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Penetrance of Polygenic Obesity Susceptibility Loci
across the Body Mass Index Distribution

Arkan Abadi,1,9 Akram Alyass,1,9 Sebastien Robiou du Pont,1 Ben Bolker,2 Pardeep Singh,3

Viswanathan Mohan,4 Rafael Diaz,5 James C. Engert,6 Salim Yusuf,1,7,8 Hertzel C. Gerstein,1,7,8

Sonia S. Anand,1,7,8 and David Meyre1,3,*

A growing number of single-nucleotide polymorphisms (SNPs) have been associated with body mass index (BMI) and obesity, but

whether the effects of these obesity-susceptibility loci are uniform across the BMI distribution remains unclear. We studied the effects

of 37 BMI-associated SNPs in 75,230 adults of European ancestry across BMI percentiles by using conditional quantile regression

(CQR) and meta-regression (MR) models. The effects of nine SNPs (24%)—rs1421085 (FTO; p ¼ 8.69 3 10�15), rs6235 (PCSK1;

p ¼ 7.11 3 10�6), rs7903146 (TCF7L2; p ¼ 9.60 3 10�6), rs11873305 (MC4R; p ¼ 5.08 3 10�5), rs12617233 (FANCL; p ¼ 5.30 3

10�5), rs11672660 (GIPR; p ¼ 1.64 3 10�4), rs997295 (MAP2K5; p ¼ 3.25 3 10�4), rs6499653 (FTO; p ¼ 6.23 3 10�4), and rs3824755

(NT5C2; p ¼ 7.90 3 10�4)—increased significantly across the sample BMI distribution. We showed that such increases stemmed from

unadjusted gene interactions that enhanced the effects of SNPs in persons with a high BMI. When 125 height-associated SNPs were

analyzed for comparison, only one (<1%), rs6219 (IGF1, p ¼ 1.803 10�4), showed effects that varied significantly across height percen-

tiles. Cumulative gene scores of these SNPs (GS-BMI and GS-height) showed that only GS-BMI had effects that increased significantly

across the sample distribution (BMI: p ¼ 7.03 3 10�37; height: p ¼ 0.499). Overall, these findings underscore the importance of

gene-gene and gene-environment interactions in shaping the genetic architecture of BMI and advance a method for detecting such

interactions by using only the sample outcome distribution.
Introduction

Obesity is a prominent risk factor for osteoarthritis, hyper-

tension, type 2 diabetes (T2D), cardiovascular disease, and

certain psychological disorders and cancers.1,2 The rise in

obesity has coincided with ‘‘obesogenic’’ societal and envi-

ronmental changes that include increased consumption of

high-calorie foods, an increasingly sedentary lifestyle, and

urbanization.2–4 Genetic factors are also known to play

an important role in obesity, given that 50%–80% of

body mass index (BMI) variation can be ascribed to ge-

netics (heritability).5,6 Moreover, genome-wide association

studies (GWASs) have identified �140 polygenic loci that

are directly associated with BMI or obesity.7

The role of individual and compound gene-environ-

ment (GXE) and gene-gene (GXG) interactions in deter-

mining BMI has not been fully elucidated. The study of

BMI-associated GXG interactions has been impeded by sta-

tistical and computational limitations, although prom-

ising new approaches have recently been proposed.8–10

On the other hand, several lines of evidence suggest that

GXE interactions could play an important role in shaping

BMI. First, estimates of the heritability of BMI are influ-

enced by environmental exposures.11 One study reported

that the heritability of BMI is increased in persons born af-

ter the obesogenic transition, whereas another reported
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that the heritability of BMI is correlated with the popula-

tion prevalence of obesity.12,13 More recently, the cumula-

tive gene score from 29 BMI-associated single-nucleotide

polymorphisms (SNPs) showed a positive interaction effect

with birth year.14 Interactions between the genetic deter-

minants of BMI and obesogenic environmental factors

readily explain why both estimates of BMI heritability

and cumulative SNP effects are enhanced in permissive en-

vironments. Second, specific interactions between BMI-

associated SNPs and environmental factors have been

documented.11 Physical activity and energy intake have

been reported to modify the effects of SNPs within

the fat-mass- and obesity-associated gene FTO (MIM:

610966).15–19 Importantly, FTO (rs1421085) has been

shown to jointly interact with diet, physical activity, salt

and alcohol consumption, and sleep duration.20 Thus, a

subset of genetic variants could affect BMI through a

mixture of direct effects and compound interactions. As

such, investigating individual environmental factors

might not capture the full range of environmental modifi-

cation for a given SNP.21,22

In this report, we advanced a statistical framework to

assess the effects of single and mixed GXE and GXG inter-

actions on the association between SNPs and BMI. Specif-

ically, we applied conditional quantile regression (CQR)

to investigate the effects of 37 BMI-associated SNPs at
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multiple percentiles of the sample BMI distribution in

75,230 adults of European ancestry (EA).23,24 Variability

in SNP effects across these BMI percentiles was demon-

strated to result from unadjusted interactions and was

modeled by meta-regression (MR).25,26 In this way, we

used CQR and MR to collect evidence of unadjusted inter-

actions directly from the sample distribution of BMI

without measures of specific environmental factors. A sec-

ondary analysis of 125 established height-associated SNPs

is also included for comparison.
Subjects and Methods

Participants and Phenotypes
The sample population included participants from the follow-

ing studies: Atherosclerosis Risk in Communities (ARIC;

phs000280.v3.p1), Coronary Artery Risk Development in Young

Adults (CARDIA; phs000285.v3.p2), Cardiovascular Health Study

(CHS; phs000287.v6.p1), EpiDREAM, the Framingham Cohort

(phs000007.v29.p10), Multi-Ethnic Study of Atherosclerosis

(MESA; phs000209.v13.p3), Genetic Epidemiology of COPD

(COPDGene; phs000179.v5.p2), Electronic Medical Records and

Genomics (eMERGE) II (phs000888.v1.p1), and the Women’s

Health Initiative (WHI; phs000200.v10.p3). Measurements

collected from participants below the age of 18 years or above

the age of 92 years were excluded (<1% collectively). For studies

with repeated measures across multiple time points or visits, the

median height and the median weight were extracted along

with the corresponding age at these median values. We calculated

BMI by dividing the median weight (in kg) by the square of the

average measures of height (m). Diabetic status was indicated by

one of the following criteria: (1) physician report or self-report

of physician diagnosis, (2) report of taking diabetes medication,

(3) fasting plasma glucose R 126 mg/dL (7 mM), or (4) 2 hr

glucose R 200 mg/dL (11 mM) during an oral glucose-tolerance

test.27 Obesity categories including normal weight (NW) and over-

weight (OW), as well as obesity classes I, II, and III (Ob-I, Ob-II, and

Ob-III, respectively), were specified according to World Health

Organization guidelines.28 Analyses were restricted to participants

of self-reported EA with a combined sample size of n ¼ 75,230.

Summary statistics are presented in Table S1. This project was

approved by a local ethics committee (Hamilton Integrated

Research Ethics Board), and participant-level data access was

granted through the Database of Genotypes and Phenotypes

(dbGaP) after approval was provided by study-specific data-access

committees. All analyses are consistent with study-specific data-

use certifications.

Sample Quality Control
Detailed genotyping procedures for EpiDREAM and studies

from the Candidate Gene Association Resource (CARe) project,

including ARIC (phs000557.v2.p1), CARDIA (phs000613.v1.p2),

CHS (phs000377.v4.p1), the Framingham Cohort (phs000282.

v17.p10), and MESA (phs000283.v7.p3), are presented else-

where.29,30 Genotyping was performed with the gene-centric

HumanCVD Genotyping BeadChip with 49,320 markers concen-

trated in �2,100 loci related to metabolism and cardiovascular

disease.31 This limited scope of analysis was motivated by the

availability of a greater sample size, as well as the high computa-

tional cost of fitting CQR models. Samples with sex discordance,
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an array-wide call rate below 95%–98%, and/or an average

heterozygosity beyond 3 standard deviations of the mean hetero-

zygosity were removed.32,33 Family members were defined by

identity by descent (IBD, bp) above 0.5, and those with a lower

call rate were removed so that only one member of each

family group was retained for analysis (Table S2). Samples from

COPDGene (phs000765.v1.p2) were genotyped with the Illumina

HumanHap550 (v3) genotyping BeadChip (Illumina) with

561,466 markers, and QC procedures were performed as above

except that cryptic relatedness was defined by IBD bp >

0.1875.34,35 Genotypes from the WHI study (phs000746.v1.p3)

and eMERGE II (phs000888.v1.p1) were composed of an imputed

dataset, and samples from related or duplicate participants were

removed. Analyses of the WHI dataset were conducted on each

sub-study (WHI Memory Study [WHIMS], WHI Genomics and

Randomized Trials Network [GARNET], HIPFX [Hip Fracture

GWAS], MOPMAP, and Genetics and Epidemiology of Colorectal

Cancer Consortium [GECCO]). A summary of sample quality

control (QC), along with a complete list of datasets (and accession

numbers) and additional details on these studies, is provided in

Table S2.
SNP Selection and Marker QC
We identified SNPs that had previously been associated with BMI,

obesity, and height by searching the GWAS Catalog and GIANT

Consortium data files and screening the literature.36–39 A.A.

and D.M. conducted literature screening independently to maxi-

mize SNP attainment. For GWAS SNPs, only associations with

p < 5 3 10�8 were considered. These SNPs were sorted into corre-

lated linkage disequilibrium (LD, R2 > 0.1) blocks on the basis of

genomic sequences from EA populations (1000 Genomes Project

phase 3), and the strongest association SNP on the HumanCVD

Genotyping BeadChip was selected.31,40 Proxy SNPs (R2 > 0.9)

were identified for SNPs not represented on the array. Thus,

39 BMI- and 129 height-associated SNPs were identified. For

studies that used different genotyping platforms, the original asso-

ciation SNPs (39 BMI and 129 height) were screened and proxied

as described above on each genotyping platform. For SNPs that

mapped to the same gene, we screened them jointly with condi-

tional regression analysis to test for independent associations

with quantitative traits (BMI or height), and only SNPs that main-

tained associations were retained.41 However, SNPs in FTO

(rs1421085 and rs6499653) and PCSK1 (MIM: 162150; rs6232

and rs6235) were exempted from exclusion as a result of prior ev-

idence in the literature of independent associations with BMI.42–44

In total, 37 BMI- and 125 height-associated independent SNPs

were identified and selected for further analysis. SNP call rate,

minor allele frequency (MAF), and exact tests of Hardy-Weinberg

equilibrium (HWE) in EA populations are presented in Tables S3

and S4. Within each study, SNPs with a call rate < 90% or HWE

p value < 1 3 10�6 were excluded from analysis. In addition,

only SNPs imputed with high quality were retained for analysis

(R2 > 0.7 for WHI and info score > 0.7 for eMERGE II).45 SNP ge-

notypes were encoded per the effect alleles andmodeled additively

for individual analyses.
Gene Scores
The cumulative gene score (GS) was calculated for all BMI- and

height-associated SNPs (GS-BMI and GS-height, respectively). An

un-weighted GS was utilized because weights can be biased and

context dependent.46,47 No GS was calculated for participants
ber 7, 2017



with more than 10% missing genotypes; otherwise, missing SNP

genotypes were imputed with the arithmetic average genotype

at each missing SNP. In addition to being associated with BMI,

GIPR (MIM: 137241; rs10423928, LD R2 ¼ 1 with rs11672660 in

EA), TCF7L2 (MIM: 602228; rs7903146), TOMM40 (MIM:

608061) and APOE (MIM: 107741) (both rs2075650), HMGCR

(MIM: 142910; rs4604177, LD R2 ¼ 0.63 with rs6453133 in EA),

PCSK1 (rs6235), CDKAL1 (MIM: 611259; rs9356744), and

KCNQ1 (MIM: 607542; rs2283228) have also been associated

with several co-morbidities of obesity, including glucose homeo-

stasis, T2D, increased lipid levels, and heightened C-reactive pro-

tein (CRP) levels.48–55 To mitigate potential biases stemming

from these comorbidities at higher BMI percentiles, we also calcu-

lated a GS excluding these seven SNPs: GS-BMI (stringent). Finally,

GSs for both BMI and height were calculated without imputation

of missing genotypes: GS-BMI (no imputation) and GS-height (no

imputation). GS-BMI (stringent), GS-BMI (no imputation), and

GS-height (no imputation) were tested by sensitivity analysis.
Statistical Analysis
A statistical framework combining CQR and MR was used to

model variation in the effects of SNPs under single and mixed

GXE and GXG interactions (see Supplemental Note).24,26 Like

ordinary least-squares (OLS) models, CQR models can assume a

linear relationship and provide intercept and slope estimates for

a series of pre-specified percentiles.23,24 Therefore, CQR can be

applied to produce a comprehensive evaluation of the effects of

a SNP across the sample distribution of a quantitative trait (e.g.,

BMI or height). A piecewise linear plot for the series of CQR esti-

mates at different percentiles provides a useful visual summary

of their variation along the sample distribution.23,24 Figure 1

shows a working example of CQR and MR in comparison with

OLS for FTO (rs1421085) in the ARIC CARe study.

Under conditions where true single and mixed GXE and GXG

interactions are unadjusted, SNPs will shift both the location

and scale (variance) of the sample outcome distribution (see Sup-

plemental Note).56 These shifts in scale result in detectable varia-

tions of CQR estimates collected from percentiles across the

sample outcome distribution. It follows that CQR estimates for a

SNP are constant (i.e., equal) across percentiles if all unadjusted

interaction effects are zero. Thus, the association between SNPs

and an outcome under unadjusted interactions essentially reduces

to modeling variability in CQR estimates. This can be effectively

achieved withMR.25,26 In this context, MR is basically a regression

model where the CQR estimates from across the sample outcome

distribution represent the dependent variable, and the percentiles

at which these CQR estimates were calculated represent the inde-

pendent variable (Figure 1). Additional details on CQR and MR, as

well as simulations and an analytic description of this statistical

framework, are presented in the Supplemental Note and Figures

S1 and S2.

OLSmodels were used to verify the associations of SNPs and GSs

with BMI and height in the sample populations included in this

study. CQR models were fitted at every fifth percentile of the dis-

tribution of BMI and height for each SNP. We used a total of

10,000 Markov-chain-marginal-bootstrap replicates to compute

confidence intervals (CIs) and the cross-percentile variance-covari-

ance matrix for CQR estimates.57–59 The proportion of the trait

variance explained by GS-BMI and GS-height in CQR models

was also calculated.60 We computed hypothesis test statistics in

MR (by assuming normality) to estimate the effects of percentiles
The American
on changes in mean CQR estimates for each SNP. The set of per-

centiles (5th–95th) was re-centered at the 50th percentile so that

the intercept of the MR models corresponded to the main effect

of the SNP at the median. Lastly, the effects of each SNP and the

GS on the risk of specific BMI categories (NW versus OW, NW

versus Ob-I, NW versus Ob-II, and NW versus Ob-III) were esti-

mated with logistic regression.

All regression models were performed by one-step individual-

participant-data meta-analysis (also known as ‘‘joint-analysis’’ or

‘‘mega-analysis’’).61,62 This method was chosen on the basis of

access to individual participant data and the fact that CQR analyses

refer to the conditional sample distribution.63 This means that an-

alyses on separate studies correspond to their conditional distribu-

tions, and it would not be appropriate to combine them by using

meta-analysis of their summary statistics. All models were adjusted

for age (years), sex (female ¼ 0, male ¼ 1), and study (factor). For

BMI analysis, age was modeled quadratically (age and age squared)

as in previous reports.14,20 Analyses of the associations of SNPs and

GSs with BMI (37 SNPs þ GS ¼ 38) and height (125 SNPs þ GS ¼
126) were subject to multiple-testing correction using Bonferroni-

adjusted p value thresholds of p < 0.05/38 ¼ 1.32 3 10�3 and p

< 0.05/126 ¼ 3.97 3 10�4, respectively.64 QC and statistical ana-

lyses were conducted with PLINK v1.90b3.42 and R

v3.3.2.32,33,65–75 CQR models were fitted with quantreg, and MR

models were fitted with metafor.76,77 Additional packages used in

the analysis include pracma, doParallel, foreach, and data.table.78–81

An extended version of this work appears online.82
Results

Figure 1 depicts a step-by-step analysis of FTO (rs1421085)

in the ARIC CARe study. In the top left panel, we fitted an

OLS model (green) to determine the mean effects of the

FTO genotype on BMI (bOLS, kg/m
2 per effect allele) and

fitted CQRmodels (gray) evenly across the sample BMI dis-

tribution (every fifth percentile) to determine the effects of

the FTO genotype at each BMI percentile (bCQR, kg/m
2 per

effect allele). In the middle right panel, the estimates (bOLS

and bCQR) and 95% CIs from these models are collected

and plotted against the BMI percentile at which they

were fitted. In the bottom left panel, MR analysis

(magenta) models variation in the CQR estimates across

the sample BMI distribution, and MR estimates (bMR,

kg/m2 per effect allele per BMI percentile) are plotted

along with 95% CIs. Presenting the results of OLS, CQR,

and MR in this way is useful for summarizing the purpose

of each analysis and contrasting possible differences be-

tween them.

Initially, OLS models were fitted for each of 37 BMI-asso-

ciated SNPs, and all but one were verified to increase BMI

in this study sample (Table 1). We then fitted CQR models

at regular intervals of the BMI distribution to explore

whether the effects of SNPs on BMI varied across the sam-

ple distribution (Table S5). We plotted CQR estimates for

each SNP against the BMI percentiles at which they

were produced to provide a visual summary of the CQR re-

sults (Figure 2 and Figure S3). Several SNPs—including

rs1421085 (FTO), rs6235 (PCSK1), rs7903146 (TCF7L2),
Journal of Human Genetics 101, 925–938, December 7, 2017 927



Figure 1. Working Example of Condi-
tional Quantile Regression
BMI (kg/m2) was plotted against the num-
ber of effect alleles of FTO (rs1421085) in
the ARIC CARe study (top left). An ordi-
nary least-squares (OLS) model of the
mean effect of this SNP on BMI was plotted
(solid green line). Conditional quantile
regression (CQR) models, fitted at every
fifth percentile of BMI, show the effects of
this SNP at these BMI percentiles (solid
gray lines). The slopes (bOLS, horizontal
dashed green line; bCQR, thick black line;
kg/m2 per effect allele) from these models
were then plotted against the BMI percen-
tile at which they were fitted (middle
right). 95% confidence intervals for these
estimates were also plotted (OLS, horizon-
tal dotted green line; CQR, shaded gray re-
gion). The change in CQR estimates across
BMI percentiles was modeled with meta-
regression (MR). The MR slope (bMR, kg/
m2 per effect allele per BMI percentile,
thin magenta line) and the 95% confi-
dence intervals (dotted magenta lines)
were plotted (bottom left).
rs11873305 (MC4R [MIM: 155541]), rs12617233 (FANCL

[MIM: 608111]), rs11672660 (GIPR), rs997295 (MAP2K5

[MIM: 602520]), rs6499653 (FTO), and rs3824755

(NT5C2 [MIM: 600417])—had effects that appeared to in-

crease across the distribution of BMI.

Single or mixed SNP interactions that are not adjusted

in regression models will produce variability in CQR

estimates along the distribution of the outcome (see Sup-

plemental Note). This variability can be detected and

quantified with MR.25,26 Simulations showed that the

power to detect such interactions by using CQR and MR

was not affected by the MAF or the main effects of the

SNPs, but it increased with the number of interactions as

well as the main effects of the interacting covariate (see

Supplemental Note and Figure S1). Yaghootkar et al.

recently showed that differences in the prevalence of dis-

ease outcomes (e.g., the outcome of T2D) between sample

and general populations can bias regression estimates of

the main effects of SNPs on risk factors (e.g., BMI).83 How-

ever, the variability of CQR estimates across the sample dis-

tribution is not affected by biased main effects when CQR

models are adjusted for disease status (see Supplemental

Note). This was supported by simulations showing that

the prevalence of disease outcomes in sample populations

had negligible effects on the power and type I error rate for
928 The American Journal of Human Genetics 101, 925–938, December 7, 2017
detecting unadjusted interactions

when CQR models were adjusted for

disease status (see Supplemental

Note and Figure S2).

We fitted MR models to assess the

variability in the CQR estimates of

BMI-associated SNPs along the sample

distribution of BMI (Table 2, Figure 2,
and Figure S3). Significant positive associations (p< 1.323

10�3) between BMI percentile and CQR estimates were de-

tected for 9 of 37 SNPs (24%): rs1421085 (FTO; bMR [95%

CI] ¼ 0.49 [0.37, 0.62], p ¼ 8.69 3 10�15), rs6235

(PCSK1; 0.32 [0.18, 0.46], 7.11 3 10�6), rs7903146

(TCF7L2; 0.30 [0.17, 0.44], 9.60 3 10�6), rs11873305

(MC4R; 0.60 [0.31, 0.89], 5.08 3 10�5), rs12617233

(FANCL; 0.26 [0.13, 0.39], 5.30 3 10�5), rs11672660

(GIPR; 0.29 [0.14, 0.45], 1.64 3 10�4), rs997295

(MAP2K5; 0.23 [0.10, 0.35], 3.25 3 10�4), rs6499653

(FTO; 0.25 [0.11, 0.40], 6.23 3 10�4), and rs3824755

(NT5C2; 0.36 [0.15, 0.57], 7.90 3 10�4). The estimates

from MR (bMR) quantify changes in the impact of each

SNP on BMI across the sample distribution. For these 37

SNPs, the median bMR value [Q1, Q3] was 0.135 [0.094,

0.217] kg/m2 per effect allele per BMI percentile. In this sta-

tistical framework, bMR is equal to zero if all SNP interac-

tion effects are also equal to zero (see Supplemental

Note). Positive bMR estimates indicate that the effects of

SNPs vary systemically by BMI percentile because unad-

justed interactions are inflating the effects of SNPs in par-

ticipants with a high BMI.

Given that height is known to be highly heritable, ana-

lyses were extended to height for comparison with the

BMI results.22,84,85 OLS models were fitted for each of



Table 1. BMI-Associated SNP Information and Results from OLS Models

SNP Gene (OMIM) Chromosome Position E/O PMID bOLS [95% CI] p Value

rs1421085 FTO (610966) chr16: 53,800,954 C/T 17658951 0.512 [0.451, 0.572] 5.88 3 10�62

rs10767664 BDNF (113505) chr11: 27,725,986 A/T 20935630 0.246 [0.172, 0.319] 5.89 3 10�11

rs11672660 GIPR (137241) chr19: 46,180,184 C/T 25673413 0.234 [0.159, 0.309] 8.16 3 10�10

rs4788099 SH2B1 (608937) chr16: 28,855,727 G/A 23001569 0.180 [0.113, 0.246] 1.13 3 10�7

rs7903146 TCF7L2 (602228) chr10: 114,758,349 C/T 25673413 0.167 [0.102, 0.232] 5.36 3 10�7

rs2075650 TOMM40 (608061) chr19: 45,395,619 A/G 23001569 0.218 [0.131, 0.305] 9.75 3 10�7

rs11873305 MC4R (155541) chr18: 58,049,192 A/C 25673413 0.384 [0.229, 0.539] 1.23 3 10�6

rs997295 MAP2K5 (602520) chr15: 68,016,343 T/G 23001569 0.131 [0.070, 0.191] 2.40 3 10�5

rs3824755 NT5C2 (600417) chr10: 104,595,849 C/G 25673413 0.218 [0.115, 0.321] 3.32 3 10�5

rs12617233 FANCL (608111) chr2: 59,039,998 C/T 23001569 0.128 [0.067, 0.190] 4.34 3 10�5

rs6499653 FTO (610966) chr16: 53,877,592 T/C 25673413 0.142 [0.073, 0.211] 5.19 3 10�5

rs1788826 NPC1 (607623) chr18: 21,154,024 G/A 25673413 0.124 [0.061, 0.186] 1.08 3 10�4

rs17066846 MC4R (155541) chr18: 58,044,818 G/T 25673413 0.144 [0.068, 0.220] 2.09 3 10�4

rs6453133 HMGCR (142910) chr5: 74,692,776 A/G 25673413 0.124 [0.058, 0.189] 2.18 3 10�4

rs739564 IQCK chr16: 19,740,237 A/G 25673413 0.147 [0.067, 0.227] 2.97 3 10�4

rs2272903 TFAP2B (601601) chr6: 50,786,571 G/A 23001569 0.173 [0.076, 0.270] 4.77 3 10�4

rs7553158 TNNI3K (613932) chr1: 75,005,238 G/A 25673413 0.102 [0.042, 0.162] 8.40 3 10�4

rs11570094 SPI1 (165170) chr11: 47,359,706 A/C 25673413 0.107 [0.041, 0.172] 1.37 3 10�3

rs4946932 FOXO3 (602681) chr6: 108,974,746 C/A 25673413 0.107 [0.041, 0.174] 1.57 3 10�3

rs2819347 LMOD1 (602715) chr1: 201,884,288 G/C 25673413 0.101 [0.037, 0.165] 1.89 3 10�3

rs2836754 ETS2 (164740) chr21: 40,291,740 C/T 25673413 0.099 [0.033, 0.164] 3.20 3 10�3

rs2984618 TAL1 (187040) chr1: 47,690,438 T/G 25673413 0.087 [0.026, 0.148] 5.17 3 10�3

rs11208662 LEPR (601007) chr1: 65,987,164 C/G 23563609 0.139 [0.037, 0.242] 7.66 3 10�3

rs6235 PCSK1 (162150) chr5: 95,728,898 G/C 18604207 0.090 [0.023, 0.158] 8.82 3 10�3

rs9356744 CDKAL1 (611259) chr6: 20,685,486 T/C 22344219 0.071 [0.005, 0.137] 0.035

rs7988412 MTIF3 chr13: 28,000,282 T/C 25673413 0.090 [0.005, 0.175] 0.037

rs1780050 NEXN (613121) chr1: 78,400,540 A/C 25673413 0.063 [0.002, 0.124] 0.042

rs526134 USP37 chr2: 219,402,371 G/A 25673413 0.066 [0.000, 0.132] 0.049

rs980828 NOS1AP (605551) chr1: 162,306,415 G/T 25133637 0.050 [�0.010, 0.110] 0.100

rs17001561 SCARB2 chr4: 77,096,118 A/G 25673413 0.070 [�0.017, 0.157] 0.113

rs6232 PCSK1 (162150) chr5: 95,751,785 C/T 18604207 0.095 [�0.041, 0.232] 0.172

rs749767 KAT8 (609912) chr16: 31,124,407 A/G 25673413 0.042 [�0.022, 0.105] 0.199

rs1211166 NTRK2 (600456) chr9: 87,285,992 A/G 23001569 0.041 [�0.034, 0.116] 0.289

rs2535633 ITIH4 (600564) chr3: 52,859,630 G/C 24861553 0.024 [�0.037, 0.085] 0.437

rs10144353 PRKCH (605437) chr14: 61,911,157 T/C 23563609 0.044 [�0.067, 0.155] 0.441

rs1561288 ADCY3 (600291) chr2: 25,369,002 C/T 23669352 0.024 [�0.047, 0.095] 0.507

rs2283228 KCNQ1 (607542) chr11: 2,849,530 C/A 24861553 �0.037 [�0.159, 0.085] 0.550

37 BMI-predisposing SNPs were selected for analysis. The effect and other (E and O, respectively) alleles were based on original discovery studies (PMID), and SNPs
were coded by BMI-increasing or obesity-predisposing alleles. The indicated positions are based on GRCh37, and all alleles are on the positive strand. The asso-
ciation between these SNPs and BMI was assessed by OLS models that were adjusted for age, age squared, sex, and study. bOLS is the effect size (kg/m2 per effect
allele), and 95% CIs are the 95% confidence intervals.
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Figure 2. The Effects of BMI-Associated SNPs across the Sample BMI Distribution
CQRmodels of BMI-associated SNPs were fitted every fifth percentile of BMI and adjusted for age, age squared, sex, and study. Estimates
of the change in BMI (kg/m2) per effect allele (bCQR) from these models were plotted against the BMI percentile (thick black line) along
with the 95% confidence intervals (shaded gray region). The results from OLS models (bOLS, kg/m

2 per effect allele, horizontal dashed
green line) and the 95% confidence intervals (horizontal dotted green lines) were also plotted for comparison. The change in CQR es-
timates across BMI percentiles was modeled with MR, and estimates from MR (bMR, kg/m

2 per effect allele per BMI percentile, thin
magenta line) and the 95% confidence intervals (dotted magenta lines) were plotted. MR analysis detected significant (p < 1.32 3
10�3) increases in the effects of these SNPs across the sample BMI distribution.
125 height-associated SNPs, and all but two were verified

to increase height (Table S6). CQR and MR were used to

estimate variation in the effects of these SNPs on height

as described previously (Figure S4 and Table S7). Only

one height-associated SNP, rs6219 (IGF1 [MIM: 147440],

bMR [95% CI]¼ 0.48 [0.23, 0.73], p¼ 1.803 10�4), showed

significantly (p < 3.97 3 10�4) increased effects along

the sample height distribution (Table S8). For height-

associated SNPs, the median bMR value [Q1, Q3] was

0.002 [�0.056, 0.085] cm per effect allele per height

percentile. Thus, CQR estimates for height-associated

SNPs were predominantly consistent across height percen-
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tiles, and <1% showed evidence of unadjusted interac-

tions, whereas 24% of BMI-associated SNPs did.

We combined BMI- and height-associated SNPs into GSs

(GS-BMI and GS-height, respectively) to examine the

overall association of these SNPs across the sample distri-

bution. OLS models were used to verify the positive associ-

ation between GS-BMI and GS-height and their respective

traits (Table 3). CQR models for GS-BMI showed steadily

increasing effects with increasing percentiles, whereas

CQR models for GS-height did not vary across percentiles

(Figure 3). MR analysis indicated that percentiles were

significantly and positively associated with CQR estimates
ber 7, 2017



Table 2. Quantifying the Effect of BMI Percentile on CQR Estimates by Using MR

SNP Gene (MIM) RI50 bMR [95% CI] p Value

rs1421085 FTO (610966) 0.473 0.495 [0.370, 0.620] 8.69 3 10�15*

rs6235 PCSK1 (162150) 0.078 0.320 [0.180, 0.459] 7.11 3 10�6*

rs7903146 TCF7L2 (602228) 0.144 0.303 [0.169, 0.437] 9.60 3 10�6*

rs11873305 MC4R (155541) 0.344 0.603 [0.311, 0.895] 5.08 3 10�5*

rs12617233 FANCL (608111) 0.129 0.261 [0.134, 0.387] 5.30 3 10�5*

rs11672660 GIPR (137241) 0.227 0.294 [0.141, 0.447] 1.64 3 10�4*

rs997295 MAP2K5 (602520) 0.131 0.228 [0.103, 0.352] 3.25 3 10�4*

rs6499653 FTO (610966) 0.121 0.253 [0.108, 0.398] 6.23 3 10�4*

rs3824755 NT5C2 (600417) 0.222 0.362 [0.151, 0.574] 7.90 3 10�4*

rs7553158 TNNI3K (613932) 0.099 0.196 [0.071, 0.322] 2.12 3 10�3

rs10767664 BDNF (113505) 0.247 0.217 [0.064, 0.370] 5.50 3 10�3

rs4788099 SH2B1 (608937) 0.151 0.194 [0.057, 0.332] 5.59 3 10�3

rs17066846 MC4R (155541) 0.124 0.215 [0.063, 0.367] 5.61 3 10�3

rs9356744 CDKAL1 (611259) 0.063 0.186 [0.050, 0.322] 7.35 3 10�3

rs6453133 HMGCR (142910) 0.130 0.177 [0.040, 0.314] 0.011

rs2819347 LMOD1 (602715) 0.111 0.137 [0.004, 0.269] 0.044

rs2075650 TOMM40 (608061) 0.283 0.161 [�0.019, 0.341] 0.079

rs4946932 FOXO3 (602681) 0.106 0.120 [�0.016, 0.256] 0.084

rs2984618 TAL1 (187040) 0.069 0.108 [�0.019, 0.235] 0.095

rs980828 NOS1AP (605551) 0.024 0.095 [�0.030, 0.220] 0.135

rs1788826 NPC1 (607623) 0.109 0.094 [�0.036, 0.224] 0.156

rs11570094 SPI1 (165170) 0.103 0.096 [�0.039, 0.231] 0.163

rs7988412 MTIF3 0.088 0.109 [�0.062, 0.280] 0.212

rs2283228 KCNQ1 (607542) 0.003 0.147 [�0.094, 0.388] 0.232

rs739564 IQCK 0.122 0.100 [�0.065, 0.265] 0.234

rs526134 USP37 0.062 0.079 [�0.055, 0.212] 0.247

rs2272903 TFAP2B (601601) 0.145 0.113 [�0.084, 0.310] 0.261

rs2836754 ETS2 (164740) 0.086 0.073 [�0.060, 0.206] 0.280

rs2535633 ITIH4 (600564) 0.016 0.068 [�0.059, 0.194] 0.296

rs11208662 LEPR (601007) 0.142 0.111 [�0.105, 0.327] 0.314

rs6232 PCSK1 (162150) 0.075 0.133 [�0.137, 0.404] 0.334

rs749767 KAT8 (609912) 0.048 0.058 [�0.075, 0.191] 0.390

rs1561288 ADCY3 (600291) 0.027 �0.037 [�0.185, 0.112] 0.627

rs10144353 PRKCH (605437) 0.043 0.049 [�0.171, 0.269] 0.662

rs1211166 NTRK2 (600456) 0.029 �0.027 [�0.179, 0.126] 0.731

rs17001561 SCARB2 0.068 �0.020 [�0.194, 0.154] 0.824

rs1780050 NEXN (613121) 0.045 0.010 [�0.117, 0.136] 0.883

MR was used to model variability in the CQR estimates across BMI percentiles. Note that the percentiles were re-centered around the 50th percentile so that the
intercept from MR models would correspond to the main effect of the SNP at the median. Asterisks (*) denote statistical significance at the Bonferroni-adjusted
threshold of p < 1.32 3 10�3, RI50 is the re-centered intercept of the MR models, bMR is the effect of BMI percentile on CQR estimates (kg/m2 per effect allele per
BMI percentile), and 95% CIs are the 95% confidence intervals.
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Table 3. Analysis of GS-BMI and GS-Height

SNP

OLS Models MR Models

bOLS [95% CI] p Value RI50 bMR [95% CI] p Value

GS-BMI 0.119 [0.108, 0.130] 3.48 3 10�93 0.112 0.151 [0.128, 0.175] 7.03 3 10�37*

GS-height 0.176 [0.169, 0.182] <2.2 3 10�308 0.176 0.005 [�0.010, 0.021] 0.499

BMI- and height-associated SNPs were combined into gene scores (GS-BMI and GS-height, respectively). As in Table 1, the results from OLSmodels are presented.
Furthermore, as in Table 2, MR analysis was applied to quantify the effects of trait (BMI and height) percentile on the CQR estimates for GS-BMI and GS-height,
respectively. The asterisk (*) denotes statistical significance at the Bonferroni-adjusted threshold of p< 1.323 10�3 for GS-BMI and p< 3.973 10�4 for GS-height.
bOLS is the effect size (GS-BMI, kg/m2 per effect allele; GS-height, cm per effect allele) from OLS models, RI50 is the re-centered intercept of the MR models (same
unit as for bOLS), bMR is the effect size (GS-BMI, kg/m2 per effect allele per BMI percentile; GS-height, cm per effect allele per height percentile) from MR models,
and 95% CIs are the 95% confidence intervals.
for GS-BMI (bMR [95%CI]¼ 0.15 [0.13, 0.17], 7.033 10�37)

but not GS-height (0.01 [�0.01, 0.02], 0.499) (Table 3). At

the 10th and 90th BMI percentiles, each additional effect

allele of GS-BMI increased BMI by 0.054 and 0.167 kg/m2

(3.1-fold increase), respectively, whereas each additional

allele of GS-height increased height by 0.172 and

0.180 kg/m2, respectively (Tables S5 and S7). Thus, in

1.73-m-tall persons at the tenth BMI percentile, carrying

ten additional BMI-increasing alleles was associated with

1.6 kg of extra weight, whereas at the 90th BMI percentile,

this was associated with 5.0 kg of extra weight. Further-

more, at the 10th and 90th BMI percentiles, the proportion

of trait variance explained by GS-BMI increased (2.7-fold

from 0.130% to 0.357%), whereas that of GS-height was

stable (1.825% to 1.822%) (Tables S5 and S7). These results

support the conclusion that the impact of BMI-associated

SNPs was larger for individuals with high BMI, whereas

the impact of height-associated SNPs varied little by

height.

Excluding seven SNPs that have also been associated

with comorbidities of obesity from the gene score GS-

BMI (stringent) did not alter the pattern of increasing ef-

fects across the sample BMI distribution (Figure S5).48–55

Moreover, MR analysis indicated that BMI percentile was

significantly and positively associated with the CQR esti-

mates for GS-BMI (stringent) (bMR [95% CI] ¼ 0.14 [0.11,

0.16], p ¼ 2.18 3 10�23). In addition, CQRmodels were re-

fitted with adjustment for diabetic status because this had

been shown tomitigate the effects of possible stratification

within the sample population (see Supplemental Note and

Figure S2). Of the nine SNPs whose effects showed signifi-

cant increases across the sample BMI distribution (Table 2

and Figure 2), three have also been associated with glucose

homeostasis and T2D, namely,GIPR (rs11672660), TCF7L2

(rs7903146), and PCSK1 (rs6235).48,50,53 Refitting CQR

models with adjustment for diabetic status had little

impact on the results from MR analysis of these SNPs or

GS-BMI (Table S9). Additional sensitivity analysis that

included linearly modeling the effects of age or testing

fewer percentiles (i.e., every 10th percentile from the 5th

to 95th BMI percentiles) also showed no substantial

changes to MR results (Table S9). Furthermore, calculating

the GS for each trait without imputing missing genotypes

did not affect results for GS-BMI or GS-height (Figure S5).
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Finally, the results from CQR were compared with those

obtained from conventional subgroup analysis. To this

end, the effect of genotype on the risk of OW, Ob-I,

Ob-II, and Ob-III was evaluated separately with logistic

regression (Table S10). The odds ratios of each SNP for

each category were plotted against the BMI percentiles of

the corresponding category, and CQR estimates were

then overlaid on these bar plots. The patterns from logistic

regression models across BMI categories were qualitatively

consistent with the patterns fromCQRmodels at compara-

ble BMI percentiles (Figure S6).
Discussion

The aim of this study was to investigate variations in the

effect of 37 BMI-associated SNPs across the distribution

of BMI. We introduced a method that applies CQR to

model the effects of SNPs at different percentiles of the

sample BMI distribution and estimates variability in these

effects by using MR. CQR estimates at different percentiles

were shown to be uniform if all unadjusted SNP interac-

tions were zero (see Supplemental Note). It follows that

SNPs whose CQR estimates vary significantly across the

sample BMI distribution are regulated by such interactions.

CQR analysis revealed distinct profiles of associations of

BMI SNPs across the sample BMI distribution. Several of

these SNPs had effects that increased steadily at higher

BMI percentiles, whereas others had uniform effects

that varied little across BMI percentiles (Figure 2 and

Figure S3). One other study has used CQR to investigate

the association between BMI and FTO (rs1558902) and a

GS in a modest sample of adults.86 The patterns reported

by that study are consistent with the results reported

here.86 Two other studies used CQR to investigate the ef-

fects of SNPs on BMI in European children, and their re-

sults are also comparable with those here.87,88 Overall,

the high degree of correspondence between previously

reported CQR results from European children and

those from adults presented here emphasizes the robust-

ness of these findings. Furthermore, the patterns observed

with CQR analysis were compared with those from con-

ventional logistic regression (subgroup analysis), given

that Berndt et al. have demonstrated that the genetic
ber 7, 2017



Figure 3. The Effects of GS-BMI and GS-
Height across the Sample Distribution of
BMI and Height, Respectively
As in Figure 2, CQR models of GS-BMI
and GS-height were plotted against the
BMI percentile and height percentile,
respectively. The thick black line is
the estimated change in each trait per
effect allele (GS-BMI, bCQR, kg/m2 per
effect allele; GS-height, bCQR, cm per ef-
fect allele), and the shaded gray region
represents the 95% confidence inter-
vals. Also plotted are the OLS regression
estimates (GS-BMI, bOLS in kg/m2 per
effect allele; GS-height, bOLS, cm per
effect allele, horizontal dashed green
line) and 95% confidence intervals (hori-
zontal dotted green lines). The change
in CQR estimates across outcome per-
centiles was modeled with MR. Esti-

mates from MR (GS-BMI, bMR, kg/m
2 per effect allele per BMI percentile; GS-height, bMR, cm per effect allele per height percentile;

thin magenta line) and the 95% confidence intervals (dotted magenta lines) were also plotted.
architecture of BMI strongly overlaps BMI categories (Table

S10).89 Across BMI categories, the patterns from logistic

regression were largely consistent with those from CQR

(Figure S6). CQR overcomes several of the limitations of

subgroup analysis by utilizing all sample data to estimate

regression parameters on the same scale as the continuous

outcome, and comparing CQR estimates from different

quantiles is relatively intuitive and easy.23,89

MR was applied in order to model changes in the effects

of BMI SNPs across the sample BMI distribution.25,26

Results fromMR showed that BMI percentile was positively

and significantly associated with CQR estimates for 9 of

37 SNPs (24%). In addition, nominal associations were

also observed for several other SNPs, and the median

bMR [Q1, Q3] was 0.135 [0.094, 0.217] kg/m2 per effect

allele per BMI percentile (Table 2 and Figure S3). This is

supported by the GS-BMI analysis, which also showed

significantly increasing effects across the sample BMI dis-

tribution (Figure 3 and Table 3). These findings indicate

that unadjusted interactions enhanced the effects of

BMI-associated SNPs at higher BMI levels. Modeling the ef-

fects of age linearly or considering fewer BMI percentiles

(i.e., every tenth rather than every fifth percentile) had

minimal effects on these results (Table S9).

There is evidence that differences in disease prevalence

(e.g., in T2D) between sample and general populations

can result in the stratification of secondary traits (e.g.,

BMI) that are risk factors for disease.83 This stratification

can compromise regression estimates of the main effects

of SNPs on secondary traits, and naively adjusting regres-

sion models for disease status might not adequately

address this.83 Although the main effects of SNPs from dis-

ease-adjusted regression models are susceptible to stratifi-

cation bias, the variation of SNP effects across the sample

distribution is not (see Supplemental Note). This was

evident in simulations showing that stratification had little

effect on the power and type I error rate of MR analysis

when CQR models were adjusted for disease status (Fig-
The American
ure S2). Because GIPR (rs11672660), TCF7L2 (rs7903146),

and PCSK1 (rs6235) have been associated with glucose ho-

meostasis and T2D, CQR models were refitted with adjust-

ment for diabetic status and analyzed by MR.48,50,53 These

SNPs and the GS continued to show significantly

increasing effects across the sample BMI distribution

with this adjustment, demonstrating that the results

were not an artifact of possible sample stratification (Table

S9). Although estimating the variability of disease-adjusted

CQR estimates across the sample distribution by using MR

is robust to stratification bias, future studies aimed at esti-

mating the main effects of SNPs by using CQR should

implement methods to address this potential source of

bias.90 A total of 7 of the 37 obesity-predisposing loci

that were selected for analysis have also been associated

with comorbidities of obesity, including glucose homeo-

stasis, T2D, increased lipid levels, and heightened CRP

levels.48–55 Excluding these SNPs from the GS did not alter

the pattern observed across the sample BMI distribution or

affect the results from MR analysis, suggesting that these

findings do not stem from the influence of comorbidities

at high BMI levels (Figure S5).

Although BMI was the primary focus of this report, these

analyses were also applied to height. This was important

because analysis of height could shed light on the nature

of the unadjusted interactions that were detected. BMI is a

composite of both height and weight—height is one of

the most heritable complex human traits, and weight is

strongly influenced by environmental exposures and

behavior.11,91 If unadjusted interactions in the effects of

BMI-associated SNPs are predominantly due to GXG

interactions, then it is reasonable to suppose that these un-

adjusted interactions would be detected at a similar fre-

quency in other quantitative traits such as height. On the

other hand, if GXE interactions predominate, then these

unadjusted interactions might be less frequently detected

in quantitative traits with a smaller environmental compo-

nent (i.e., height). CQR models for 125 height-associated
Journal of Human Genetics 101, 925–938, December 7, 2017 933



SNPs were mostly uniform and exhibited little variability

across height percentiles (Figure S4). Only one significant

association between height percentiles and CQR estimates

for height SNPs was detected by MR, and the median bMR

[Q1, Q3] was 0.002 [�0.056, 0.085] cm per effect allele per

height percentile (Table S8). Moreover, the effects of GS-

height did not vary along the sample height distribution,

which suggests that unadjusted interactions do not affect

the genetic architecture of height to the same extent that

they do for BMI (Table 3 and Figure 3). The simplest expla-

nation for the discrepancy between the results for GS-BMI

and GS-height is that the unadjusted interactions detected

from GS-BMI were predominantly GXE interactions.

GXE interactions for SNPs in FTO have been reported for

physical activity, food intake, dietary salt, alcohol consump-

tion, and sleep duration.92–95 In addition, the association

between TCF7L2 (rs12255372) and BMI was modulated by

fat intake in a weight-loss trial.96 Our analyses also pointed

to significant interactions for FTO (rs1421085) and TCF7L2

(rs7903146) but suggested that such interactions might

extend to additional BMI-associated SNPs—including

rs6235 (PCSK1), rs11873305 (MC4R), rs12617233 (FANCL),

rs11672660 (GIPR), rs997295 (MAP2K5), rs6499653 (FTO),

and rs3824755 (NT5C2)—and GS-BMI. This is entirely

consistent with a report showing that the effects of GS-

BMI (29 SNPs) were enhanced by increased greater exposure

to obesogenic environments and another demonstrating in-

teractions between GS-BMI (69 SNPs) and several obeso-

genic drivers, including socio-economic status, TV watch-

ing, ‘‘Westernized’’ diets, and physical activity.14,97 These

reports also support the argument that the unadjusted inter-

actions detected for BMI SNPs are predominately GXE inter-

actions. Environmental modification of the effects of ge-

netic variants raises the possibility that preventive

measures, sustained lifestyle modifications, and therapeutic

interventions could attenuate some of the genetic predispo-

sition to unhealthy BMI. Indeed, the overall effect of BMI

SNPs is minimal at low BMI levels (Figures 2 and 3). If

weight gain leads to a genetically driven ‘‘vicious circle,’’

then weight loss can lead to a genetically driven ‘‘virtuous

circle.’’ Investigating additional BMI-associated SNPs by us-

ing CQR and MR to uncover the full extent of unadjusted

interactions in the architecture of BMI will be the focus of

future studies.

This study is the largest yet to apply CQR to examine

how the effects of SNPs vary with BMI, and it establishes

quantitative support for hitherto qualitative descriptions

of CQR. The combined utility of CQR and MR presents a

contemporary statistical framework to cue hypotheses on

gene interactions, better define clinical risks associated

with genetic profiles, and prioritize clinical targets. Future

studies aimed at distinguishing variants whose effects are

modified by unadjusted interactions from those with fixed

effects could advance the field of precision medicine. With

the combined application of CQR andMR, this can now be

achieved solely with information contained within the

sample outcome distribution.
934 The American Journal of Human Genetics 101, 925–938, Decem
Supplemental Data

Supplemental Data include one Supplemental Note, six figures,
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