in the number of 
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entries into the open arms (Figure 4b) compared to Kmo+/+ mice. In the light-dark box test, 

Kmo−/− mice spent significantly less time in the light compartment compared to their wild-

type counterparts (Figure 4c) and made a decreased number of entries into the light 

compartment (Figure 4d). Furthermore, although Kmo−/− mice displayed comparable 

horizontal, rearing, and center activities as Kmo+/+ mice in a general assessment of 

locomotion (Supplemental Figure 3), we observed a significant increase in the corner time of 

the Kmo−/− animals (Time: F(11, 462)=3.50, P<0.001; Genotype: F(1, 42)=7.704, P<0.01; 

Interaction: F(11, 462)=3.60, P<0.0001; Figure 4e). Together, these data demonstrate 

increased anxiety-like behaviors in Kmo−/− mice compared to Kmo+/+ mice.

Kmo−/− mice show enhanced locomotor response to D-amphetamine

Acute administration of D-amphetamine (5 mg/kg, i.p.) produced increased horizontal 

activity compared to saline treatment and potentiated the increase in horizontal activity in 

Kmo−/− mice as compared to the Kmo+/+ mice (Time: F(29, 1160)=15.24, P<0.0001; 

Genotype: F(3, 40)=35.55, P<0.0001; Interaction: F(87, 1160)=17.88, P<0.0001, Figure 5a). 

Central activity in Kmo−/− mice was enhanced by acute administration of D-amphetamine 

compared to the Kmo+/+ mice (Time: F(29, 1160)=6.416, P<0.0001; Genotype: F(3, 40)=11.85, 

P<0.0001; Interaction: F(87, 1160)=6.117, P<0.0001, Figure 5b). Compared to Kmo+/+ 

controls, Kmo−/− mice also displayed increased rearing activity and decreased corner time 

(Supplemental Figure 4).

Prepulse inhibition in Kmo−/− mice

Basal startle magnitude did not differ between genotypes (P=0.35; Supplemental Figure 5a), 

nor were there any differences in habituation to startle (data not shown). In the variable 

prepulse intensity block there was a significant increase in percent PPI with increasing 

prepulse level (F(2, 92)=85.1; P<0.0001), and a main effect of genotype (F(1, 46) = 4.7; 

P<0.05). There was no interaction between genotype and prepulse level (F(2, 92) = 0.6; 

P=0.58; Supplemental Figure 5b). PPI was similarily disrupted in Kmo+/+ and Kmo−/− mice 

following administration of D-amphetamine (2 mg/kg, i.p.) or MK-801 (0.15 mg/kg, i.p.) 

(data not shown).

Discussion

The present study was designed to explore gene expression changes in Kmo−/− mice and to 

compare the behavioral phenotypes of the knock-outs with wild-type controls. Moreover, the 

mutant animals provided an opportunity to relate changes in these outcome measures to 

comparable phenomena in clinical populations with reported KP abnormalities, including 

patients with SZ or bipolar disorder (3, 4, 7, 8, 10, 11, 13, 15).

Among the SZ-related DEGs validated by qPCR, NRGN, EGR2 and AVP have been 

repeatedly linked to distinct phenotypic manifestations that are associated with psychiatric 

diseases. For example, after its gene was found in a genome-wide screen to be strongly 

associated with SZ (37), neurogranin (NRGN) was shown to be a postsynaptic calmodulin-

binding protein that is required for synaptic plasticity (38). The early response gene (EGR) 

family is noteworthy for containing several compelling SZ susceptibility genes (39), and 
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studies in forebrain-specific conditional EGR2 mutant mice revealed that EGR2 can act as 

an inhibitory constraint for certain cognitive functions (40). Arginine vasopressin (AVP) is 

critical for social interactions (41), its receptor gene is associated with emotional 

withdrawal, which is frequently observed in persons with SZ (42), and elimination of the 

AVP gene causes distinct cognitive abnormalities in rats (43). Notably, qPCR analysis did 

not validate D-amino acid oxidase (DAAO), another DEG associated with SZ 

pathophysiology (44).

The present study also identified a number of other interesting DEGs, including genes 

coding for several proteins that play major roles in neurotransmission, such as the AMPA2 

ionotropic glutamate receptor and the potassium channels KCNK6, KCNJ10, KCNK13 and 

KCNE2, and for proteins which are directly related to KP metabolism, namely INDO 

(indoleamine 2,3-dioxygenase 1) and the putative KYNA transporter OAT1 (45). The 

possible functional and translational significance of these DEG findings, as well as their 

causal relationship to chronically elevated KYNA levels, require further elaboration. 

Notably, by performing network analysis of microarray data in Kmo−/− mice, we observed 

significant alterations in several networks known to be relevant for nervous system 

development and neurogenesis. Identification of these network impairments further 

supported our plan to assess translationally relevant behaviors in Kmo−/− animals.

In line with our previous, more detailed biochemical assessment of mice from the same 

colony (19), KMO activity was essentially eliminated in adult Kmo−/− animals, though some 

enzyme activity (<3% of wild-type) was measurable in 2/10 knockout mice, possibly due to 

very minor oxidative conversion of kynurenine to 3-HK. Thus, while the present study does 

not categorically rule out the existence of functional KMO isoforms and non-enzymatic 

production of 3-HK, the present results confirm that a single KMO accounts almost 

exclusively for the formation of 3-HK from kynurenine in mice. Because of its conceptual 

importance in the context of the present study, we also verified that the abolition of KMO 

was associated with a large reduction in cortical 3-HK levels and a substantial increase in 

cortical KYNA levels (19) but did not measure anthranilic acid levels, which are also 

significantly elevated in both periphery and brain of Kmo−/− animals (19) as well as in the 

serum of individuals with SZ (46). Unfortunately, we were not able to determine the brain 

levels of the KP metabolites 3-hydroxyanthranilic acid or cinnabarinic acid, which may play 

a role in the pathophysiology of SZ (47, 48), due to limits in assay sensitivity.

Adult Kmo−/− animals displayed abnormalities in hippocampus-dependent contextual 

memory, assessed in the PAP. These results are in line with the demonstration that elevated 

brain KYNA is associated with abnormalities in hippocampus-dependent learning and 

memory (30, 32, 49, 50). The hippocampus is richly endowed with ɑ7nACh and NMDA 

receptors, two preferential targets of endogenous KYNA (26, 27, 51) which are critically 

important in learning and memory (25). Their inhibition by elevated KYNA may therefore 

be causally related to the contextual memory deficits seen in Kmo−/− animals.

Assessed using a three-chamber social approach task (52), Kmo−/− mice also showed a 

deficit in social interaction. This finding is in agreement with reports documenting impaired 

social behavior in rats after the administration of KYNA’s brain-penetrable bioprecursor 
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kynurenine during early postnatal development or adolescence (53, 54). Of note in this 

context, a deficit in social interactions is also seen in inbred BTBR T+tf/J mice, which likely 

have a compromised Kmo gene and display an array of autism-like behavioral phenotypes 

(55).

In line with previous studies demonstrating an increase in anxiety-like phenotypes after 

acute or repeated systemic kynurenine administration in rodents (56–58). Kmo−/− mice also 

displayed increased anxiety-like behavior when tested in three well-established experimental 

paradigms, i.e. the elevated plus maze, the light-dark box, and the open field. These effects 

were not associated with changes in spontaneous locomotor activity, which was examined in 

the open-field test. Notably, however, Kmo−/− mice showed an abnormally large increase in 

locomotor activity compared to wild-type mice when challenged with D-amphetamine. This 

heightened response is also seen in mice with experimentally induced chronic elevations in 

brain KYNA levels (56) and may be of relevance to the study of SZ, which is traditionally 

associated with dopaminergic hyperfunction in brain regions involved in motor behavior 

(59).

Kmo−/− mice did not display disruptions in PPI. In fact, the mutant animals showed slightly 

more inhibition to the prepulse than wild-type controls across increasing prepulse intensities. 

Also of note, no genotypic differences in PPI were observed when MK-801 (0.15 mg/kg) or 

D-amphetamine (2 mg/kg) were used as a provocative tool (60). While these results contrast 

with findings in healthy adult rats, which show disruptions in PPI when challenged acutely 

with kynurenine (28), our results in Kmo−/− mice are in line with findings showing that adult 

rats with chronically elevated levels of KYNA do not show PPI deficits (61). The 

mechanisms underlying the apparent different effects of chronic (i.e. life-long) and acute 

elevations of brain KYNA on gating (29), and implications for psychiatric diseases, where 

PPI disruptions are not always synonymous with cognitive deficits (62), are unclear and will 

need to be explored in future studies (see ref. 63 for further discussion).

In rodents, increases in brain KYNA inversely influence the extracellular concentrations of a 

number of major neurotransmitters, including glutamate, GABA, and dopamine (see ref. 64 

for review). Alone or together, these effects, which are probably set in motion by the 

inhibition of ɑ7nACh receptors (51), have been proposed to be responsible for the 

behavioral changes which are associated even with relatively modest increases in brain 

KYNA levels (28, 29, 32, 33, 49). The present study demonstrated that several of these 

behavioral phenomena, including deficits in cognition, impairment in social interaction, and 

anxiety-like phenotypes, are also seen in Kmo−/− mice, which have high brain KYNA levels. 

As these behavioral abnormalities are believed to be causally related to glutamatergic, 

GABAergic and/or dopaminergic mechanisms (65), it is tempting to speculate that 

neurochemical processes initiated by elevated KYNA play (a) distinct role(s) in the altered 

phenotypes we observed in the mutant animals.

The qualitative (DEGs) and quantitative (KYNA levels) differences between cerebellum and 

cerebrum of Kmo−/− mice deserve special attention. While the mechanisms underlying these 

differences remain to be clarified, several studies have indicated that the dynamics of 

cerebellar KP metabolism are distinct and likely developmentally regulated (66–69). 
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Notably, as intracerebellar infusions of nanomolar concentrations of KYNA cause 

remarkable changes in extracellular glutamate and dopamine in the distant prefrontal cortex 

(70), the disproportionally high KYNA levels in the cerebellum of Kmo−/− mice may 

account for some of the behavioral abnormalities we detected in these animals. Of 

significant interest in this context, the cerebellum is increasingly understood to play major 

roles in higher cognitive functions, and may be critically impaired in SZ (71).

In summary, our results indicate that Kmo−/− mice provide a heuristically useful 

experimental tool for studying the role of dysregulated KP metabolism in psychiatric 

disorders. As ɑ7nACh and NMDA receptors, which likely serve as preferential targets of 

KYNA in the mammalian brain in vivo (26, 27), are critical to neurogenesis and play central 

roles in modulating neuronal migration and integration during brain maturation (72–76), we 

suspect that prolonged inhibition of these receptors, particularly during developmental 

periods, may be causally related to the behavioral phenotypes seen in adult Kmo−/− mice. 

Using biochemical, electrophysiological and behavioral outcome measures, experiments 

currently in progress in our laboratories are designed, inter alia, to investigate the impact of 

prenatal insults in both Kmo−/− and heterozygous (Kmo+/−) animals (77) and to evaluate 

genetic and pharmacological approaches to experimentally down-regulate brain KYNA 

levels in Kmo−/− mice (78, 79). However, caution is indicated when extrapolating studies 

with knock-out mice to pathological conditions in humans (80) and when assuming direct 

correlations between central and peripheral measures of KP metabolism (19). These studies 

will not only further define the heuristic value of using animals with targeted mutations of 

the KP to elucidate the etiology of SZ and other major psychiatric disorders, but may also 

shape new therapeutic strategies (2, 63, 81).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regulatory gene changes in Kmo−/− mice. (A) Differentially expressed genes (DEGs) form a 

highly interconnected network. Network analysis determined the DEGs identified in Kmo−/− 

mice form a robust network containing 67/144 of the candidates. The network is 

characterized by several functional clusters highlighted with different colors. (B) qPCR 

validation of DEGs identified by microarray in the cerebral hemisphere. (C) qPCR 

validation of DEGs identified by microarray in the cerebellum. Data are mean ± SEM. 

†0.05<P<0.1; *P<0.05; **P<0.01; ***P<0.001 compared to Kmo+/+ mice. n=4-7 animals 

per group.
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Figure 2. 
Kynurenine pathway metabolism in cerebrum and cerebellum of adult wild-type and Kmo−/− 

mice. (A) KMO activity is eliminated in both tissues in Kmo−/− mice. (B) Levels of 3-HK 

are reduced in both tissues in Kmo−/− compared to Kmo+/+ mice. (C) Levels of KYNA are 

elevated in Kmo−/− mice. KYNA levels are significantly more elevated in the cerebellum 

than in the cerebrum. All data are the mean ± SEM. **P<0.01; ***P<0.001; n=8-10 per 

group.
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Figure 3. 
Contextual memory and social interaction. (A) Wild-type (n=14) and Kmo−/− (n=7) mice 

were tested in the passive avoidance paradigm. No genotypic difference in approach latency 

was observed on the training day. On Day 2, only Kmo+/+ animals showed contextual 

memory, i.e. a significant difference between avoidance and approach latency. Avoidance 

latency differed significantly between wild-type and Kmo−/− animals. (B) Performance of 

wild-type (n=12) and Kmo−/− (n=12) mice in the three-chambered social interaction 

paradigm. Compared to Kmo+/+ animals, mutant animals spent a lower proportion of time 

with the stranger mouse than with the novel object. All data are the mean ± SEM. *P<0.05; 

*** P<0.001.
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Figure 4. 
Anxiety behavior in elevated plus maze (A, B), light-dark box (C, D), and open field (e). In 

the elevated plus maze, Kmo−/− mice (n=12) spent significantly less time in the open arm 

(A) and entered the open arms less frequently (B) than wild-type animals (n=12); In the 

light-dark box, Kmo−/− mice (n=17) spent significantly less time in the light compartment 

(C) and entered the light compartment less frequently (D) than wild-type mice (n=24); (E) 

In the open field, Kmo−/− mice (n=21) spent more time in the corners than wild-type animals 

(n=23). All data are the mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Figure 5. 
Increased locomotor activity after D-amphetamine (AMPH; 5 mg/kg). At time 0 (arrows), 

animals received an i.p. injection of either AMPH (wild-type: n=12; Kmo−/−: n=11) or saline 

(wild-type: n=11; Kmo−/−: n=10). AMPH increased both horizontal (A) and central (B) 

activity significantly more in Kmo−/− mice than in wild-type animals. All data are the mean 

± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 versus wild-type.
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