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The population is aging rapidly worldwide, which will lead to an increased societal and 

economic burden of age-associated chronic disease, including cardiovascular diseases 

(CVD).1, 2 CVD remain the leading cause of morbidity and mortality in developed nations, 

and chronological age is the primary risk factor for CVD.3 Arterial stiffness and blood 

pressure (BP) both increase with advancing age4–7 and are independent predictors of CV 

events and mortality.8, 9 As such, there is strong, ongoing demand for evidence-based 

strategies that prevent, delay, or reverse age-associated increases in BP and arterial stiffness.
10, 11 Indeed, the need for new approaches is expected to grow as the burden of age- and 

accelerated aging-associated cardiovascular dysfunction and disease continues to rise. In this 

review, we discuss the concept of healthy vascular aging (HVA) with regard to definition and 

contributing mechanisms, existing and promising HVA-enhancing lifestyle- and 

pharmacological-based strategies, and future directions. The focus will be primarily on data 

from observational and intervention studies in humans.

Components of HVA and Related Implications

Arterial stiffening and increases in BP occur with advancing age,4–7 although population-

based studies indicate that this is not an inevitable consequence of aging, but rather results 

from an industrialized lifestyle.12, 13 The prevalence of hypertension dramatically increases 

with advancing age, affecting approximately two-thirds of Americans 60 years of age and 

older.3 Hypertension is also highly prevalent in populations with chronic disease, including 

chronic kidney disease (CKD) and type 2 diabetes.14, 15 The most recent Joint National 

Commission (JNC) 8 guidelines increased the BP treatment goal for individuals greater than 

60 years of age to <150/90 mmHg, with a goal of <140/90 mmHg in adults 30–59 years of 

age, including individuals with diabetes and non-diabetic CKD16. However, the recently 

completed multi-center randomized controlled trial (RCT), the Systolic Blood Pressure 

Intervention Trial (SPRINT), conducted nationwide in over 9,000 adults17 challenged these 

guidelines. SPRINT was terminated early as a consequence of a 25% lower risk of the 

composite endpoint of CV events and death in individuals randomized to intensive BP 

lowering (systolic BP [SBP] <120 mmHg) compared to standard treatment (SBP <140 mm 
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Hg). Notably, this finding was persistent across sub-groups including CKD and older adults 

(≥75 years of age).18 Although the technique used for BP measurement in SPRINT has been 

discussed19, the results of the trial have been influential, as a new report from the American 

College of Cardiology and American Heart Association Task Force of Clinical Practice 

Guidelines now defines high blood pressure as ≥130/80 mmHg for all ages.20

Large elastic artery stiffening (i.e., aorta and carotid arteries) also occurs with advancing age 

and is greater at any age in patients with chronic disease including CKD,21 diabetes,22 and 

hypertension.23 As a result, these and other clinical disorders featuring such CV changes can 

be viewed as states of accelerated vascular aging. Multiple techniques exist to assess arterial 

stiffness, including local distensibility (e.g., ultrasound and tonometry-measured carotid 

artery compliance), the carotid or aortic augmentation index, aortic distensibility by 

magnetic resonance imaging, and pulse-wave velocity (assessed between 2 arterial 

segments), as reviewed elsewhere.24–26 Of note, augmentation index is generally not 

considered an accurate marker of arterial stiffness as it is strongly influenced by heart rate, 

height, and contractility, and decreases in older age24, 25. As a result, augmentation index 

has not been included in the present assessment of the literature. Carotid-femoral pulse-wave 

velocity (CFPWV) is considered the gold-standard technique, measuring stiffness of the 

aorta,27 and can be measured by applanation tonometry or Doppler flow recordings. Unlike 

arterial BP, no formal medical guidelines or targets exist for CFPWV, nor is CFPWV 

routinely measured clinically; however, both 12 m/sec and 10 m/sec have been suggested as 

cut-offs for increased risk of CV events.27, 28

Arterial stiffness and BP/hypertension are dynamically interconnected, with each factor 

influencing the other in a bidirectional manner (Figure 1). Although arterial stiffness was 

long considered to be a complication of hypertension, there is growing evidence that arterial 

stiffening can precede the increase in SBP, and that an elevation of SBP further augments 

arterial stiffness.29–31

Arterial stiffness increases in the aorta and carotid arteries with aging, with a lack of 

stiffening in the large peripheral muscular arteries, thus reducing peripheral impedance to 

the forward component of the arterial pulse-wave and increasing pulsatile energy 

transmission to the microcirculation.32 This increased blood flow and pressure pulsatility 

can lead to damage of high flow, low impedance organs, including the kidneys and brain.32 

Indeed, increases in arterial stiffness are associated with declines in renal function21, 33 and 

are considered a hallmark of end-stage renal disease.34 CFPWV is also independently 

associated with cognitive decline,35, 36 consistent with the concept of increased pulsatile 

energy transmission damaging the brain microcirculation and parenchymal tissues. 

Additionally, aortic stiffening-associated increases in pressure pulsatility and systolic load 

promote left ventricular remodeling featuring hypertrophy and dysfunction.37, 38

Recently in this journal, Niiranen et al. demonstrated in a community-dwelling cohort of 

middle-aged and older (MA/O) adults from the Framingham Heart Study, that HVA was 

independently associated with lower risk of incident CV events.39 HVA was defined as 

CFPWV <7.6 m/sec (mean±2 S.D. of a reference group of individuals less than 30 years of 

age) in combination with absence of hypertension (using the previous guideline SBP/DBP 
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cutoff of 140/90 mmHg). These findings are consistent with evidence that increased 

CFPWV is an independent predictor of incident CV events and mortality8, 9 and improves 

prediction over traditional risk factors alone, including blood pressure.8, 40

Building upon the concept of HVA, this review will discuss mechanisms influencing HVA, 

as well as preventive strategies and therapeutic approaches for preserving/attaining HVA. Of 

note, very few interventions have achieved HVA in individuals or groups that lack HVA 

status at baseline when applying the definition employed in the Framingham Heart Study.39 

As such, we will include studies that achieved significant CFPWV lowering, with or without 

changes in BP, even if full restoration of HVA status was not attained. Lastly, although the 

Framingham Heart Study definition of HVA used SBP and DBP to define BP component of 

this index, it should be emphasized that mean arterial pressure exerts an important 

physiologic influence on arterial stiffness41, and must be considered when assessing changes 

in CFPWV in response to the preventive and treatment strategies discussed below.

Mechanisms Influencing HVA (Figure 2)

Modulation of BP with Aging

As the large elastic arteries become stiffer with aging, SBP increases, whereas diastolic BP 

decreases due to lessening of elastic recoil of the aorta;29, 42 as a result, pulse pressure 

widens with advancing age.43 Isolated systolic hypertension is the most common form of 

hypertension in individuals 50 years of age and older.44 Increases in large elastic artery 

stiffness are a major contributor to these changes in BP with aging, ultimately promoting the 

development of systolic hypertension.29–31 Age-associated endothelial dysfunction featuring 

decreased nitric oxide (NO) bioavailability and increased endothelin-1 production, as well as 

dysregulated vascular tone, further contribute to increased SBP.45, 46 These events are 

mediated in part by increased oxidative stress associated with excessive superoxide 

production.47 An interaction between the immune system and hypertension also may be 

involved, as immune activation and inflammation promoted by oxidative stress are 

implicated in the development of hypertension.48 Additionally, with advancing age 

sympathetic nervous system activity increases, and the association between sympathetic 

nervous system activity and BP becomes stronger, particularly in women.49 Furthermore, 

chronic activation of the renin angiotensin system promotes target organ damage, including 

the kidney and heart, as angiotensin II promotes both increased blood pressure as well as 

reactive oxygen species production.50

Modulation of Arterial Stiffness with Aging

Both functional and structural influences modulate arterial stiffness with aging. Functionally, 

arterial stiffness is modulated in part by the vasoconstrictor tone produced by the contractile 

state of vascular smooth muscle cells.42 Age-associated vascular endothelial dysfunction 

interacts closely with arterial stiffness,51 as endothelial NO synthase (eNOS) uncoupling can 

promote vascular remodeling and increased arterial stiffness via decreased NO 

bioavailability,52, 53 which may be exacerbated by oxidative stress.54, 55 Age-associated 

neurohumoral dysfunction, resulting from decreased sympathetic baroreflex sensitivity and 

increased sympathetic activation, also promotes arterial stiffness.56 Systemic inflammation, 
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which also increases with aging, may contribute to arterial stiffness via immune activation 

and the development of hypertension.57

Structurally, extracellular matrix remodeling alters the composition of elastin and collagen in 

the large elastic arteries with advancing age. The medial layer undergoes elastin 

fragmentation and degradation,43, 58 which is mediated in part by up-regulation of matrix 

metalloproteinases (MMPs).59 Collagen deposition occurs, replacing the loss of elastin 

molecules,43, 58 and accelerated formation of advanced glycation end products (AGEs) 

occurs, which promote cross-linking of structural proteins and exacerbate increases in 

arterial stiffness.60 Oxidative stress and inflammation drive these structural changes via 

vascular damage, smooth muscle cell proliferation, collagen deposition, and arterial 

remodeling.61, 62 Angiotensin II may also modulate structural contributions to arterial 

stiffness by stimulating collagen formation, reducing elastin synthesis, and promoting matrix 

remodeling, in addition to influencing NO-signaling and reactive oxygen species production.
63

Not only do changes in the extracellular matrix contribute to arterial stiffness, but intrinsic 

stiffening of the vascular smooth muscle cells, as measured by atomic force microscopy, also 

occurs with aging as well as hypertension.64, 65 Of note, intimal-medial thickening occurs 

with aging even in the absence of atherosclerotic plaques, mediated primarily by thickening 

of the intima,10 and is positively correlated with CFPWV in older adults.66, 67 Age-

associated disease processes including diabetes (via impaired glucose tolerance)68 and CKD 

(via vascular calcification)69 can further exacerbate arterial stiffness.

It is difficult to separate hypertension and arterial stiffness due to their bidirectional 

interaction, common mechanisms, and overlapping presence in aging and age-associated 

disease. Although hypertension can promote aortic stiffening, large elastic artery stiffening 

may precede and promote an increase in SBP.29, 38 Large elastic artery stiffness is an 

independent predictor of incident hypertension in multiple longitudinal cohorts.30, 70, 71 

Additionally, in rodents fed a high-fat, high sucrose-diet, increased aortic pulse-wave 

velocity is evident prior to an elevation in SBP.31 Notably, there are some interventions that 

have reduced arterial stiffness in a manner deemed at least partially BP-independent.72–75 

Although, in general, interventions with the most profound influence on CFPWV typically 

also demonstrate a large SBP-lowering effect, there are examples in which arterial stiffness 

is reduced without lowering SBP. Of note, most of these latter examples have tended to be in 

populations without hypertension. Arterial stiffness and BP may be even more tightly 

intertwined when BP is already elevated.

Lifestyle-Based Strategies to Maintain or Restore HVA

In this section, we will focus on lifestyle-based strategies (aerobic exercise, caloric 

restriction-based weight loss, and changes in diet composition) with evidence from RCTs 

demonstrating a reduction in CFPWV, with or without changes in SBP. Using an approach 

employed previously76, in Figure 3 we summarize current knowledge on the lifestyle-based 

strategies described below, including a semi-quantitative assessment of the weight of the 

available evidence for efficacy based on our review of the relevant literature.
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Aerobic Exercise

The original observation associating aerobic exercise with HVA is from 1993 in rigorously 

screened healthy adults (primarily men) who participated in the Baltimore Longitudinal 

Study of Aging.77 In this cohort, CFPWV was inversely related to maximal oxygen 

consumption, suggesting that aerobic exercise may attenuate the age-associated increase in 

arterial stiffness. Subsequently, a similar observation was made in postmenopausal women, 

even in the presence of normal BP.78

Consistent with these cross-sectional findings, intervention studies conducted in healthy 

MA/O adults have demonstrated a significant reduction in arterial stiffness with aerobic 

exercise training. This was first demonstrated as an improvement in carotid artery 

compliance following a 3-month walking program administered to men,79 and later to 

postmenopausal women,80 consistent with earlier evidence of reduced arterial stiffness with 

4 weeks of exercise training in healthy young sedentary men.81 Although a moderate 

intensity aerobic exercise intervention of similar duration was later shown to reduce CFPWV 

in healthy MA/O men82 and women83, the reductions in CFPWV were small and not clearly 

independent of small decreases in BP. Moreover, no improvement in CFPWV with exercise 

was observed in a year-long study conducted in healthy older adults84, and similar findings 

were reported in a group of overweight MA/O adults.85 Overall, the results of these trials 

suggest that aerobic exercise does not consistently lower SBP in healthy (non-hypertensive) 

MA/O adults.

The available evidence indicates a lack of efficacy of moderate intensity aerobic exercise for 

reducing CFPWV in MA/O adults with hypertension,86, 87 although exercise has been 

reported to reduce CFPWV in young to middle-aged pre-hypertensive and hypertensive 

adults88. A recent meta-analysis of 14 aerobic exercise trials conducted in pre-hypertensive 

and hypertensive adults concluded that aerobic exercise does not reduce arterial stiffness, 

although various indices of arterial stiffness were combined in this analysis.89

The efficacy of an aerobic exercise intervention to reduce arterial stiffness in the setting of 

age-associated disease is mixed. Although reductions in CFPWV and SBP have been 

observed with exercise training in adults with metabolic syndrome,90 aerobic exercise has 

been reported to both lower and have no effect on CFPWV and SBP in MA/O adults with 

type 2 diabetes.91, 92 Similarly, aerobic exercise does not appear to reduce CFPWV or SBP 

in patients with moderate to severe CKD,93, 94 although intradialytic exercise (i.e., during a 

dialysis session) may be efficacious in chronic dialysis patients.95

Overall, aerobic exercise appears to be an evidenced-based public health strategy for 

maintaining or restoring HVA in the setting of healthy (non-hypertensive) aging and in some 

diseases associated with accelerated vascular aging, although there are some inconsistencies 

across studies. The improvements in CFPWV appear at times to be independent of any 

change in BP, particularly in healthy MA/O adults who are free from hypertension. Of note, 

in contrast to aerobic exercise, resistance exercise training does not appear to reduce arterial 

stiffness,96 and intensive resistance exercise training performed without complementary 

aerobic exercise activities may actually increase CFPWV in young healthy individuals,97 

consistent with earlier cross-sectional observations.98 Of note to public health translation, 
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however, are data indicating limited adherence to aerobic exercise in long-term trials99 and 

in accordance with federal activity guidelines.100

Weight Loss and Total Energy Intake

Short-term (i.e., 3 months or less) caloric restriction-based weight loss administered in 

MA/O healthy overweight and obese adults significantly reduces CFPWV.101–103 Similar 

improvements are observed with one year of caloric-restriction based weight loss.104 The 

SBP-lowering effect in these trials was also notable (between 6–15 mm Hg in individuals 

free from hypertension at baseline). Caloric restriction-based weight loss is also efficacious 

for reducing CFPWV when administered in conjunction with other lifestyle interventions. 

Weight loss from an energy restricted diet plus exercise reduces CFPWV and slightly 

decreases SBP in young overweight and obese adults.105 In overweight and obese adults 

with moderately elevated SBP, caloric restriction-based weight loss in conjunction with the 

Dietary Approaches to Stop Hypertension (DASH) diet reduces both CFPWV and SBP.106 

Of note, these improvements may have been mediated, at least in part, by the 30% reduction 

in sodium intake associated with the diet rather than by weight loss alone. The combination 

of reduction in total energy intake, exercise, and sodium restriction also has a significant 

CFPWV- and SBP-lowering effect in young to middle-aged, normotensive, overweight and 

obese adults.105, 107 Similarly, in adults with type 2 diabetes, the combination of weight loss 

via energy restriction, exercise, and the weight loss medication Orlistat promotes a profound 

lowering of CFPWV.108

In contrast to a shorter-term caloric restriction-based weight loss intervention, lifelong 

caloric restriction is challenging in humans due to adherence and has risk of negative side 

effects (such as loss of bone density and lean muscle mass observed in the recent 2 year 

Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy [CALERIE] 

trial of 25% caloric restriction in non-obese, healthy, younger adults).109 Data in rodents 

support that lifelong caloric restriction (40% reduction) reduces aortic PWV and SBP.110 

Additionally, in a case-control study in MA/O humans, those self-practicing caloric 

restriction (n=18) for an average of 6 years had substantially lower SBP than age-matched 

healthy controls consuming a typical American diet, 111 and preliminary data indicate lower 

CFPWV as well in those practicing dietary restriction (Luigi Fontana, personal 

communication, 2017).

In summary, caloric restriction-based weight loss interventions have a consistent effect of 

reducing CFPWV as well as SBP and should be considered an important lifestyle-based 

strategy to restore or maintain HVA in overweight and obese adults. However, adherence to 

caloric restriction-based weight loss interventions in longer-term trials112 as well as 

maintenance of weight loss113 are large challenges, perhaps limiting public health 

translation. Improvements in HVA status may be mediated in part through modification of 

dietary components such as dietary sodium, which will be discussed more the subsequent 

section, or via administration through a combination lifestyle program, such as with 

exercise. Further evidence is needed regarding the efficacy of this strategy in diseases of 

accelerated CV aging such as CKD.
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Dietary Components and Dietary Patterns

Dietary Sodium Restriction—The first observation linking dietary sodium intake to 

arterial stiffness is a case-control study from 1986, which compared CFPWV in 

normotensive adults who voluntarily followed a low sodium diet (mean intake 44 mmol/d) 

for an average of two years to controls with the same mean arterial pressure. CFPWV was 

substantially lower in MA/O adults who practiced dietary sodium restriction.114 

Subsequently, five trials of dietary sodium restriction have been conducted with CFPWV as 

an endpoint in MA/O, healthy adults of varying SBP (normotensive to hypertensive).
87, 115–118 CFPWV was significantly reduced in four of these trials,87, 116–118 and SBP was 

lowered in all five. Of note, in two of these trials, individuals lacking HVA by the 

Framingham definition at baseline were restored to HVA-status by dietary sodium restriction 

(Figure 4).87, 118 The efficacy of this intervention for restoring HVA is further supported by 

evidence that dietary sodium restriction rapidly improves carotid artery compliance, another 

index of arterial stiffness, in MA/O adults with moderately elevated SBP.119

Trials of dietary sodium restriction in populations of accelerated-aging diseases are lacking. 

One crossover trial of dietary sodium restriction has been conducted in hypertensive patients 

with stage 3–4 CKD, which demonstrated a non-significant reduction of CFPWV with a 

strong SBP-lowering effect.120 It also merits mention that sodium intake interacts closely 

with dietary potassium intake to influence CV risk.121 Evidence regarding the effect of 

potassium supplementation on CFPWV in healthy adults is mixed,72, 122 and the interactions 

of dietary sodium and potassium intake on CFPWV warrant additional research. Overall, 

dietary sodium restriction has a consistent SBP-lowering effect and significantly reduces 

CFPWV in healthy MA/O adults. Thus, dietary sodium restriction represents an important 

public health strategy to maintain or restore HVA, although further research is needed in 

populations with clinical disorders. Despite challenges in adhering to a low sodium diet, 

policy changes implemented at a national level in Finland support that population-level 

reductions in dietary sodium intake are possible.123

Flavonoids—Flavonoids are low molecular weight compounds composed of a three-ring 

structure with various substitutions and are found in abundance in citrus fruits, seeds, olive 

oil, tea, and red wine.124 Isoflavones are one class of flavonoids, found most often in 

legumes, including soybeans.125 Administration of isoflavones or an isoflavone metabolite 

reduces CFPWV in healthy MA/O men and postmenopausal women, with or without 

altering SBP.74, 126 Flavanones, flavanols, and anthocyanins are other classes of 

flavonoids124 with evidence of reducing CFPWV.73, 127–129 Grapefruit juice with high 

flavanones reduces CFPWV without lowering SBP in postmenopausal women with a large 

abdominal circumference.73 Similarly, cocoa flavanols reduce CFPWV in healthy MA/O 

men,127 as well as young healthy adults,128 and postmenopausal women with type 2 

diabetes,129 along with possible reductions in SBP127, 128. Finally, cranberry juice with 

anthocyanins and polyphenols reduces CFPWV without changing SBP in MA/O adults with 

coronary artery disease.75 Thus, there is evidence that flavonoids may reduce CFPWV, with 

or without changes in SBP. Notably, adverse reactions are rare and flavonoids appear to have 

an exceptional safety record.124
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Dietary Patterns—Specific patterns of dietary intake may modulate HVA. In a 

longitudinal cohort followed for 27 years, vegetable intake in childhood, as well as 

persistently high consumption of fruits and vegetable intake across the study period, were 

independently associated with lower CFPWV in adulthood.130 However, specific evidence 

on the effect of other dietary patterns such as the Mediterranean or vegetarian diet on 

CFPWV is currently lacking, although alternate measurements of arterial stiffness suggest 

that such patterns may lead to improvements.76 In trials implementing dietary patterns 

including DASH, the Mediterranean diet, and high fruit and vegetable intake, BP is also 

significantly reduced.131 This topic clearly represents an important and presently 

understudied area of future research.

Pharmacological-Based Strategies to Maintain or Restore HVA

Numerous pharmacological agents, both those routinely prescribed as well as novel agents, 

represent potential strategies for maintaining or restoring HVA. Agents that will be 

discussed in the upcoming sections include antihypertensive agents, statins, mammalian 

target of rapamycin (mTOR) inhibitors, AMP-activated protein kinase (AMPK) activators, 

sirtuin activators, anti-cytokine therapies, peroxisome proliferator-activated receptor-γ 
(PPAR-γ) activators, and antifibrotic agents. In Figure 5, we summarize current knowledge 

on the pharmacological strategies described below, including a semi-quantitative assessment 

of the weight of the available evidence for efficacy based on our review of the relevant 

literature.

Antihypertensive Agents and BP Lowering

Trials evaluating the effect of antihypertensive agents on CFPWV have primarily been 

conducted in individuals with hypertension, although additional evidence is provided from a 

few studies conducted in healthy volunteers.132 Overall, most antihypertensive agents, 

including vasodilators133, β-blockers134, 135, calcium channel blockers,136, 137, diuretics,138 

and angiotensin converting enzyme inhibitors (ACEi)/angiotensin receptor blockers 

(ARB)138–141, appear to have some effect on CFPWV, with the best long-term evidence 

existing for ACEi/ARB agents. Of note, β-blockers may be less useful, as the slowing of HR 

can increase pulse pressure and central pressure augmentation.142 Spironolactone also 

significantly lowers CFPWV in patients with stage 2–3 CKD already on ACEi/ARB with 

good BP control.143

It may be the degree of SBP-lowering induced that is more important than the medication 

class regarding the effect on CFPWV. In SPRINT,17 CFPWV was measured in a sub-group 

of participants in an ancillary study, including a large number of patients with CKD and 

adults ≥75 years of age. The data are pending, but will provide important evidence regarding 

the influence of longer-term BP control (regardless of medication class) on arterial stiffness. 

A small study conducted in non-diabetic, hypertensive older adults suggests that intensive 

BP control does more effectively reduce CFPWV than standard BP management.144 

However, despite well-known benefits of antihypertensive therapies, adherence is often 

suboptimal, particularly among older adults with multiple co-morbid conditions, and both 
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drug-drug and drug-disease interactions increase the risk of adverse events with advancing 

age.145

Statins

Numerous trials have assessed the effect of statins (HMG-CoA reductase inhibitors) in 

CFPWV in MA/O adults with hypercholesterolemia, isolated systolic hypertension, or who 

are overweight/obese.146–152 With the exception of one trial,151 these studies have 

consistently reported significant reductions in CFPWV, generally without changing SBP.
146, 148–150 The combination of a statin and an ARB also lowers CFPWV in healthy middle-

aged men.153 Overall, statins appear quite effective at lowering CFPWV without changing 

SBP in MA/O adults. Statins have a well-established safety profile, although similar to 

antihypertensive agents, adherence can be sub-optimal, particularly with advancing age.145 

As both antihypertensive agents and statins are commonly prescribed medications with 

advancing age, they should be considered effective strategies to maintain or restore HVA. 

This conclusion also emphasizes the importance of considering these effects when studying 

the efficacy of other interventions in populations taking these agents at baseline.

mTOR Inhibitors, AMPK Activators, and Sirtuin Activators

With advancing age, nutrient sensing pathways including mTOR, AMPK, and sirtuins 

become dysregulated.154 These pathways are among those modulated by chronic caloric 

restriction and, therefore, pharmacological manipulation might produce similar CV effects.
76, 155 As such, interventions targeting these pathways may help maintain or restore HVA.

In a clinical trial that converted kidney transplant recipients from immunosuppression with 

cyclosporine A to the mTOR inhibitor sirolimus (both in addition to mycophenolate 

mofetil), conversion significantly reduced CFPWV, suggesting that mTOR inhibition 

reduces arterial stiffness.156 BP was also reduced, but may have been mediated by improved 

renal function and medication adjustments. The reduction in arterial stiffness is consistent 

with evidence that mTOR inhibition with rapamycin reduces aortic PWV in old mice 

(although without changing BP).157 However, rapamycin has notable side effects, including 

the potential for metabolic dysregulation, which may limit its translation as an anti-aging 

therapy.158 Consequently, safer analogs of rapamycin (rapalogs) are being developed as 

alternate anti-aging therapies.159

The AMPK activator metformin is another potential novel therapy to maintain or restore 

HVA. As proof of concept, metformin reduces CFPWV and BP in young women with 

polycystic ovary syndrome and is also well tolerated,160 thus may also reduce arterial 

stiffness in other states of impaired AMPK activation, including aging. Finally, sirtuin 

activators, including resveratrol and NAD+ precursors such as nicotinamide mononucleotide 

and nicotinamide riboside, are other potential strategies to reduce age-associated arterial 

stiffness. Resveratrol is a polyphenol found in red wine, grapes and other berries, and 

activates SIRT1.155 In non-human primates, resveratrol ameliorates high-fat and high-

sucrose diet- induced increases in aortic PWV, without changing BP.161 Resveratrol also 

inhibits the mTOR/S6 kinase pathway.162 Of note, resveratrol may have off-target effects 

when administered in combination with other healthy lifestyle practices.155 Another 
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potential strategy to augment the age-associated decline in SIRT1 activity is to increase 

bioavailability of the co-substrate NAD+.163 For example, supplementation with 

nicotinamide mononucleotide reduces aPWV without changing BP in old mice,164 and 

supplementation with nicotinamide riboside reduces BP and CFPWV in MA/O adults, 

particularly those with pre-hypertensive levels of SBP (Martens et al., in revision). However, 

additional research regarding the efficacy of NAD+ boosting compounds for reducing 

arterial stiffness in humans is needed, including data on clinical disorders of accelerating CV 

aging.

Anti-Cytokine Therapies

Anti-cytokine therapies are a potential novel therapeutic to restore HVA. Tumor-necrosis 

factor-α (TNF-α) antagonism reduces CFPWV without changing BP in chronic 

inflammatory diseases associated with increased aortic stiffness such as rheumatoid arthritis,
165–167 but the potential side effects of anti-cytokine therapies may limit use in healthy aging 

populations. Of note, in the very recently completed Canakimumab Anti-Inflammatory 

Thrombosis Outcomes Study (CANTOS), which enrolled over 10,000 patients with stable 

coronary artery disease and elevated C-reactive protein levels, the interleukin-1β inhibitor 

canakinumab significantly reduced risk of major CV events by 15%.168 These results 

provide initial support for the efficacy of anti-cytokine therapies for treating (and potentially 

preventing) CV diseases. However, the higher incidence of fatal infection observed with 

canakinumab may limit translation to a healthy again population.

PPAR- γ Activation

PPAR-γ is a regulator of fatty acid storage and glucose metabolism, and is activated by the 

thiazolidinedione pioglitazone. Short-term treatment with pioglitazone reduces brachial-

ankle PWV in patients with type 2 diabetes169 and carotid-radial PWV in obese men with 

impaired glucose tolerance,170 without changing BP. However, the effects of these 

compounds on CFPWV and in the settings of age- and disease-associated arterial stiffening 

are currently unknown, and potential side effects of weight gain, edema, shortness of breath, 

and bone fracture need to be considered.171

Antifibrotic Agents

Pirfenidone is an antifibrotic agent that inhibits transforming growth factor-β, TNF-α, and 

other growth factors, and interferes with matrix formation.172 It is prescribed clinically to 

treat idiopathic pulmonary fibrosis, and is generally safe with an acceptable side effect 

profile.173 In a rodent model of diabetes, pirfenidone reverses cardiac fibrosis, attenuates 

cardiac stiffness, and also reduces renal fibrosis (without changing BP), and thus may hold 

promise in attenuating age-associated aortic stiffening.174

Overall, it is likely that novel pharmacological agents will have a future role in the treatment 

of diseases of accelerated vascular aging. Their use in the setting of healthy aging, to 

maintain or restore HVA, will require a more discerning consideration weighing potential 

side effects against potential benefits.
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Mechanisms of Action

As discussed previously, arterial stiffness and elevated blood pressure share common 

mechanisms and bidirectional interactions. In general, shorter duration studies are more 

likely to modulate functional components of arterial stiffness (vascular smooth muscle tone) 

and to lower blood pressure than to change arterial structure (e.g., collagen or elastin 

composition), because the latter changes may require a longer-term treatment period (e.g., 

years) to induce.79 Structural changes may be even more difficult to reverse in disease states 

such as CKD, which is additionally characterized by medial calcification.175

Lifestyle-Based Strategies

We will focus this section on mechanisms by which lifestyle-based strategies may modulate 

arterial stiffness rather than blood pressure, and the reader is referred elsewhere for a 

discussion of the latter.176, 177 Lifestyle-based strategies to maintain or restore HVA appear 

more likely to influence functional components of arterial stiffness, although it is 

challenging to discern any structural changes that may occur if such interventions were 

maintained for a longer duration than typically evaluated in a RCT.

Aerobic exercise likely influences functional components of arterial stiffness, such as 

increased NO production,85 although long-term aerobic exercise may also influence arterial 

wall structure, including AGE cross-linking of proteins.178, 179 Indeed, results from 

preclinical work in mice supports the possibility that aerobic exercise may induce structural 

changes in the large elastic arteries of older animals, including reductions in collagen I and 

III, transforming growth factor-β1, and reduced smooth muscle α-actin180, 181.

Collectively, regression analyses in trials of caloric-restriction based weight loss suggest that 

reductions in arterial stiffness are independent of BP changes. Improvements in stiffness in 

these studies over a relatively short time period (e.g., 12 weeks) suggests that regulation of 

smooth muscle tone likely plays a larger role than structural changes. Functional influences 

on arterial stiffness, including NO production, may be mediated in part by reductions in 

circulating insulin or changes in other hormones, such as leptin.182

Reductions in arterial stiffness with caloric-restriction based weight loss may also be 

influenced by changes in diet composition, including dietary sodium restriction. Dietary 

sodium restriction rapidly improves carotid artery compliance, again suggesting a larger 

contribution of functional versus structural changes.119 Indeed, dietary sodium restriction 

both reduces vascular oxidative stress and increases NO bioavailability in humans,183 and 

rising sodium concentrations increase endothelial cell stiffness measured by atomic force 

microscopy, while downregulating NO production.184 Reductions in the endogenous Na+/K

+ ATPase inhibitor marinobufagenin may also modulate the reductions in CFPWV with 

dietary sodium restriction.118

At least with shorter-term administration, flavonoids appear to also modulate functional 

components of arterial stiffness. Isoflavones are vasodilatory, reducing endothelin-1, 

increasing NO bioavailability, and improving vascular endothelial function.185 Flavanones 

may also increase NO bioavailability.186 Finally, intake of fruits and vegetables may 
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modulate arterial stiffness via the effects of individual bioactive nutrients and 

phytochemicals, as well as via reductions in oxidative stress, inflammation, and insulin 

resistance.187, 188

Pharmacological-Based Strategies

Pharmacological-based strategies to maintain or restore HVA may modulate functional or 

structural components of arterial stiffness. Antihypertensive agents primarily target the 

functional (vasoconstrictive) component of arterial stiffness, through a direct modulation of 

BP.142 However ACEi/ARB may be particularly effective at reducing arterial stiffness, and 

indeed are more efficacious in the long-term than other antihypertensive agents because they 

also have antifibrotic effects.189 Statins also modulate smooth muscle tone via increased 

nitric oxide bioavailability,190 as well as reduced sympathetic neural activity,191 and 

oxidative stress.192 Metformin promotes eNOS activation by activating AMPK in the 

endothelium193, and additionally inhibits nuclear factor κ B signaling and decreases 

inflammation.149 Metformin may also modify arterial stiffness as well as lower BP by 

promoting weight loss.160

Additional agents modulating functional regulation of arterial stiffness are rapamycin, which 

activates arterial AMPK and decreases oxidative stress,157 and resveratrol, which increases 

eNOS activity, reduces superoxide generation by NAD(P)H oxidases, and reduces nuclear 

factor κ B -mediated inflammation and oxidative stress.161, 194, 195 Little is known regarding 

underlying mechanisms by which NAD+ precursor may reduce BP and aortic stiffness, but 

SIRT-1 activation may be involved.164 Anti-cytokine therapies likely lower arterial stiffness 

via anti-inflammatory effects,166, 167 and PPAR-γ activation also reduces circulating 

markers of inflammation.169, 170 Pharmacological agents may also target structural 

components of arterial stiffness, in particular antifibrotic agents.142 Rapamycin also 

decreases collagen and AGEs in the aorta, suggesting reduced cross-linking of collagens by 

AGEs with treatment.157

Conclusions and Future Directions

In this review, we have discussed the concept of HVA and contributing mechanisms, while 

also summarizing lifestyle- and pharmacological-based strategies to maintain or restore 

HVA in both healthy adults and patients with accelerated CV aging-related clinical 

disorders. There are notable gaps in the currently available research literature on this topic 

and practical challenges to implementing these interventions (Figure 6). In particular, there 

remains an unmet need to translate effective strategies to maintain or restore HVA in the 

clinic and at the public health level. An example this is the ongoing effort to reduce sodium 

intake at a population-level through policy statements,196 including government-industry 

partnerships to reduce sodium intake in several countries including Japan, Finland, and the 

United Kingdom.197 At the same time, preclinical models should continue to be utilized to 

discern the mechanisms modulating HVA in both healthy aging and diseased populations 

(reverse translation).198 Indeed, the combination of forward and reverse translational 

physiological approaches has been utilized effectively to better understand the mechanisms 
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by which prevention and treatment strategies such as dietary sodium restriction modulate BP 

and vascular health.198

Novel strategies to maintain or restore HVA continue to be developed and tested. Examples 

of promising lifestyle interventions include inspiratory muscle strength training (breathing 

against a resistive load), which lowers SBP in both normotensive adults and patients with 

sleep apnea,199, 200 passive heat therapy, which lowers mean arterial BP and CFPWV even 

in young healthy adults201, and novel dietary patterns that may mimic the beneficial effects 

of long-term caloric restriction, including different forms of intermittent fasting.155 New 

pharmacological agents also continue to be developed, including anti-cytokine therapeutics 

and anti-senescence drugs. Additionally, a selective sodium-glucose cotransporter inhibitor 

(empaglifozin) was recently demonstrated to influence properties related to arterial stiffness, 

while lowering SBP in individuals with type 2 diabetes and established cardiovascular 

disease, thus may hold promise to maintain or restore HVA.202

Notably, in the Framingham Heart study, only about 1% of individuals over 70 years of age 

met the criteria for HVA.39 This observation highlights that it is difficult to maintain HVA 

into older age and that trials testing the efficacy of novel strategies are particularly needed 

for older adults. The recent SPRINT trial results indicate that this age group can indeed be 

very responsive to an intervention, contrary to what may have been believed previously.17 

This was also the case for populations at high CV risk, including individuals with CKD. 

Thus, testing of novel interventions to restore HVA are also critically needed in diseases of 

accelerated CV aging, such as CKD and diabetes. An increased number of cardiovascular 

risk factors is also associated with greater annual increase in CFPWV, thus likely 

contributing to the progressive reduction in the prevalence of HVA with advancing age.203 

Ultimately, shifting the distribution to a higher number of individuals with HVA status will 

reduce the burden of CV events and mortality in the population.
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Figure 1. Components of healthy vascular aging
Arterial stiffness and blood pressure/hypertension are dynamically interconnected, with each 

factor influencing the other in a bidirectional manner. With a shifting profile towards healthy 

vascular aging, blood pressure is lowered to a non-hypertensive range, and arterial stiffness 

is also reduced.
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Figure 2. Mechanisms influencing healthy vascular aging
Mechanisms influencing modulation of blood pressure with aging include vasodilation and 

vasoconstriction (e.g., nitric oxide [NO] and endothelin-1 [ET-1] bioavailability), immune 

activation and inflammation, sympathetic nervous system (SNS) activity, renin-angiotensin 

system (RAAS) activation, and oxidant signaling. Arterial stiffness is modulated by both 

functional (vascular smooth muscle cell tone) and/or structural components (extracellular 

matrix remodeling, including elastin degradation by matrix metalloproteinases [MMPs] and 

the formation of advanced glycation end products [AGEs]).
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Figure 3. Summary of healthy lifestyle-based strategies to maintain or restore healthy vascular 
aging
Note: under “Effects”, ↓ represents a reduction, ↔ represents weak or conflicting evidence, 

and (?) represents a lack of available data for the indicated outcome (for arterial stiffness, 

this refers specifically to data on carotid-femoral pulse-wave velocity). Under “Evidence”, 

the human symbol represents clinical evidence and the number of symbols reflects the 

approximate semi-quantitative weight of evidence available for each strategy based on the 

authors’ review of the literature. For details, see references/discussion in the text.
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Figure 4. Dietary sodium restriction restores healthy vascular aging (HVA)
Changes in systolic blood pressure (SBP) (top panel) and carotid-femoral pulse-wave 

velocity (CFPWV) (bottom panel) in post-menopausal women (black bars) and post-

menopausal women and middle-aged and older men (white bars) with elevated blood 

pressure in response to a low sodium diet (<90 mmol/d) compared to normal sodium intake 

(>120 mmol/d). Individuals lacking HVA by the Framingham definition at baseline were 

restored to healthy vascular aging status by dietary sodium restriction in both studies, as 

indicated by the reductions in SBP and CFPWV from the red- to the green-shaded zone 

(above and below the dashed line). Reproduced from87, 183 with permission.
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Figure 5. Summary of pharmacological-based strategies to maintain or restore healthy vascular 
aging
Note: under “Effects”, ↓ represents a reduction, ↔ represents weak or conflicting evidence, 

and (?) represents a lack of available data for the indicated outcome (for arterial stiffness, 

this refers specifically to data on carotid-femoral pulse-wave velocity). Under “Evidence”, 

human and mouse symbol represent clinical and preclinical evidence, respectively, and the 

number of symbols reflects the approximate semi-quantitative weight of evidence available 

for each strategy based on the authors’ review of the literature. For details, see references/

discussion in the text. mTOR, mammalian target of rapamycin; AMPK, AMP-activated 

protein kinase; SAC, sirtuin activating compound; TNFα, tumor-necrosis factor-α; IL-1β, 

interleukin-1 β; PPAR-gamma, peroxisome proliferator-activated receptor-gamma
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Figure 6. Current gaps in knowledge related to strategies to maintain or restore healthy vascular 
aging
Notable gaps in the currently available literature and challenges to implementing discussed 

interventions to maintain or restore healthy vascular aging (HVA).
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