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Abstract

Stem cell (SC) therapy for ischemic cardiomyopathy is hampered by poor survival of the

implanted cells. Recently, SC-derived exosomes have been shown to facilitate cell prolifera-

tion and survival by transporting various proteins and non-coding RNAs (such as micro-

RNAs and lncRNAs). In this study, miR-21 was highly enriched in exosomes derived from

bone marrow mesenchymal stem cells (MSCs). Interestingly, exosomes collected from

hydrogen peroxide (H2O2)-treated MSCs (H-Exo) contained higher levels of miR-21 than

exosomes released from MSCs under normal conditions (N-Exo). The pre-treatment of C-

kit+ cardiac stem cells (CSCs) with H-Exos resulted in significantly increased levels of miR-

21 and phosphor-Akt (pAkt) and decreased levels of PTEN, which is a known target of miR-

21. AnnexinV-FITC/PI analysis further demonstrated that the degree of oxidative stress-

induced apoptosis was markedly lower in H-Exo-treated C-kit+ CSCs than that in N-Exo-

treated cells. These protective effects could be blocked by both a miR-21 inhibitor and the

PI3K/Akt inhibitor LY294002. Therefore, exosomal miR-21 derived from H2O2-treated

MSCs could be transported to C-kit+ cardiac stem cells to functionally inhibit PTEN expres-

sion, thereby activating PI3K/AKT signaling and leading to protection against oxidative

stress-triggered cell death. Thus, exosomes derived from MSCs could be used as a new

therapeutic vehicle to facilitate C-kit+ CSC therapies in the ischemic myocardium.

1. Introduction

Recently, cardiac stem cells (CSCs) residing in the adult mammalian heart have emerged as

one of the most promising stem cell types for cardiac regeneration and repair[1–7]. However,

the poor engraftment and viability of CSCs hamper functional improvements and optimal car-

diac outcomes[8–10]. Preconditioning stem cells using various strategies could significantly

enhance CSC survival after adoptive transfer in myocardial infarction patients[11–14]. Exo-

somes released from cells have been recently shown to mediate cell-cell communication to
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ensure information transfer from donor cells to recipient cells and allow cells to react to envi-

ronmental changes[15]. These exosomes constitute a delicate and complex system that can be

used to control tissue regeneration and cell protection and survival[16–18].

Exosomes are membrane vesicles 30–100 nm in diameter that are released from many cell

types under specific physiological or pathological states. Exosomes contain many protein fac-

tors, mRNAs, miRNAs, lncRNAs and other nutritional elements. These cargoes are selectively

wrapped into the microbubble structure and finally secreted into the extracellular environ-

ment via exosomes[19, 20]. However, the contents of exosomes vary across different cell types

and under different pathophysiological conditions, which may generate completely different

outcomes in recipient cells[21, 22]. Hence, investigating the biological functions of exosomes

under specific pathological conditions is imperative. MSC-released exosomes have been

shown to improve cardiac function after myocardial infarction[18, 23]. Moreover, an injection

of exosomes from exogenous MSCs could recruit endogenous CSCs to the ischemic and bor-

der zones of infarcted hearts and promote their expansion[24]. Additionally, exosomes

released from MSCs could stimulate the proliferation, migration, and angiogenic potency of

CSCs in vitro and in vivo[16]. Considering the potential therapeutic effects of MSC-exosomes

(MSC-Exo) in cardioprotection and cell therapy, we sought to determine whether C-kit+ CSCs

preconditioned with MSC-Exos could enhance survival and function under oxidative stress

conditions.

miRNAs, which are among the many exosome cargo types, have been confirmed to play a

pivotal role in improving the undesirable consequences associated with acute myocardial

infarction[25]. miRNAs are endogenous single-stranded non-coding RNAs consisting of 20–

22 nucleotides that play critical roles in mRNA inhibition and degradation[26]. miRNAs have

been shown to be involved in the regulation of CSC apoptosis[8, 27]. miRNAs released by

MSC-Exos may also regulate the proliferation, differentiation and survival of CSCs[16]. How-

ever, whether MSC-Exo-derived miRNAs protect against apoptosis induced by H2O2 in C-kit+

CSCs and specific miRNAs that play critical roles remain unknown. According to gain-of-

function studies, miR-21 reduces cardiomyocyte apoptosis induced by oxidative stress [28,

29]. One study have confirmed that MiR-21 modulates the immunoregulatory function of

MSCs by controlling the PTEN[30]. Furthermore, It is also reported that miR-21 via regulating

the PTEN/HIF-1α/VEGF-A signaling cascade to enhances the therapeutic effects of human

multipotent cardiovascular progenitors[31]. These studies have identified a potential exosomal

miRNA target gene that likely regulates C-kit+ CSC apoptosis under oxidative stress

conditions.

Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a tumor sup-

pressor gene that is involved in the regulation of cell proliferation, migration, differentiation

and invasion in a variety of tumor cells[32, 33]. PTEN partially functions through the pro-

survival pathway by inhibiting the phosphorylation of Akt to its active form (p-Akt)[33].

The inactivation of PTEN activates Akt signaling, which reduces apoptosis and increases

survival[34–37]. PTEN is a well-documented target gene of miR-21[30, 38–40].Moreover,

miR-21 promotes cell proliferation via PTEN-dependent PI3K/Akt activation in cancer cells

[41–45]. Additionally, in our previous study, miR-21 protected C-kit+ CSCs from H2O2-

induced apoptosis and increases cell proliferationin partially through the PTEN/PI3K/ Akt

pathway[46–47]. The current study investigated the protective effects of MSC-Exos on

C-kit+ CSCs under oxidative stress. These effects are mainly mediated through the transmis-

sion of exosomal miR-21, which inhibits PTEN and activates the PI3K/Akt pathway in

C-kit+ CSCs. These findings provide a potential cellular therapeutic strategy for ischemic

cardiomyopathy.

Exosome and cardiac stem cells
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2. Materials and methods

2.1. Animals

Sprague-Dawley rats (males and females, approximately 3 weeks old, 45–60 g) were purchased

from the Third Military Medical University (Chongqing, China) and housed at Zunyi Medical

College. All experimental procedures were performed according to the “Guide for the Care

and Use of Laboratory Animals” in China and approved by the local Experimental Animal

Care and Use Committee.

2.2. Materials

Collagenase type II was obtained from Sigma (USA). Trypsin was obtained from Gibco (USA).

Penicillin and streptomycin were obtained from Sorlabio (China). Ham’s/F-12 medium and

fetal bovine serum were both purchased from HyClone (USA). Fibroblast growth factor was

obtained from PeproTech (USA). Leukocyte inhibitory factor was obtained from Gibco

(USA). The rabbit anti-rat C-kit+ primary antibody was supplied by Biorbyt (UK). The M-280

beads conjugated with sheep anti-rabbit secondary antibody were obtained from Dynal Bio-

tech (Norway). The PE-conjugated anti-CD34 and anti-CD45, APC conjugated anti-CD29,

and anti-CD90 primary antibodies were obtained from BioLegend (USA). The miR-21 mim-

ics, miR-21 inhibitors and the negative control were synthesized by RIBOBIO (China). EXO

quick TC was obtained from System Biosciences. SiRNA-PTEN and the scrambled siRNA

were synthesized by GeneCopoeia (MD). The lentivirus and empty vector were synthesized by

HANBIO (China). Lipofectamine 2000 was obtained from Invitrogen (USA). The primers and

miRNA reverse transcript and qRT-PCR kits were obtained from Sangon Biotech (China).

The anti-β-actin, anti-caspase-3, anti-cleaved-caspase-3, anti-PTEN, anti-P-Akt, and anti-Akt

primary antibodies and additional secondary antibodies were obtained from Boster (China).

The anti-CD63, anti-CD9, and anti-Hsp70 antibodies were purchased from Abcam (USA).

DiI was obtained from Invitrogen (USA). The Annexin V-FITC apoptosis detection kit was

obtained from Solarbio (China). The In-situ cell death detection kit was obtained from Sigma

(USA). LY294002 (PI3K inhibitor) was obtained from Beyotime Technology (China). The

unlisted reagents were of analytical grade.

2.3. In vitro culture of C-kit+ cells

CSCs were isolated[48] and purified[3] using previously published methods with some modifi-

cations. The rats were deeply anesthetized with sevoflurane, and the atrial appendage was

sliced and digested with 0.1% collagenase type II (Sigma, USA). After a 40-min digestion at

37˚C, the cells were collected by sedimentation at 1200 rpm for 5 min. Then, the cells from the

atrial appendage were incubated in a humidified chamber in Ham’s F12 medium containing

10% fetal bovine serum (FBS), 1% penicillin and streptomycin, 1% L-glutamine, 20 ng/ml

human recombinant fibroblast growth factor, 20 ng/ml leukocyte inhibitory factor, and 10 ng/

ml epidermal growth factor (EGF). After reaching >90% confluence, the cells were resus-

pended by trypsinization. Subsequently, the CSCs were incubated with a rabbit anti-C-kit

antibody (1:250 in F12 medium) for 1 h and sorted with anti-rabbit secondary antibody-conju-

gated 2.8 μm magnetic beads (Dynal Biotech, Norway) for 30 min as instructed by the manu-

facturer’s protocol. The purified C-kit+ CSCs were cultured in the previously mentioned F12

medium. Flow cytometry (FCM) was performed to confirm the surface markers on the C-kit+

CSCs. The cells were incubated with the fluorochrome-conjugated anti-CD34-PE, anti-

CD45-PE, and anti-C-kit primary antibodies and the anti-C-kit IgG-allophycocyanin (APC)

secondary antibody (all from BioLegend, USA).

Exosome and cardiac stem cells
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2.4. Isolation and culture of MSCs

The culture medium was used to flush all bone marrow cells from the femurs and tibias of rats

(2–4 months old) sacrificed with a sevoflurane overdose as previously described[49]. Low glu-

cose-Dulbecco’s modified Eagle’s medium(L-DMEM) (GIBCO) complete medium containing

15% FBS, 100 U/ml penicillin, and 100 U/ml streptomycin was used to resuspend the MSCs.

Then, the cells were incubated in a humidified chamber. The first medium change was per-

formed at 48 h to remove the non-adherent cells. Trypsin (0.25%, Sigma) was used to passage

the cells at a ratio of 1:2 after reaching 90% confluence. FCM was used to analyze the MSC sur-

face markers. The cells were incubated with the fluorochrome-conjugated anti-CD90-PE and

anti-CD29 allophycocyanin (APC) or anti-CD45-PE primary antibodies (all from BioLegend,

USA). MSCs between P3 and P5 were used for the subsequent experiments.

2.5. Purification and identification of MSC exosomes

The MSC-exosomes (MSC-Exos) extraction procedures were performed as previously de-

scribed[23, 50]. The MSCs were cultured in L-DMEM supplemented with 10% FBS. Prior to

use, all FBS was centrifuged at 100,000–110,000 g for 8 to 10 h to eliminate preexisting bovine-

derived exosomes[7]. A 50-ml conditional culture medium containing 10% Exo-free fetal

bovine serum (FBS) was used to culture the MSCs for 48 h. The supernatant was harvested and

centrifuged at 500 g for 5 min and then 2000 g for 30 min at 4˚C to remove cell debris. Exo-

Quick TC (System Biosciences) was applied to precipitate the exosomes according to the

manufacturer’s instructions. Briefly, 50 ml supernatant were added to 10 ml ExoQuick-TC

Exosomes Precipitation Solution. This cocktail was mixed well and refrigerated overnight.

Subsequently, the cocktail was centrifuged at 1500 g for 30 min, and the supernatant was

removed. The sediment was then centrifuged at 1500 g for 5 min and aspirated. Then, 50 μl

phosphate-buffered saline (PBS) were used to resuspend the exosomes, and the resulting solu-

tion was stored at –80˚C. The amount of MSC-Exo was detected by measuring the total pro-

tein content using a BCA protein assay kit (Pierce). Then, the exosomes were observed directly

under a transmission electron microscope (Hitachi H7500 TEM, Tokyo, Japan). The MSC-

Exos were also identified by Western blotting using the anti-CD63, anti-CD9, and anti-Hsp70

antibodies (all purchased from Abcam) previously described as specific exosome markers[51,

52].

2.6. Established H2O2-induced oxidative stress model in C-kit+ CSCs and

MSCs

The harvested CSCs and MSCs were treated with 100 μM H2O2 for 2 h as previously described

[47]. FMC was used to determine early apoptosis and necrosis in C-kit+ CSCs using an

Annexin V-FITC/PI staining assay as reported elsewhere[5]. The phosphatidylserine levels on

the surface of the C-kit+ CSCs were estimated using the Annexin V- FITC and Propidium

Iodide (PI) apoptosis detection kit (Solarbio, China) according to the manufacturer’s instruc-

tions. Apoptosis was analyzed in the C-kit+ CSCs using a flow cytometer (BD Biosciences,

USA). The results are expressed as the percentage of apoptotic cells among all cells. Flow

cytometry was performed twice using C-kit+ CSCs in three independent experiments. CCK-8

was used to determine MSC viability in three independent experiments.

2.7. Cell transfection

Fifty nanomoles of miR-21 mimics,inhibitors or negative control were added to 1.5 ml F12

medium in 6-well plates with 5 μl Lipofectamine 2000 transfection reagent (Invitrogen, USA)

Exosome and cardiac stem cells
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and incubated with the C-kit+ CSCs or MSCs for 48 h according to the manufacturer’s instruc-

tions. The efficiency of the mimics or inhibitors was confirmed by RT-qPCR.

2.8. RNA interference

The synthesized siR-PTEN (siR-PTEN) and scramble (GeneCopoeia, MD) were transfected

into C-kit+ CSCs using a lentiviral construct (HANBIO, China) according to the manufactur-

er’s instructions. Briefly, The lentiviral vector expressing PTEN(siR-PTEN) or PTEN negative

control (siR-PTEN-NC)were constructed by inserting the siR-PTEN gene or siR-PTEN-NC

into a Lv-EGFP vector using BamHI (FD0054) and EcoRI (N41890) restriction sites, all

obtained from Invitrogen (Thermo Fisher Scientific). The lentiviral particles were prepared

using a calcium phosphate method.The C-kit+ CSCs (1× 105 per well) were plated into 6-well

plates and then treated with siR-PTEN and siR-PTEN-NC in the presence of 2 μg/ml poly-

brene (Sigma-Aldrich) at a multiplicity of infection of 50 MOI for 48 h. The siR-PTEN knock-

down efficiency was confirmed by Western blotting and RT-qPCR.

2.9. Reverse transcription and Real-Time qPCR analysis of miR-21 and

PTEN

The mRNA and miRNA levels were determined using quantitative RT-PCR as previously

described[53, 54]. Briefly, the RNAs from the CSCs, MSCs and exosomes were isolated using

the TRIzol (Invitrogen, USA) method. RT-PCR was performed on cDNA generated from 3 μg

of the total RNA using a cDNA synthesis kit (TaKaRa, Japan) according to the manufacturer’s

protocol. RT-qPCR was performed using the CFX Connect Real-Time system (Bio-Rad, USA)

and a SYBR green PrimScript RT kit (TaKaRa, Japan) according to the manufacturer’s instruc-

tions. U6 and β-actin were used as the internal controls for the miR-21 and PTEN mRNA

quantification, respectively.

2.10. Internalization of DiI-labeled exosomes into C-kit+ CSCs

The C-kit+ CSCs were harvested and seeded in fibronectin-coated dishes and maintained at

37˚C overnight. Briefly, the MSC-Exos were labeled with 1 g/ml DiI (Invitrogen, USA) as pre-

viously described[18]. Then, the exosomes were washed with PBS and centrifuged at 100,000 g

for 2 h to remove the unbound DiI. DiI-labeled exosomes were added to the culture medium

of C-kit+ CSCs at a concentration of 10 Ug/ml for 24 h. Then, the C-kit+ CSCs were washed

with PBS, fixed in 4% paraformaldehyde, and stained with 1 mg/ml 40,6-diamidino-2-pheny-

lindole (DAPI) (Invitrogen, USA) for 10 min. Finally, the fluorescence was observed under a

fluorescence microscope (Olympus).

2.11. Flow cytometry assay of apoptosis in C-kit+ CSCs

The C-kit+ CSCs were pre-incubated with different treatments (2 × 109 particles per ml) and

then incubated with 100 μM H2O2 for 2 h. Following treatment, the apoptosis rate was ana-

lyzed by flow cytometry using the Annexin V-FITC/PI kit (Solarbio, China) according to the

manufacturer’s instructions. Flow cytometry was performed twice using C-kit+ CSCs in three

independent experiments.

2.12. Terminal deoxynucleotidyl transferase dUTP nick end labeling

(TUNEL) staining for detecting the apoptosis of C-kit+ CSCs

The percentage of apoptotic cells was also detected by using In-situ cell death detection kit

(Sigma, USA) following the manufacturer‘s protocol. In brief, cells were planted on Petrl dish.

Exosome and cardiac stem cells
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After the cells were fixed with 4% paraformaldehyde and permeabilized by incubating with 1%

Triton X-100.they were incubated in 50 μl/slide TUNEL reaction mixture (viaL1:viaL2 = 1:9)

at 37˚C with in darkness for 60 min under a humidified atmosphere.After incubation, the cells

were stained with Hoechst33258 for 5 min. Apoptotic cells were counted in random fields by

fluorescence microscopy; each experiment was performed in triplicate (×40 magnification, at

least 6 fields per sample).

2.13. Western blotting

A Western blot analysis of the total protein from the C-kit+ cell lysates was performed as previ-

ously described[55]. The protein extracts were separated by SDS-polyacrylamide gel electro-

phoresis (SDS-PAGE) and transferred to PVDF membranes. After blocking overnight in a

nonfat milk solution, the membranes were probed with the anti-PTEN, -phospho-Akt, -Akt,

-caspase-3, -cleaved caspase-3, -β-actin or -GAPDH primary antibodies. The PVDF mem-

branes were incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h

and then exposed to an enhanced chemiluminescence substrate (Amersham Biosciences,

USA). The immunoreactivity was visualized using a ChemiDoc MP system (Bio-Rad, USA).

The protein levels were normalized to β-actin or GAPDH.

2.14. Statistical analysis

All data were analyzed by performing Student’s t-tests or one-way ANOVAs, followed by LSD

or Dunnett’s T3 post-hoc test for multiple comparisons. A P-value less than 0.05 was consid-

ered statistically significant. The data analyses were performed using SPSS software (v.19.0,

IBM, USA). The data are presented as the mean ± SD.

3. Results

3.1. Isolated MSCs and C-kit+ CSCs

C-kit+ CSCs were purified using anti-rabbit secondary antibody-conjugated magnetic beads.

The morphology of C-kit+ CSCs was triangular or polygonal (Fig 1(A)). According to flow

cytometry analysis, 90.99% of the cells were positive for C-kit, 0.09% of the cells were positive

for CD45, and 0.12% of the cells were positive for CD34 (Fig 1(B)). Primary MSCs isolated

from the rats began adherent growth after 48 h of in vitro culture. Primary MSCs sub-cultured

for 2–4 generations had a long spindle or polygonal appearance (Fig 1(C)). The following sur-

face markers were identified on the MSCs by flow cytometry: (1) CD29 98.65%, (2) CD90

98.63%, and (3) CD45 0.09% (Fig 1(D)).

3.2. Exosomes secreted by MSCs were isolated and identified

MSC-Exos were obtained by precipitation. Then, the morphology of the exosomes was confirmed

by performing transmission electron microscopy (TEM) and Western blotting as previously

described[56] The exosomes had a round or oval-shaped appearance and were approximately 30–

100 nm in size as directly observed by TEM(Fig 1(E)-A), and the size of exosome was not changed

when MSCs are exposed to H2O2 (Fig 1(E)-B). The exosome surface markers CD63, CD9 and

HSP70 could be detected in MSC-Exos by Western blotting (Fig 1(F)).

3.3. Oxidative stress induced apoptosis in the C-kit+ CSCs and altered the

expression of miR-21 in MSCs, CSCs and exosomes

We established an in vitro model of C-kit+ CSC apoptosis by treating the cells with 100 μM

H2O2 for 2 h. Western blotting was performed to detect the expression of the mitochondria-

Exosome and cardiac stem cells
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Fig 1. Characterization of C-kit+ CSCs, MSCs, and exosomes. (a) Phase morphology of C-kit+ CSCs (Olympus, Japan); scale bar = 100 μm. (b) Representative flow

cytometric characterization of C-kit+ CSCs for the typical surface antigens and isotype control after magnetic bead sorting. surface expression of C-kit, and absence of

surface expression of CD45, CD34. (c) MSC morphology was observed under a microscope (Olympus, Japan); scale bar = 100 μm. (d) MSCs were characterized by

flow cytometric analysis for typical surface antigens or isotype control: surface expression of CD29, CD90,and absence of surface expression of CD45. (e) A

transmission electron microscope was used to analyze MSC-derived exosomes. Images show a round-shaped vesicle with a diameter of approximately 100 nm. Scale

bar = 100 nm/50 nm. (f) Western blotting characterization of the CD63, CD9, and Hsp70 MSC-Exos markers.

https://doi.org/10.1371/journal.pone.0191616.g001

Exosome and cardiac stem cells
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Fig 2. H2O2 affects C-kit+ CSC apoptosis and changes the expression of miR-21 in MSCs, C-kit+ CSCs and exosomes. (a)and(b) Western blotting analysis of

caspase-3 and cleaved caspase-3 in C-kit+ CSCs cells after treatment with H2O2 (c) Rates of apoptosis in C-kit+ CSCs exposed to 100 μM H2O2 for 2 h measured by

performing an Annexin V-FITC/PI staining assay.The upper left quadrant (%f Gated) shows the necrotic cells (Annexin V- /PI+), The upper right quadrant (%

Gated) shows the late apoptotic cells(Annexin V+/PI+), The left lower quadrant (% Gated) shows the live cells (Annexin V- /PI-)and.The right lower quadrant (%

Gated) shows the early apoptotic cells(Annexin V+/PI -), PI = propidium iodide.(d)The percentage of apoptotic cells was representing as both early and late

apoptotic cells. H2O2 increased the percentage of apoptotic cells compared with Control groups. (e) Effects of H2O2 on miR-21 expression in C-kit+ CSCs. (f) Effects

of H2O2 on miR-21 expression in MSCs (g) miR-21 expression levels in exosomes after exposure to H2O2 (n = 3, �P<0.05 versus control groups).

https://doi.org/10.1371/journal.pone.0191616.g002

Exosome and cardiac stem cells
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related pro-apoptotic protein cleaved caspase-3, which is the active form of caspase-3. Treat-

ment with 100 μM H2O2 up-regulated the levels of cleaved caspase-3 in C-kit+ CSCs (Fig 2(A)

and 2(B)). According to flow cytometry analysis, H2O2 challenge resulted in apoptosis increas-

ing of C-kit+ CSCs in comparison to the control (Fig 2(C) and 2(D)). miR-21 levels were also

examined in H2O2-treated C-kit+ CSC cells, and the result showed miR-21 levels were

markedly reduced in C-kit+ CSCs following H2O2 treatment (Fig 2(E)), suggesting that miR-

21 is likely negatively correlated with apoptosis in C-kit+ CSCs under oxidative stress condi-

tions. In addition, compared with the controls, H2O2 treatment significantly reduced the

expression of miR-21 in MSCs (Fig 2(F)). However, compared with the controls, the expres-

sion of miR-21 in MSC-Exos was up-regulated following H2O2-treatment (Fig 2(G)).

3.4. MSC-derived exosomes prevented H2O2-induced C-kit+ CSC apoptosis

The unique biological function of exosomes is mainly to mediate cell-to-cell communication.

The first step in the exchange of cargoes between cells is the internalization of exosomes by the

target cells. To determine whether MSC-Exos can be internalized by C-kit+ CSCs, MSC-Exos

were labeled with DiI. After incubation, labeled MSC-Exos (400 μg/ml) were combined with

C-kit+ CSCs for 24 h and counterstained with DAPI to visualize the nuclei. Immunofluores-

cence staining showed strong red fluorescence in the cytoplasm and a blue nucleus in C-kit+

CSCs (Fig 3(A)), indicating that many MSC-Exos were internalized by C-kit+ CSCs. The anti-

apoptotic effect of MSC-derived exosome was detected with Annexin V/PI assay. The Annexin

V/PI assay showed that oxidative stress preconditioning MSC-derived exosome (H-Exo)

decreased the percentage of the apoptotic cells compared with the normoxia preconditioning

BMSC-derived exosome (N-exo) group and H2O2 group (Fig 3(B) and 3(C)). To examine

whether BMSC-derived exosome protected against H2O2-Induced DNA fragmentation in C-

kit+ CSCs, As shown in (Fig 3(F) and 3(G)), the percentages of TUNEL+ cells were significantly

higher following treatment with H2O2 compared with control group, while H-Exo could sig-

nificantly reduce the TUNEL+ cells ompared with H2O2 group or N-exo group.Expectedly,

caspase-3 cleavage was suppressed (Fig 3(D) and 3(E)), and the decrease in miR-21 levels was

significantly rescued (Fig 3(H)) in receptor cells under oxidative stress following pretreatment

with exosomes derived from H2O2-treated MSCs. Therefore, H-Exo might exert a strong pro-

tective effect that helps C-kit+ CSCs resist apoptosis caused by oxidative stress. During this

process, miR-21 likely plays an important role.

3.5. miR-21 in MSC-Exos participated in the protection of C-kit+ CSCs

from apoptosis

We investigated whether the effects of MSC-Exos on H2O2-induced apoptosis in C-kit+ CSCs

were dependent on miR-21. MSCs were transfected with miR-21 mimics or inhibitors for 48

h. Then, MSC exosomes were harvested. The harvested exosomes were designated either

Fig 3. MSC-Exos inhibit H2O2-induced apoptosis in C-kit+ CSCs. (a) Cellular internalization of mesenchymal stem cell (MSC)-Exos into C-kit+ CSCs. DiI-labeled

MSC-Exos (red) were internalized into DAPI-labeled CSCs (blue). Bar = 20 μm. (b) Apoptosis rates of C-kit+ CSCs were measured using the Annexin V-FITC/PI

staining assay. The upper left quadrant (%f Gated) shows the necrotic cells (Annexin V- /PI+), The upper right quadrant (% Gated) shows the late apoptotic cells

(Annexin V+/PI+), The left lower quadrant (% Gated) shows the live cells (Annexin V- /PI-)and.The right lower quadrant (% Gated) shows the early apoptotic cells

(Annexin V+/PI -), PI = propidium iodide. (c)The percentage of apoptotic cells was representing as both early and late apoptotic cells. (n = 3, �P<0.05 versus the H2O2

group. #P<0.05 versus the N-Exo group). (d)and(e) Immunoblotting was performed to detect caspase-3 and cleaved caspase-3 in C-kit+ CSCs (n = 3, �P<0.05 versus

the control group. #P<0.05 versus the H2O2 group). (f) Representative immunofluorescence staining of Hoechst33258 (blue), TUNEL (green) and merged images.

Photos were taken randomly using fluorescence microscopy. Scale bar: 20 μm. (g) The panel shows the percentages of TUNEL positive cells. (n = 6, �P<0.05 versus the

control group. #P<0.05 versus the H2O2 group). (h) RT-qPCR analysis of miR-21 in C-kit+ CSCs treated with 100 μM H2O2 after pre-protection with N-Exos or

H-Exos (n = 9, �P<0.05 versus the H2O2 group).

https://doi.org/10.1371/journal.pone.0191616.g003

Exosome and cardiac stem cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0191616 February 14, 2018 10 / 23

https://doi.org/10.1371/journal.pone.0191616.g003
https://doi.org/10.1371/journal.pone.0191616


Exosome and cardiac stem cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0191616 February 14, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0191616


Mimics-Exosome (M-Exo) or Inhibitor-Exosome (I-Exo). According to RT-qPCR analysis of

miR-21, miR-21 significant increased and decreased following the pretreatment of H2O2-

treated CSCs with M-Exo or I-Exo, respectively (Fig 4(A)). We also blocked miR-21 in C-kit+

CSCs using a miR-21 inhibitor for 48 h. Compared with that in the H-Exo or I-Exo groups,

the miR-21 inhibitor treatment further decreased the expression of miR-21 after H2O2 insult

(Fig 4(A)).

The anti-apoptotic effect of miR-21 in MSC-Exos was detected using the Annexin V-FITC/

PI staining assay and the TUNEL measurement assays.M-Exos significantly decreased C-kit+

apoptosis after H2O2 insult, while I-Exos increased apoptosis in C-kit+ CSCs (Fig 4(B)–4(E)).

When we simultaneously inhibited miR-21 in CSCs, we found that C-kit+ CSC apoptosis rates

markedly increased under I-Exo+inhibitor conditions(Fig 4(B)–4(E)).Undoubtedly, the miR-

21 inhibitor significantly increased the expression of pro-apoptotic protein-cleaved caspase-3,

whereas H-Exos or M-Exo suppressed cleaved caspase-3 levels (Fig 4(F) and 4(G)) in C-kit+

CSCs under oxidative stress conditions. Thus, the miR-21 inhibitor could partially block the

anti-apoptosis properties of exosomal miR-21, further indicating that rescuing the decreased

miR-21 levels in C-kit+ CSCs by an H-Exo treatment might be a possible strategy to protect C-

kit+ CSCs against oxidative stress-induced apoptosis.

3.6. Contribution of PTEN to the anti-apoptotic effects of miR-21 in C-kit+

CSCs

Because PTEN has been shown to be a target gene of miR-21[39, 57, 58], we performed gain-

and loss-of-function assays to verify the effects of miR-21 inhibitors and mimics on PTEN

expression in C-kit+ CSCs. Compared with the control, the PTEN protein was significantly

up-regulated in the inhibitor group and down-regulated in the mimic group, while the PTEN

mRNA levels did not change (Fig 5(A)–5(C)) in the C-kit+ CSCs. Furthermore, according to

the RT-qPCR and Western blot analyses, the mRNA and protein levels of PTEN were signifi-

cantly up-regulated in C-kit+ CSCs after pretreatment with H2O2 (Fig 5(D)–5(F)). Therefore,

miR-21 likely attenuates apoptosis by targeting PTEN. However, whether a relationship exists

between PTEN and apoptosis in C-kit+ CSCs remains unknown. Thus, EGFP-labeled siRNA

PTEN lentiviruses (siR-PTEN) and EGFP-labeled siRNA PTEN Negative Control vector

(siR-PTEN-NC) were transfected into C-kit+ CSCs. The knockdown efficiency of siR-PTEN

was detected by RT-qPCR and Western blotting, and the PTEN mRNA and protein levels

were significantly down-regulated in siR-PTEN group(Fig 5(G)–5(I)). The percentage of apo-

ptotic cells significantly decreased in the siR-PTEN group compared to the H2O2 group or the

siR-PTEN-NC group (Fig 6(A)–6(D))as demonstrated by the Annexin V/PI assay and TUNEL

measurement assays. Moreover, according to the Western blot analysis, cleaved caspase-3 lev-

els were down-regulated in the siR-PTEN group compared with those in the H2O2 groups (Fig

6(E) and 6(F)). Altogether, the anti-apoptotic effects of miR-21 in C-kit+ CSCs were likely

achieved via the inhibition of PTEN expression.

Fig 4. MSC-exosomal miR-21 inhibits apoptosis in C-kit+ CSCs. (a) RT-qPCR was performed to analyze miR-21 levels in C-kit+ CSCs (n = 9, �P<0.05 versus the

H-Exo group. #P<0.05 versus the M-Exo group). (b) Apoptosis rates of C-kit+ CSCs were measured using the Annexin V-FITC/PI staining assay. The upper left

quadrant (%f Gated) shows the necrotic cells (Annexin V- /PI+), The upper right quadrant (% Gated) shows the late apoptotic cells(Annexin V+/PI+), The left lower

quadrant (% Gated) shows the live cells (Annexin V- /PI-)and.The right lower quadrant (% Gated) shows the early apoptotic cells(Annexin V+/PI -), PI = propidium

iodide.(c)The percentage of apoptotic cells was representing as both early and late apoptotic cells. (n = 3, �P<0.05 versus the H2O2 group. #P<0.05 versus the H-Exo

group). (f) Representative immunofluorescence staining of Hoechst33258 (blue), TUNEL (green) and merged images. Photos were taken randomly using

fluorescence microscopy. Scale bar: 20 μm. (g) The panel shows the percentages of TUNEL positive cells. (n = 6, �P<0.05 versus the H2O2 group. #P<0.05 versus the

H-Exo group). (f)and(g) Western blot analysis of pro-apoptotic protein caspase-3 and cleaved caspase-3 in C-kit+ CSCs (n = 3, �P<0.05 versus the H2O2 group.
#P<0.05 versus the H-Exo group).

https://doi.org/10.1371/journal.pone.0191616.g004
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Fig 5. Effect of miR-21 on PTEN expression in CSCs. (a) PTEN mRNA did not significantly differ among groups by RT-qPCR. (b)and(c) the PTEN protein levels

dramatically decreased after treatment with miR-21 mimics as demonstrated by Western blotting (n = 3, �P<0.05 versus control groups, #P<0.05 versus inhibiter

groups). (d) Difference in PTEN mRNA expression between the Control group and the H2O2 group confirmed by RT-qPCR. (n = 3, �P<0.05 versus control groups)

(e)and(f) Western blot analysis of PTEN in C-kit+ CSCs treated with 100 μM H2O2 (n = 3, �P<0.05 versus the control group).(g) RT-qPCR analyzed PTEN in CSC

after different conditions treated (n = 9, �P<0.05 versus control group).(h)and(i) Western blot analysis of PTEN protein levels after transfection of C-kit+ CSCs with

siR-PTEN (n = 3, �P<0.05 versus control group).

https://doi.org/10.1371/journal.pone.0191616.g005
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3.7. MSC-derived exosomes protected CSCs from H2O2-induced apoptosis

via the PTEN/PI3K/Akt pathway

To identify the mechanisms responsible for the MSC-derived exosomal miR-21-mediated

anti-apoptotic effects in C-kit+ CSCs, we blocked PI3K with the specific inhibitor LY294002.

The Annexin V-FITC/PI staining assay and the TUNEL measurement assays were used to

detecte the apoptotic cells. LY294002 partially reversed the anti-apoptotic effects of H-Exos

(Fig 7(A)–7(D)).Molecularly, LY294002 reversed the H-Exo-induced effects on cleaved cas-

pase-3 expression (Fig 7(E)), which was demonstrated by an increase in cleaved caspase-3 lev-

els(Fig 7(F) and 7(G)). Furthermore, the miR-21 inhibitor could also reverse the anti-

apoptotic effects of H-Exo. In this experiment, RT-qPCR showed that compared with the

H2O2 group, H-Exo, miR-21 inhibiters or PI3K inhibitor LY294002 did not influnced PTEN

expression levels (Fig 8(A) and 8(B)), PTEN protein was significantly down-regulated in the

H-Exo group. Additionally, the exosomes incubation increased p-Akt levels(Fig 8(C)–8(F)),

while the miR-21 inhibitor and PI3K inhibitor LY294002 dramatically decreased p-Akt levels

(Fig 8(C)–8(F)).

4. Discussion

C-kit+ cardiac stem cells (C-kit+ CSCs)have emerged as some of the most promising CSCs for

the prevention or treatment of myocardial remodeling and cardiac dysfunction after myocar-

dial infarction[59]. However, after adoptive transfer, CSCs will encounter with various unde-

sirable factors including oxidative stress, inflammation reactions and so on. all of which could

decrease the cell viability and thereby compromise their therapeutic activities. [10]. Exosomes

are intracellular messengers whose contents have been confirmed to be crucial signaling com-

ponents for downstream reactions[20, 60]. Exosomes derived from MSCs could stimulate the

proliferation, migration, and angiogenic potency of CSCs in vitro and in vivo and improve car-

diac function[16]. However, very few studies have focused on the anti-apoptotic effects of

MSC-Exos in C-kit+ CSCs under oxidative stress conditions. Additionally, the underlying

molecular mechanisms by which exosomes protect C-kit+ CSCs must be elucidated. In this

study, we obtained exosome vesicles (round, 30–100 nm) from conditioned MSC medium

(Fig 1(E)) and confirmed the identity of these vesicles by detecting the expression of specific

surface markers (Fig 1(F)).

Indeed, transplanted C-kit+ CSCs and pretreatment conditions must remain in an oxidative

stress environment. Thus, establishing a similar pathological state in which to study the effects

of exosomes in transplanted C-kit+ CSCs embedded in infarct zone or infarct border zones is

imperative. miRNAs, which are shuttled by exosomes, are among the most important factors

controlling gene expression. Additionally, exosomal miR-21 is up-regulated in many cell types

under oxidative stress conditions[52, 61]. The exosome contents, however, greatly vary across

different cell types and under different pathological conditions[22]. We also found that miR-

21 reduces hydrogen peroxide-induced apoptosis and increases cell proliferationin c-kit car-

diac stem cells in vitro through PTEN/PI3K/Akt signaling before[47, 62]. H2O2 has been

widely used as an inducer of oxidative stress to mimic the pathophysiology of cardiovascular

Fig 6. The anti-apoptotic contributions of PTEN in C-kit+ CSCs. (a) Apoptosis rates of C-kit+ CSCs were measured using the Annexin V-FITC/PI staining assay. The

upper left quadrant (%f Gated) shows the necrotic cells (Annexin V- /PI+), The upper right quadrant (% Gated) shows the late apoptotic cells(Annexin V+/PI+), The left

lower quadrant (% Gated) shows the live cells (Annexin V- /PI-)and.The right lower quadrant (% Gated) shows the early apoptotic cells(Annexin V+/PI -),

PI = propidium iodide. (b)The percentage of apoptotic cells was representing as both early and late apoptotic cells. (n = 3, �P<0.05 versus the H2O2 group). (c)

Representative immunofluorescence staining of Hoechst33258 (blue), TUNEL (green) and merged images. Photos were taken randomly using fluorescence microscopy.

Scale bar: 20 μm. (d) The panel shows the percentages of TUNEL positive cells. (n = 6, �P<0.05 versus the H2O2 group).(e)and(f)Western blot analysis of caspase-3,

cleaved caspase-3 and PTEN protein levels after transfection of C-kit+ CSCs with siR-PTEN. (n = 3, �P<0.05 versus the control group. #P<0.05 versus the H2O2 groups).

https://doi.org/10.1371/journal.pone.0191616.g006
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disease and cause cell apoptosis[28]. Therefore, we evaluated miR-21 expression in MSC-

derived exosomes treated with the same concentration of H2O2. The 2h H2O2 treatment signif-

icantly induced C-kit+ CSC apoptosis (up to 78.1%). Consistently, H2O2 treatment induced

the up-regulation of the pro-apoptosis protein cleaved caspase-3, which was associated with

significantly reduced miR-21 expression levels (Fig 2(A)–2(E)). The negative correlation

between apoptosis and miR-21 expression suggests that miR-21 plays an important role in the

regulation of C-kit+ CSC apoptosis under oxidative stress conditions. Moreover, compared

with the control group, H2O2 significantly reduced miR-21 expression in MSCs (Fig 2(F)).

Interestingly, compared with that in the untreated group, the expression of miR-21 in the

MSC-exosomes was up-regulated after H2O2-treatment (Fig 2(G)).

The harsh ischemic microenvironment in acute MI, which kills most injected cells, is a pri-

mary barrier limiting the effectiveness of stem cell transplantation. Preconditioning C-kit+

CSCs with MSC-Exos may serve as a promising therapeutic approach because the useful cellu-

lar components encapsulated in MSC-Exos may greatly improve the survival rate of C-kit+

CSCs in ischemic environments. In this study, exosomes released from MSCs were internal-

ized by C-kit+ CSCs (Fig 3(A)), and the levels of miR-21 were significantly increased in C-kit+

CSCs pre-treated with H-Exos and N-Exos (Fig 3(H)) prior to oxidative stress exposure. More-

over, the exosomes derived from H2O2-treated MSCs were more effective at increasing miR-

21 levels in receptor cells and decreasing C-kit+ CSC apoptosis and cleaved caspase-3 (Fig 3

(B)–3(G)). To further confirm the anti-apoptotic effects of miR-21 from MSC-Exos after H2O2

treatment, we blocked miR-21 in C-kit+ CSCs and/or MSCs using a miR-21 inhibitor. Consis-

tently, miR-21 inhibition significantly down-regulated miR-21 levels and partially reversed the

anti-apoptotic effects of H-Exos (Fig 4(A)–4(G)). In conclusion, our datas indicated an intri-

cate exosome-mediated crosstalk interface between the MSCs and the CSCs that regulates the

oxidative damage program, at least partly, via miR-21.

miRNA transfer between cells can activate the recipient cells to produce a series of biologi-

cal effects by inhibiting miRNA target genes. PDCD4, PTEN, RECK and Bcl-2 can be regu-

lated by miR-21 in many cell types. These genes are critical for promoting cell proliferation,

differentiation and migration[63–65]. PTEN has been reported to be a target gene of miR-21

in many cell types[3, 39]. To further confirm that PTEN is a target of miR-21 in C-kit+ CSCs,

gain- and loss-of-function studies were performed, and miR-21 inhibitors increased while

miR-21 mimics decreased PTEN protein levels in C-kit+ CSCs; however, PTEN mRNA levels

did not change (Fig 5(A)–5(C)). We further tested whether PTEN is involved in the regulation

of H2O2-induced apoptosis in C-kit+ CSCs and showed that the PTEN expression is signifi-

cantly up-regulated in C-kit+ CSCs following the H2O2 treatment (Fig 5(D)–5(F)). Further-

more, using siRNA-mediated gene silencing, the siR-EPTEN vector efficiently infected the

C-kit+ CSCs, and the PTEN mRNA/protein levels were efficiently inhibited(Fig 5(G)–5(I)).

The inactivation of PTEN significantly decreased the rate of cell apoptosis (Fig 6(A)–6(F)).

Altogether, miR-21 mediates cell protection by regulating PTEN.

Fig 7. Contribution of the PTEN/PI3K/Akt axis to H2O2-induced apoptosis in C-kit+ CSCs. (a) Flow cytometry was performed to detect apoptosis using Annexin

V-FITC/PI staining in C-kit+ CSCs that underwent different treatments. The first quadrant (%f Gated) shows the necrotic cells (Annexin V- /PI+), The second

quadrant (% Gated) shows the late apoptotic cells(Annexin V+/PI+), The third quadrant (% Gated) shows the live cells (Annexin V- /PI-)and The fourth quadrant (%

Gated) shows the early apoptotic cells(Annexin V+/PI -), PI = propidium iodide.(b)The percentage of apoptotic cells was representing as both early and late apoptotic

cells. (n = 3, �P<0.05 versus the H2O2 group. # P<0.05 versus the H-Exo group). (c) Representative immunofluorescence staining of Hoechst33258 (blue), TUNEL

(green) and merged images. Photos were taken randomly using fluorescence microscopy. Scale bar: 20 μm. (d) The panel shows the percentages of TUNEL positive

cells. (n = 6, �P<0.05 versus the H2O2 group. # P<0.05 versus the H-Exo group). (e) Representative immunofluorescence staining of DAPI(blue), Cleaved-Caspase-3

(red) and merged images. Photos were taken randomly using fluorescence microscopy. Scale bar: 20 μm. (f-g)Apoptotic was further confirmed by immunoblotting for

cleaved-caspase-3, (n = 3, �P<0.05 versus the H2O2 group. # P<0.05 versus the H-Exo group).

https://doi.org/10.1371/journal.pone.0191616.g007
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Fig 8. Contributions of the PTEN/PI3K/Akt pathway to the anti-apoptotic effects of MSC-derived exosomal miR-21. (a) RT-qPCR was performed to detect

PTEN expression at the mRNA level in cells that underwent different treatments(n = 3, � P<0.05 versus the control group). (b) RT-qPCR was performed to detect
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miR-21 affects the PI3K/Akt pathway by targeting the PTEN gene[39]. The activation of

Akt can protect cells from apoptosis induced by H2O2[66, 67]. To study whether the PTEN/

PI3K/Akt signaling is responsible for exosomal miR-21 mediated anti-apoptotic effect, we

blocked PI3K with LY294002 and assessed Akt phosphorylation. LY294002 significantly

reversed the anti-apoptotic effects of H-Exos (Fig 7(A)–7(D)), which were associated with

increased levels of cleaved caspase-3 (Fig 7(E)–7(G)). Additionally, the miR-21 inhibitor could

also block the anti-apoptotic effects of MSC-Exos. H-Exos decreased PTEN levels and

increased p-Akt levels, while miR-21 inhibitors dramatically decreased p-Akt levels(Fig 8(A)–8

(F)). This finding not only suggests that Akt is downstream of PI3K and PTEN but also indi-

cates that the cellular protection provided by H-Exos likely occurs via miR-21 and its regula-

tion of the PTEN /PI3K/Akt signaling pathway.

Conclusion

Exosomes carrying miR-21 can be effectively internalized into C-kit+ CSCs to protect these

cells against apoptosis under stress conditions. This cargo successfully reduced PTEN expres-

sion, increased p-Akt levels, and exerted anti-apoptotic effects in C-kit+ CSCs. This effect can

be compromised by miR-21 inhibitors and LY294002. Therefore, MSC-exosomes, particularly

H-Exos, can rescue C-kit+ CSC apoptosis by regulating the miR-21/PTEN/PI3K/AKT axis

under oxidative stress conditions. Although our data revealed that exosomal miR-21 derived

from H2O2-induced MSCs plays a critical role in apoptosis regulation in recipient cells

through the PTEN/PI3K/Akt pathway, we did not explore the function of other exosomal

cargo. In vivo studies are warranted to further confirm that MSC-exosomes and changes in the

PTEN/PI3K/Akt pathway have similar effects on the survival of C-kit+ CSCs.
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