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Pulmonary disease remains a primary source of morbidity and mortality in persons living with

HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a

shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high

risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination anti-

retroviral therapy. The underlying mechanisms of this are incompletely understood, but recent

research in both human and animal models suggests that oxidative stress, expression of matrix

metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH

to these conditions. Some of the factors that drive these processes include tobacco and other

substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and

shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are

needed to understand the relative importance of these factors to the development of lung

disease in PLWH. CHEST 2017; 152(5):1053-1060
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Pulmonary complications remain a
significant source of morbidity and mortality
in patients infected with HIV. Prior to the
advent of combination antiretroviral therapy
(cART), pulmonary infections, especially
Pneumocystis jirovecii, tuberculosis, and
community-acquired pneumonia, were
among the leading causes of death.1 With the
advent of cART, noninfectious pulmonary
complications have become more prevalent
in persons living with HIV (PLWH),
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including COPD, HIV-related pulmonary
artery hypertension (HIV-PAH), and lung
cancer.2-4 The prevalence of COPD in
PLWH in the modern cART era varies by
study and by definition, but by spirometry
7% to 9% of PLWH have clinical obstruction,
while one-third have respiratory
symptoms.5,6 The prevalence of PAH is
2,500 times higher than in the general
population, with 0.5% of PLWH estimated to
have HIV-PAH, despite effective cART.7 The
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incidence of lung cancer is 2.7 times higher in PLWH
than in the general population.8,9 The mechanisms
underlying the increased rates of noninfectious lung
disease are multifactorial. High rates of tobacco use and
intravenous drug use likely contribute, in addition to
chronic lung inflammation and subsequent oxidative
stress and tissue damage. In this review, we discuss what
is currently known about the pathogenesis of COPD,
PAH, and lung cancer in PLWH, describe other
potential relevant mechanisms of lung damage that may
contribute to these diseases (Fig 1), and outline priorities
for better understanding the underlying mechanisms in
the current cART era.
HIV and COPD
COPD is highly prevalent among cigarette smokers, and
incidence increases with age.10 As PLWH are living
longer, high smoking rates contribute to the increasing
incidence of COPD.3 Rates of hospitalization for
obstructive lung disease have increased for PLWH in the
cART era, and are expected to increase further as the
population ages.2 Several studies have demonstrated that
PLWH have higher rates of dyspnea and alterations
HIV infec

PAH

Viral products
(Nef, Tat, pg120)

Immune cell and
endothelial cell

dysfunction

Substance
abuse

Lung
Cance

Pneumonia
O

Ci
S

H
in
pr
on

Low CD4+
T cells

Mechanisms of HIV-re

Inflamma

T cell and alveolar
dysregul

Oxidative
Stress

MMP

Figure 1 – Mechanisms of HIV-related lung damage. cART ¼ combination
PAH ¼ pulmonary arterial hypertension.
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in pulmonary function test results, particularly low
diffusing capacity of the lung for carbon monoxide, as
well as imaging findings of emphysema.4-6 PLWH also
appear to have more respiratory symptoms, including
dyspnea and cough, than smokers with similar disease
burden by pulmonary function test criteria.6

Inflammation plays an important role in the
pathogenesis of COPD in PLWH. Reduced frequencies
and absolute numbers of CD4þ T cells are seen in
BAL of PLWH with COPD.11 These CD4þ T cells,
but not CD8þ T cells, demonstrate impaired lung
mucosal immunity to HIV, and express high levels of
programmed cell death 1 (PD-1), a marker of immune
activation and exhaustion. They also express high
levels of the Fas death receptor, CD95, and demonstrate
increased Fas-dependent activation-induced cell death.11

All of these findings result in progressive loss of CD4þ

T cells in the BAL, leading to a profound imbalance
in CD4:CD8 ratio and persistent CD8þ T-cell alveolitis
in HIV-associated COPD. This inflammation leads
to the expression of inflammatory cytokines and
release of matrix metalloproteinases associated with
COPD.12,13
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HIV-PAH
The association between HIV infection and pulmonary
hypertension was recognized early on in the AIDS
epidemic.14 Although cART may have decreased the
incidence of HIV-PAH and has been shown to partially
reverse pulmonary hypertension in a small number
of PLWH,7 PAH remains a significant clinical
complication in PLWH, particularly as life expectancy
increases. Symptoms and signs usually present late, and
one-half of patients with HIV-PAH die during a median
follow-up period of 8 months,15 although a more recent
study demonstrated that 3-year survival is 72% in
patients treated with both cART and specific PAH
therapy.16 Specific therapy for PAH appears to improve
hemodynamic parameters more than cART, as cART
has minimal effect even if it is instituted early in
disease.17 Approximately two-thirds of deaths are
attributed to pulmonary hypertension rather than
complications of immune deficiency.14,15 The CD4þ

T-cell count is the only independent predictor of
survival, and patients with HIV-PAH have poorer
survival rates when compared with uninfected patients
with PAH.14,15

Direct HIV infection, substance abuse, and chronic
inflammation are particularly important in the
development of HIV-PAH.18 Chronic exposure to HIV
viral proteins in the lung (eg, Nef, Tat, gp120), as well
as HIV-induced immune dysregulation, contribute to
pulmonary vascular disease, particularly through an
impact on pulmonary endothelial cells. HIV Nef protein
co-localizes with endothelial cells in PAH-like plexiform
lesions in animal models.19 Substance abuse also plays
a significant role. In animal models, cocaine increases
proliferation of pulmonary vascular endothelial cells,
and morphine contributes to vascular disease and
oxidant stress.20,21

HIV and Lung Cancer
Lung cancer is the primary cause of cancer-related death
among PLWH.8 Low CD4þ T-cell counts and prior
pneumonia are associated with lung cancer risk.22,23

Cigarette smoke, HIV infection, and chronic inflammation
can increase oxidative stress, leading to oxidative DNA
lesions and DNA double-strand breaks. Incorporation of
the HIV genome into infected cells is dependent on host
cell DNA repair proteins, and HIV-induced alterations in
DNA repair proteins have been implicated in augmenting
genomic integration and replication in host cells.24 HIV
Tat protein in vitro can induce expression of proto-
oncogenes (c-myc, c-fos, c-jun) and down-regulate the p53
chestjournal.org
tumor suppressor gene.25 Although cART can have
genotoxic effects, no association has been found between
cART and lung cancer risk, and early cART is associated
with decreased risk.26

Common Mechanisms of Lung Disease
in PLWH
The cause of higher rates of noninfectious lung
complications in PLWH is multifactorial. PLWH
demonstrate evidence of chronic lung inflammation
from a variety of causes, including direct effects of HIV,
cART, illicit drug use, immunodeficiency, opportunistic
infections, and alterations in the lung microbiome. The
potential mechanisms by which these factors contribute
both specifically and generally to HIV-PAH, COPD, and
lung cancer are outlined in Figure 1.

Smoking and HIV
The prevalence of smoking in PLWH ranges from
similar to twice that of the general population,
depending on the comparison group. The largest study
demonstrated that 42% of PLWH are current smokers,
compared with 21% of the general population.27 In
contrast, when the comparison group consists of
uninfected subjects with a high smoking prevalence,
such as those in the Veterans’ Aging Cohort Study or
Multicenter AIDS Cohort Study, which match patients
with similar risk profiles, smoking rates are more similar
in the two groups, although PLWH still have higher
rates.28,29 Compared with nonsmokers, PLWH who
smoke have higher levels of inflammatory markers,
including soluble CD14 and expression of HLA-DR on
both CD8þ and CD4þ T cells.30,31 Cigarette smoking
has been linked to increased rates of mortality due to
cardiovascular disease, COPD, pneumonia, and lung
cancer.28 If HIV is treated, modeling studies suggest that
PLWH who smoke lose more than 6 years of life
expectancy, more than that lost to HIV infection.32

PLWH are less likely to quit than the general population
(32% vs 52%).27 Multiple factors are associated with
continued smoking in PLWH, including higher rates
of other substance abuse, psychiatric disorders, low
socioeconomic status, and poor access to care.33 Perhaps
because of multiple competing interests and limited
time to address medical issues, counseling on smoking
cessation happens less frequently for PLWH than for the
general population.34

Despite clear evidence that cigarette smoking
contributes to significant disease in PLWH, most studies
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of smoking-related illness are poorly controlled for the
impact of cumulative exposure to cigarette smoke, and
control only for smoking status, that is, current, past, or
nonsmoking status. One study clearly demonstrated that
both cumulative pack-year smoking history and time
since smoking cessation are more strongly associated
with lung and heart disease than smoking status,35

suggesting that a true understanding of the role of
cigarette smoke as a pathogenic factor in HIV-associated
lung disease will require better collection of data on total
tobacco exposure.

HIV Infection
HIV pathology in the lung is driven by infection of
CD4þ T cells and alveolar macrophages, which play an
important role in the development of pulmonary
disease.36,37 Animal models demonstrate that the lungs
and intestines harbor the highest levels of simian
immunodeficiency virus among nonlymphoid tissues,38

and early in infection, CD4þ T cells are rapidly depleted
from mucosal sites.36,39 Recent data suggest that lung
epithelium can also be directly infected with HIV,
especially CXCR4-tropic strains associated with
advanced disease. HIV infection results in integration of
the viral genetic material into the cellular genome. This
integration may change gene expression and immune
response.40 Expression of viral proteins, such as Tat,
increases inflammation and oxidative stress in animal
models.41 HIV infection alters the function of airway
epithelial cells by impairing cell-cell adhesion and
increasing the expression of inflammatory mediators.42

Thus HIV infection contributes to lung disease by both
direct effects of infection and through modulation of
systemic inflammation and immunodeficiency.

Combination Antiretroviral Therapy
Treatment of HIV-1 infection by cART has generally
been associated with improved outcomes,28 especially in
reduction of infectious pulmonary complications. Its
influence on noninfectious pulmonary complications
has been more controversial. Protease inhibitor use has
been linked to an increased incidence of malignancy,
although not lung cancer specifically.26 Older
antiretroviral drugs may have had genotoxic effects that
contribute to this increased risk. Although one study
demonstrated that cART increased the risk of COPD,43

the pulmonary substudy embedded in the large Strategic
Timing of Antiretroviral Therapy (START) trial
demonstrated that the timing of ART had no effect on
COPD progression,44 and poor HIV control in a
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predominant smoking population is associated with the
development of HIV-associated COPD and accelerated
annual lung decline.45 Antiretroviral drug use improves
hemodynamics and survival in HIV-PAH, although not
as dramatically as PAH therapy.17,46

Inflammation in the Lung
From early in the epidemic, it was noted that HIV
infection is associated with a CD8þ T-cell alveolitis that
occurs in both asymptomatic patients and those with
respiratory symptoms and HIV disease progression.47

Many of these cytotoxic T cells are directed against
HIV-infected cells or other opportunistic pathogens (eg,
cytomegalovirus, Pneumocystis).48,49 Lung CD8þ T cells
appear to be dysfunctional, expressing high levels of the
exhaustion marker, PD-1, in the absence of antiviral
therapy.48 Lymphocytes expressing exhaustion markers
such as PD-1 and CD57 are thought to be terminally
differentiated senescent cells. However, CD8þ T cells
maintain the capacity to secrete proinflammatory
effector cytokines in response to HIV antigens under
conditions of poor viral control as well as following
viral suppression.11,48,50 Thus, the presence of terminally
differentiated effector lymphocytes in the lungs
contributes to local inflammation in response to HIV
itself, as well as other pathogens. HIV infection can cause
lung inflammation in other ways as well. For example,
alveolar macrophages (AMs) are infected with HIV, even
in healthy, nonsmoking PLWH, and infected cells have
impaired phagocytic function as well as abnormal
oxidative burst and cytokine secretion.51,52 Untreated
PLWH who smoke showed significant lung CD4þ T-cell
dysfunction and depletion, along with high susceptibility
to apoptosis, which improved following cART.50

Thus, HIV-associated lung disease in PLWH likely is
driven by multiple inflammatory mechanisms: (1) HIV
replication in lung CD4þ T cells and AMs, (2) CD8þ

T-cell alveolitis and an imbalance of the physiologic lung
CD4:CD8 ratio, (3) progressive CD4þ T-cell depletion/
dysfunction, (4) dysregulation of AMs, and (5) impaired
immune function in response to other pathogens, which
predisposes to infection and parenchymal damage.
Together with tobacco exposure, this combination of
cellular activation and immune dysfunction contributes
to the pathogenesis of lung disease.

HIV-Associated Pulmonary Infections and
the Microbiome
Studies have revolutionized our understanding of the role
the microbiome plays in health and disease.53 Although
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the microbial community is smaller in the lung than in
the gut, it is clear that it is diverse and modulated by
disease.54,55 Pulmonary flora is modulated by inhaled
corticosteroids or bronchodilator use,55 while smoking
has minimal effects on the lung microbiome.55,56 In
general, most inflammatory disease states, such as COPD,
are associated with a decline in microbiome diversity, and
increased abundance of inflammatory proteobacterial
species such as Pseudomonas, Moraxella, and
Haemophilus influenzae.56,57

Changes in the bacterial microbiome of the lung have
been described in HIV infection, and may account for
increased pathology at both of these sites, particularly in
the context of advanced immunodeficiency. The first
study of the lung microbiome in HIV infection
demonstrated an increased prevalence of Tropheryma
whipplei in untreated subjects, although a broader
comprehensive analysis of upper and lower bacterial
microbiomes, using 16S rRNA methods, did not
demonstrate a significant difference in bacterial
communities between healthy PLWH and uninfected
individuals.57,58 In contrast, PLWH with low CD4þ

T-cell counts have fewer numbers of species (decreased
a diversity), although a greater number of unique
species are present (increased b diversity).58,59 The HIV
lung microbiome contains increased amounts of
Veillonella and Prevotella, bacteria previously shown to
be associated with inflammation.60 An increase in
detection of Pneumocystis jirovecii is associated with
both HIV infection and COPD.61

HIV pathogenesis is characterized by gastrointestinal
CD4þ T-cell depletion and a compromised mucosal
barrier, leading to microbial translocation, endotoxemia,
and systemic immune activation.39 Shifts in the gut
microbiome have also been seen in PLWH,62,63 although
the extent to which this is due to HIV infection vs
other factors, such as sexual preference, is still unclear.64

In addition to systemic immune activation, which
appears to be related to gastrointestinal pathology,
changes in the gut microbiome may have a particular
influence on pulmonary disease. Several epidemiologic
studies, as well as studies in murine models, have
demonstrated a correlation between susceptibility to
pulmonary infections, allergic airway disease, and an
altered fecal microbiome.65 There is an epidemiologic
correlation between COPD and inflammatory bowel
disease,66 which may be smoking related, but may also
be due to shifts in the microbiome, inflammation, or
modulation of matrix metalloproteinases.67
chestjournal.org
Oxidative Stress
The lung is at particular risk of damage due to excessive
oxidative stress, because it is directly exposed to oxygen,
inhaled pollutants, and microbes that produce pro-
oxidant reactive oxygen and nitrogen species. Higher
levels of markers of oxidative stress and lower levels of
antioxidant glutathione are found in smokers, as well as
in patients with COPD and/or HIV.68 Oxidative stress is
worsened during acute exacerbations of COPD.69 HIV
infection is associated with high rates of oxidative
stress,68 which may be due to the direct effects of the
viral proteins gp120 and Tat on lung epithelium.41

Alcohol and tobacco use by patients infected with HIV
contribute to oxidative stress, potentially through the
involvement of antioxidant pathways and the
cytochrome P450 system.70

Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) are a large family of
zinc-dependent endopeptidases that can cleave the
majority of structural components of the extracellular
matrix, including elastin. Studies have identified
increased proteolytic activity in PLWH who smoke
and have emphysema,12 and examination of their BAL
confirmed elevated expression of MMP mRNA in
alveolar macrophages, and of MMP protein and activity
in supernatant. Recent studies have demonstrated that
high levels of inflammatory cytokines, such as IL-23,
are seen in the BAL of these patients. Infection of AMs
results in expression of IL-23, which can lead to up-
regulation of MMP-9 in AMs in an AM/lymphocyte
coculture model.13 Studies of human macrophages
have consistently located MMP-12 and MMP-9 in
emphysematous lung.71 Murine models have
demonstrated that macrophage overexpression of
MMP-9 or MMP-1 can spontaneously induce
emphysema, while MMP-12 knockdown is protective
from cigarette smoke-induced emphysema.72 MMP
expression is additionally up-regulated and has been
demonstrated to play an important role in the
development of PAH in animal models.73 It is notable
that MMP-12 is quite responsive to smoking cessation,
and if this protease has an exaggerated role in HIV-
mediated lung disease, smoking cessation may result in
an even more significant impact in this cohort.74

Addressing Molecular Mechanisms of Lung
Disease in HIV
We currently are at a critical point in investigating lung
disease in PLWH. The continued development of less
1057
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toxic cART has resulted in more persistent and robust
recovery of immune function. Nonetheless, one study
has highlighted both significant underprescription of
cART and ineffective viral suppression in PLWH.75 The
institution of more generalized screening of individuals
at risk for HIV has resulted in fewer opportunistic
infections and specialized care earlier in disease.
Although issues such as smoking and intravenous drug
use are difficult to treat, the epidemiology from several
large cohorts has made the potential size of our future
problem quite clear. At this time a major knowledge gap
remains concerning whether lung disease is occurring at
a very rapid rate prior to treatment or whether there is
continued accelerated decline with disease even among
patients receiving cART. In addition, cohorts composed
of subjects over age 40 years are needed to longitudinally
assess lung T-cell subsets, antigen-specific immunity
including HIV-specific responses, macrophage
activation, and Pneumocystis colonization to determine
which of these predict progression of lung disease.
Further, there is a need to study patients who have not
had significant immune suppression and opportunistic
infections to evaluate whether they are at high risk of
lung disease in the absence of advanced
immunodeficiency.

Another unmet need is the execution of well-designed
mechanistic studies on the pathogenesis of lung disease.
To understand the mechanisms of HIV-associated
inflammation, we must define the relative importance of
a variety of potential causes of inflammation: HIV itself;
tobacco, alcohol, and illicit drug use; opportunistic
infections; shifts in the microbiome to organisms
capable of causing chronic inflammation (bacteria such
as Prevotella, persistent latent virus infection, persistent
fungi such as Pneumocystis), current antiretroviral
drugs, or other as yet unidentified mechanisms.
Understanding these factors may be critical to our
understanding of other inflammatory disorders in
PLWH, and may allow us to develop therapeutic
interventions to alter the progression of disease.

The Investigating HIV-Associated Lung Disease
(INHALD) Network (https://statepiaps7.jhsph.edu/
inhaldpub/content/welcome-inhald-public-website) is a
collaborative effort designed to evaluate and understand
the mechanisms of lung disease in PLWH. The
INHALD cohort will provide invaluable data to assist in
our understanding of lung disease in patients during the
modern era of cART, and will generate information
about specific downstream mechanisms. Sites are
conducting assessments including pulmonary function
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testing, imaging, and echocardiography. Biologic
samples, including blood, peripheral blood mononuclear
cells, and BAL, are being collected and banked. Sites are
collaborating on projects to evaluate the microbiome
(with a particular focus on virome and shotgun
metagenomics), inflammation, and oxidative stress, and
welcome outside collaborations. As the HIV-infected
population ages, lung disease is likely to become an
increasingly common comorbidity given the high rates
of smoking in this population. Appropriate management
will require an understanding of modifiable mechanisms
of disease to define best practices.
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