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A Powerful Approach to Estimating
Annotation-Stratified Genetic Covariance
via GWAS Summary Statistics

Qiongshi Lu,1,8 Boyang Li,1 Derek Ou,2 Margret Erlendsdottir,2 Ryan L. Powles,3 Tony Jiang,4

Yiming Hu,1 David Chang,3 Chentian Jin,4 Wei Dai,1 Qidu He,5 Zefeng Liu,5 Shubhabrata Mukherjee,6

Paul K. Crane,6 and Hongyu Zhao1,3,7,*

Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic archi-

tecture is far from complete. Jointly modelingmultiple traits’ genetic profiles has provided insights into the shared genetic basis of many

complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce

a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through

theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling re-

searchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 com-

plex traits with publicly accessible GWAS summary statistics (Ntotal z 4.5 million), we identified more than 170 pairs with statistically

significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and

amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor

allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights

LOAD’s correlation with cognitive traits and hints at an autoimmune component for ALS.
Introduction

Genome-wide association studies (GWASs) have been a

success in the past 12 years. Despite a simple study

design, GWASs have identified tens of thousands of

robust associations for a variety of human complex dis-

eases and traits. Based on the GWAS paradigm, linear

mixed models, in conjunction with the restricted

maximum likelihood (REML) algorithm, have provided

great insights into the polygenic genetic architecture of

complex traits.1–3 The cross-trait extension of linear

mixed model has further revealed the shared etiology of

many different traits.4 Compared to traditional, family-

based approaches, these methods do not require all

the traits to be measured on the same cohort and there-

fore make it possible to study a spectrum of human com-

plex traits using independent samples from existing

GWASs.5,6 Recently, Bulik-Sullivan et al. developed

cross-trait LDSC, a computationally efficient method

that utilizes GWAS summary statistics to estimate genetic

correlation between complex traits.7 LDSC is a major

advance. As summary statistics from consortium-based

GWASs become increasingly accessible,8 it provides great

opportunities for systematically documenting the shared

genetic basis of a large number of diseases and traits.9,10

However, large-scale inference sets a high bar for

both estimation accuracy and statistical power. Further-
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more, existing methods do not allow explicit modeling

of functional genome annotations. As shown in later

sections, the estimated genetic correlations in many

cases are neither statistically significant nor easy to

interpret.

To address these challenges, there is a pressing need for

a statistical framework that provides more accurate covari-

ance and correlation estimates and allows integration of

biologically meaningful functional genome annotations.

The method of moments has recently been shown to

outperform LDSC in single-trait heritability estimation.11

Integrative analysis of GWAS summary statistics and

context-specific functional annotations has provided

novel insights into complex disease etiology through a

variety of applications.12–14 In this paper, we introduce

GNOVA (genetic covariance analyzer), a principled frame-

work to estimate annotation-stratified genetic covariance

using GWAS summary statistics. Through extensive nu-

merical simulations, integrative analysis of 50 complex

traits, and an in-depth case study on late-onset Alzheimer

disease (LOAD [MIM: 104300]) and amyotrophic lateral

sclerosis (ALS [MIM: 105400]), we demonstrate that

GNOVA provides accurate covariance estimates and

powerful statistical inference that are robust to linkage

disequilibrium (LD) and sample overlap. Furthermore,

we show that annotation-stratified analysis enhances

the interpretability of genetic covariance and provides
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novel insights into the shared genetic basis of complex

traits.
Material and Methods

Statistical Model
Here we outline the genetic covariance estimation framework.

The complete derivation, detailed justification for all approxima-

tions, and theoretical proofs are presented in Appendix A. In

short, the genetic covariance that we aim to estimate is the

covariance between the genetic effects of a group of single nucle-

otide polymorphisms (SNPs) on two complex traits. When

functional genome annotations are present, we allow such

covariance to vary in different annotation categories. Specifically,

we define K functional annotations S1, S2, ..., SK (e.g., protein-cod-

ing genes and non-coding regions), whose union covers the

entire genome; assume two studies share the same list of m

SNPs; and assume two standardized traits y1 and y2 follow the

linear models below:

y1 ¼
XK
i¼1

Xibi þ e

y2 ¼
XK
i¼1

Zigi þ d;

where Xi and Zi denote the standardized genotype matrices

defined through annotation Si. Random effects terms bi and gi

denote the corresponding genetic effects for each annotation cate-

gory. SNPs’ genetic effects on two traits follow an annotation-

dependent covariance structure:

EðbiÞ ¼ EðgiÞ ¼ 0; i ¼ 1;.;K

Covðbi;giÞ ¼ E
�
gib

T
i

� ¼ ri

mi

I; i ¼ 1;.;K

where mi and ri denote the total number of SNPs and the total

genetic covariance in annotation category Si, respectively.

Random variables e and d denote the non-genetic effects. Of

note, this notation implicitly assumes the genetic covariance to

follow an additive structure in regions where functional annota-

tions overlap.

In practice, two different GWASs often share a subset of samples.

Without loss of generality, we assume N1 and N2 to be the sample

sizes of two studies and the first Ns samples in each study are

shared. To account for the non-genetic correlation introduced by

sample overlapping, we allow random error terms e and d to be

correlated:

Cov
�
ei; dj

� ¼ E
�
eidj
� ¼ � re;1%i ¼ j%Ns

0; otherwise
:

We note that our model does not require any additional assump-

tion on the heritability structure of either trait.

Estimation of Covariance Parameters via the Method of

Moments
To estimate genetic covariance parameters (i.e., ri; i ¼ 1;.;K),

we developed an analysis framework based on the method

of moments. First, we derive equations that relate the popula-

tion moments to the parameters of interest. For an arbitrary
940 The American Journal of Human Genetics 101, 939–964, Decem
N1 3 N2 matrix A, we study the expectation of yT1 Ay2. It can be

shown that

E
�
yT1Ay2

� ¼XK
i¼1

ri

mi

tr
�
AZiX

T
i

�þ re

 XNs

t¼1

Att

!
:

Here, quantity Att denotes the tth diagonal element of matrix A.

Since there are Kþ1 parameters in total in the model (K genetic

covariance parameters and re), we build a linear system of Kþ1

equations by plugging in Kþ1 different matrices A1,...,AKþ1 into

the equation above. Further, we approximate EðyT1 Ajy2Þ using the

sample moments, i.e., the observed value yT1Ajy2, and get the

following equation:

yT1Ajy2 ¼
XK
i¼1

ri

mi

tr
�
AjZiX

T
i

�þ re

XNs

t¼1

�
Aj

�
tt
; j ¼ 1;.;K þ 1:

Solving this linear system of Kþ1 equations would get us the

method of moments estimators for genetic covariance.

Choices of Matrix A
The method of moments estimation procedure described above

works for arbitrary A matrices. However, it is critical and non-triv-

ial to choose A in practice. Since individual-level genotype and

phenotype data from consortium-based GWASs are in many cases

difficult to access, it is of practical interest to estimate genetic

covariance based on summary statistics only. To achieve this

goal, we define the first K matrices as:

~Aj ¼
XjZ

T
j

mj

; j ¼ 1;.;K:

Plugging in these matrices, the first K equations become:

1

mj

�
XT

j y1
�T

ZT
j y2 ¼

XK
i¼1

ri

mimj

tr
�
ZT
j ZiX

T
i Xj

�
þ re

mj

XNs

t¼1

�
XjX

T
j

�
tt
; j ¼ 1;.;K:

The equality is based on the property of trace and the fact that

first Ns samples are shared between two studies. These equations

can be further approximated by (Appendix A):

1

mj

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTj ðz2Þj ¼
XK
i¼1

ri

mimj

Xmi

l¼1

Xmj

l0¼1

r2lðiÞ l0ðjÞ þ
Nsre

N1N2

; j ¼ 1;.;K:

Here, r2
lðiÞl0ðjÞ denotes the LD between the lth SNP from category Si

and the ðl0Þth SNP from category Sj; z1 and z2 denote the z-scores

of SNP-level associations from two GWASs; and ðz1Þj and ðz2Þj
represent subsets of z-scores corresponding to the SNPs in annota-

tion category Sj. LD can be estimated using an external reference

panel. However, if samples in two studies have different ancestries,

XT
i Xj and ZT

j Zi need to be estimated separately using two reference

panels. When such reference panels do not exist, individual-level

genotype data for a subset of study samples may be needed.

Next, we study the (Kþ1)th equation. We define:

~AKþ1 ¼
�
INs 3Ns 0

0 0

	
N1 3N2

:

Divide N1N2 on both sides of the (Kþ1)th equation, and we get:

1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t
¼ Ns

N1N2

XK
i¼1

ri þ
Ns

N1N2

re:
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Since r1, ., rK are the parameters of interest, we subtract the

(Kþ1)th equation from the first K equations and remove rKþ1

from the linear system. We denote the remaining K equations in

matrix form:0BBBBBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1 �
1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK �
1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t

1CCCCCCCCCA
¼

0BBBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þ l0ð1Þ �
Ns

N1N2

/
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞ l0ð1Þ �
Ns

N1N2

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ �
Ns

N1N2

/
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞ l0ðKÞ �
Ns

N1N2

1CCCCCCCCCA

3

0BB@
r1

«

rK

1CCA:

When the sample sizes of both GWASs are large and the sample

overlap between two studies is moderate, the K equations can be

approximated by:

0BBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK

1CCCCCCA ¼

0BBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þ l0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þ l0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞ l0ðKÞ

1CCCCCCCCA
0B@ r1

«

rK

1CA:

We define

v ¼
�

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1;.;
1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK
	T

M ¼

0BBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þ l0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞ l0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þ l0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ

1CCCCCCCA:

Then, the point estimate of covariance parameters can be denoted

as

br ¼ M�1v:

Importantly, M can be estimated using a reference panel

(e.g., 1000 Genomes Project15) and v is based only on GWAS

summary statistics. Of note, the same estimation framework can

be directly applied to ascertained case-control studies as well

(Appendix A).
The American
Special Cases
Two Independent GWASs

If samples from two GWASs do not overlap, then the non-

genetic effects e and d are independent and only K equations are

needed for estimating covariance parameters. We still define
~Aj ¼ ðXjZ

T
j Þ=mj for j ¼ 1,.,K. That gives us the same covariance

estimator:

br ¼ M�1v:

No Annotation Stratification

If no functional annotation is present, it can be shown that

br ¼ z1z2

r2
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p :

Here, z1z2 is the average product of z-scores from two GWASs; r2 is

the average LD across all SNP pairs in the study. Under the non-

stratified scenario, this estimator can be seen as a two-trait exten-

sion of the heritability estimator proposed in Bulik-Sullivan.16

Two GWASs with Substantial Sample Overlap

If the two GWASs have substantial sample overlap, some approx-

imations we have applied in previous sections would fail (Appen-

dix A). The problem gets down to solving the following equations:0BBBBBBBB@

1

m1N
ðz1ÞT1 ðz2Þ1 �

1

N2

XN
t¼1

�
y1
�
t

�
y2
�
t

«

1

mKN
ðz1ÞTKðz2ÞK �

1

N2

XN
t¼1

�
y1
�
t

�
y2
�
t

1CCCCCCCCA
¼

0BBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞ l0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þ l0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞ l0ðKÞ

1CCCCCCCCA
0B@ r1

«

rK

1CA:

Therefore,

br ¼ M�1

0BBBBB@
1

m1N
ðz1ÞT1 ðz2Þ1 �

1

N
brpheno

«

1

mKN
ðz1ÞTKðz2ÞK �

1

N
brpheno

1CCCCCA ¼ M�1

�
v � brpheno

N
1

	

where thephenotypic correlation brpheno canbe either acquired from

the literature or estimated using computational methods7,17,18

(Appendix A).
Remarks on Overlapping Functional Annotations
When functional annotations overlap, the covariance parameter r

is not the real quantity of interest. Instead, the total covariance in

each annotation category is more biologically meaningful and can

be estimated using the weighted estimator

brW ¼ Wbr
where W is a K 3 K matrix with element

Wij ¼ mjXi

mj

;1%i; j%K:

Here, mjXi denotes the number of SNPs in region SiXSj.
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Theoretical Properties
In this section, we establish the statistical optimality of our esti-

mator by showing that it is ‘‘almost’’ the unbiased estimator

with minimum variance. Here we state all the propositions (see

Appendix A for detailed proofs). Assume y1 and y2 follow a multi-

variate normal distribution:�
y1
y2

	
� MVN

�
0;

�
H1 Q
QT H2

		
:

We begin with calculating the variance of the quadratic form-like

quantity yT1 Ay2.

Proposition 1. Let A be an N1 3 N2 matrix. Then VarðyT1Ay2Þ ¼
trðATH1AH2Þ þ trðATQATQÞ.

It can be shown that the second part, i.e., trðATQATQÞ, is very
small compared to the first term trðATH1AH2Þ in real GWAS data

(Appendix A):

tr
�
ATH1AH2

�
[ tr

�
ATQATQ

�
:

With this in mind, the following claim is approximately true:

Var
�
yT1Ay2

�
ztr

�
ATH1AH2

�
:

Next, we define a matrix A� and show that A� minimizes

tr(ATH1AH2) under some conditions. Based on the argument

above, A� ‘‘almost’’ minimizes VarðyT1 Ay2Þ too.

Proposition 2. Assume two GWASs do not share samples. We

define the following quantities.

(i) Let p ¼ ðp1;.pKÞT be an arbitrarily given K-dimensional

vector;

(ii) Let S be a K 3 K symmetric matrix with element

Sll0 ¼ trðH�1
1 Xl0Z

T
l0 H

�1
2 ZlX

T
l Þ=mlml0 for 1%l; l0%K;

(iii) Let l ¼ ðl1;.lKÞT be a vector such that Sl ¼ p;

(iv) Define A� ¼
PK
j¼1

lj
mj
H�1

1 XjZ
T
j H

�1
2 :

Then, we have:

(1) EðyT1 A�y2Þ ¼
PK
t¼1

ptrt ;

(2) Let A be a matrix such that EðyT1 Ay2Þ ¼
PK

t¼1ptrt . Then,

trðATH1AH2ÞRtrðAT
� H1A�H2Þ.

Proposition 2 tells us that given arbitrary p ¼ (p1,.pK)
T,

if d l ¼ ðl1;.lKÞT such that Sl ¼ p, then yT1A�y2 is an unbiased

estimator for
PK

t¼1ptrt. Furthermore, among all unbiased

estimators with the form yT1Ay2, yT1 A�y2 has the minimum

value of trðAT
� H1A�H2Þ, hence ‘‘almost’’ the minimum variance

VarðyT1 A�y2Þ. Interestingly, by carefully choosing p and l, we can

let A� equal the ~A matrix we have been using throughout the

paper. Therefore, we have the following corollary.

Corollary 1. We assume:

(i) Two GWASs do not overlap;

(ii) The samples in each study are completely independent;

(iii) True LD in both studies (i.e., ZTZ and XTX) is known.

Consider all matrices A that suffice

tr
�
AZXT

� ¼ trðZTZXTXÞ
m

:

We define

brA ¼ m
�
yT1Ay2

�

tr
�
AZXT

�
:
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Then, br ~A
with ~A ¼ ðXZT Þ=m has the lowest variance.

Similarly, we could extend these results to annotation-stratified

scenarios (Appendix A). These results show that although we

initially defined ~Aj for the purpose of simplifying calculation,

the derived covariance estimator actually enjoys some good theo-

retical properties.
Variance Estimation via Block-wise Jackknife
Following previous work,7 we apply a block-wise jackknife

approach to estimate the variance. We divide the genome into b

(e.g., b ¼ 200) blocks B1, ., Bb. Let

v
ðtÞ
i ¼ ðz1ÞTi ðz2Þi � ðz1ÞTSiXBt

ðz2ÞSiXBt�
mi �mSiXBt

� ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ;1%i%K and 1%t%b:

Here, subscript SiXBt indicates the subset of SNPs in both

functional annotation Si and block Bt. Then, Cov(v) is

estimated as:

�dCovðvÞ�
ij
¼ b� 1

b

Xb
t¼1

 
v
ðtÞ
i � 1

b

Xb
s¼1

v
ðsÞ
i

! 
v
ðtÞ
j � 1

b

Xb
s¼1

v
ðsÞ
j

!
:

Therefore, we get

dCovðbrÞ ¼ M�1dCovðvÞM�1:

If annotations overlap,

dCov�brW� ¼ WM�1dCovðvÞM�1WT :

Finally, the test statistic for each covariance parameter is

z� scorei ¼ briffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dCovðbrÞ�
ii

r ;1%i%K:

When annotations overlap,

z� scoreWi ¼ brW
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dCovðbrWÞ

�
ii

r ;1%i%K:

Genetic Correlation
We provide genetic correlation estimates for non-stratified

analysis:

cor ¼ brffiffiffiffiffiffiffiffiffiffiffibh2

1
bh2

2

q :

We use the estimator proposed in Bulik-Sullivan16 to estimate her-

itability for each trait:

bh2

t ¼
1

m
ðztÞT ðztÞ � 1

Nt

m2

Xm
l¼1

Xm
l0¼1

r2ll0

; t ¼ 1;2:

When functional annotations are present, the true heritability

in each annotation category may be small. Although methods

for estimating annotation-stratified heritability have been pro-

posed,11,12 they may provide unstable, sometimes even negative,

heritability estimates, especially when a number of annotation

categories are related to the repressed genome. When true herita-

bility is low, variability in the denominator will have great impact
ber 7, 2017



on genetic correlation estimates. Therefore, we use genetic covari-

ance as a more robust metric when performing annotation-strati-

fied analysis.

Simulation Settings
We simulated quantitative traits using real genotype data from the

WTCCC1 cohort. We removed individuals with genetic related-

ness coefficient greater than 0.05 and filtered SNPs with missing

rate above 1% and/or MAF lower than 5% in samples with Euro-

pean ancestry from the 1000 Genomes Project.15 In addition, we

removed all the strand-ambiguous SNPs. After quality control,

15,918 samples and 254,221 SNPs remained in the dataset. Each

simulation setting was repeated 100 times.

Setting 1

We equally divided 15,918 samples into two sub-cohorts. We

simulated two traits using genetic effects sampled from an infini-

tesimal model.�
b

g

	
� MVN

�
0;

1

254221

�
h2
1I rI
rI h2

2I

		
Heritability for both traits was set as 0.5. We set the genetic covari-

ance to be 0, 0.05, 0.1, 0.15, 0.2, and 0.25.

Setting 2

Instead of fixing the heritability, we assumed only that the herita-

bility for both traits was equal. Genetic correlationwas fixed as 0.2.

We set the genetic covariance to be 0.05, 0.1, 0.15, and 0.2 and

chose heritability value accordingly.

Setting 3

We simulated two traits on the same sub-cohort of 7,959 samples.

Heritability was fixed as 0.5 for both traits. We set the genetic

covariance to be 0, 0.05, 0.1, 0.15, 0.2, and 0.25. Sample overlap

correction was applied to estimate genetic covariance.

Setting 4

We randomly partitioned the genome into two annotation cate-

gories of the same size. We set the heritability for both traits to

be 0.5, and the heritability structure does not depend on func-

tional annotations. Genetic covariance in the first annotation

was set to be 0, 0.05, 0.1, 0.15, and 0.2. Genetic effects for two

traits are not correlated in the second annotation category.

Setting 5

We randomly partitioned the genome into three categories of the

same size. Define annotation-1 to be the union of the first and the

second categories, and let annotation-2 be the union of the second

and the third categories. We set the heritability for both traits to be

0.5, and the heritability structure does not depend on functional

annotations. Genetic covariance parameter for annotation-1

(i.e., r1) is set to be 0.1. We set r2 to be �0.2, �0.1, 0, and 0.1.

The genetic covariance in regions where two annotations overlap

follows an additive structure. For example, when r1 ¼ 0.1 and

r2 ¼ 0.2, the total covariance in annotation-1 is

r1 þ
r2

2
¼ 0:

Similarly, the total covariance in annotation-2 is

r1

2
þ r2 ¼ �0:15:

GWAS Data Analysis
Details of 48 GWASs and the URLs for summary statistics files are

summarized in Table S1. For each summary statistics dataset, we

applied the same quality-control steps described in Bulik-Sullivan
The American
et al.7 using the munge_sumstats.py script in LDSC. In addition,

we removed all the strand-ambiguous SNPs from each dataset.

For each pair of complex traits, we took the overlapped SNPs be-

tween two summary statistics files, matched the effect alleles,

and removed SNPs withMAF below 5% in the 1000Genomes Proj-

ect phase III samples with European ancestry. SNPs on sex chro-

mosomes were also removed from the analysis. We then applied

the GNOVA framework to the remaining SNPs to estimate genetic

covariance. Sample overlap correction was applied when two

GWASs have a large sample overlap. When calculating genetic

correlation between ALS and other traits, we used previously re-

ported 0.085 as the heritability of ALS due to negative heritability

estimates.19

Annotation Data
GenoCanyon and GenoSkyline functional annotations, as previ-

ously reported,14,20,21 integrate various types of transcriptomic

and epigenomic data from ENCODE22 and Roadmap Epige-

nomics Project23 to predict functional DNA regions in the

human genome. GenoCanyon utilizes an unsupervised learning

framework to identify non-tissue-specific functional regions.

GenoSkyline and GenoSkyline-Plus further extended this frame-

work to identify tissue- and cell type-specific functionality in the

human genome. We applied GenoSkyline-Plus annotations for

seven broadly defined tissue categories (i.e., brain, cardiovascular,

epithelium, gastrointestinal, immune, muscle, and other) to strat-

ify genetic covariance by tissue type. When integrating these

annotations in GNOVA, we also included the whole genome as

an annotation category to guarantee that the union of all annota-

tions covers the genome. The whole genome was not added as an

additional annotation track in analyses or simulations when the

functional annotations covered all SNPs in the dataset. The MAF

quartiles were calculated using the genotype data of phase III sam-

ples with European ancestry from the 1000 Genomes Project after

filtering SNPs with MAF below 5%.

LD Score Regression Implementation
We implemented cross-trait LD score regression using the LDSC

software package. For the purpose of fair comparison, we ran LD

score regression on all SNPs in the dataset in the simulation

studies.When analyzing real GWAS data, we followed the protocol

suggested in Bulik-Sullivan et al.7 and used HAPMAP3 SNPs. LD

scores were estimated using phase I samples with European

ancestry in the 1000 Genomes Project.

Ethical Statement
Procedures followed were in accordance with the ethical standards

of the responsible committee on human experimentation. Proper

informed consent was obtained when needed.
Results

Simulations

We simulated two traits using genotype data from the

Wellcome Trust Case Control Consortium (WTCCC)

while assuming a correlated genetic covariance structure.

Detailed simulation settings are described in the Material

and Methods. Since LDSC cannot estimate annotation-

stratified genetic covariance, we compared GNOVA

and LDSC using data simulated from a non-stratified,
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Figure 1. Evaluation of Covariance Estimation and Statistical Power through Simulations
Detailed simulation settings are described in the Material and Methods.
(A–D) Compare GNOVA and LDSC using traits simulated from a non-stratified covariance structure. We first fixed heritability for both
traits but set genetic correlation to different values. The covariance estimates are shown in (A). (B) shows the statistical power. Next, we
fixed genetic correlation but chose different values for heritability and covariance. Covariance estimates and statistical power are shown
in (C) and (D), respectively.
(E–H) Estimate annotation-stratified genetic covariance. In (E) and (F), we simulated data using two non-overlapping functional anno-
tations. Results in (G) and (H) are based on two overlapping annotations. The true covariance values are labeled under each setting.
Type I error was not inflated when the true covariance was zero.
infinitesimal genetic covariance structure (Figures 1A–1D).

Both methods provided unbiased covariance estimates,

but GNOVA estimator had consistently lower variance

across all simulation settings. The same pattern could be

observed for genetic correlation estimates (Figure S1).

Neither method showed inflated type I error when the

true covariance is 0. When comparing the frequencies of

rejecting the null hypothesis, GNOVA is nearly twice as

powerful as LDSC when the true genetic covariance is

below 0.1. To evaluate GNOVA’s robustness against sample

overlap, we simulated two traits using genotype data of the

same cohort. After applying sample overlap correction,

GNOVA still outperformed LDSC, showing higher estima-

tion accuracy and statistical power (Figure S2).

Next, we investigated GNOVA’s capability to estimate

annotation-stratified genetic covariance. We randomly

partitioned the genome into two non-overlapping annota-
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tion categories and simulated two traits using annotation-

dependent genetic covariance (Material and Methods).

GNOVA provided unbiased estimates for the genetic

covariance in each category across all settings (Figures 1E

and 1F). Of note, type I error was well controlled in the

annotation category without genetic covariance even

when the true covariance in the other annotation category

was non-zero, suggesting GNOVA’s robustness under the

influence of LD. Furthermore, when functional annota-

tions overlapped, our method still provided accurate

covariance estimates and powerful inference (Figures 1G

and 1H).

Estimation of Pairwise Genetic Correlation for 48 Human

Complex Traits

We applied GNOVA to estimate genetic correlations for 48

complex traits using publicly available GWAS summary
ber 7, 2017



Figure 2. Comparison of Genetic Corre-
lations Estimated via GNOVA and LDSC
Each point represents a pair of traits.
Overall, genetic correlation estimates are
concordant between GNOVA and LDSC,
but GNOVA ismore powerful when genetic
correlation is moderate. Color and shape of
each data point represent the significance
status given by GNOVA and LDSC. Trait
pairs that involve gout were removed
from this figure because LDSC estimated
its heritability to be negative and could
not properly output p values.
statistics (Ntotal z 4.5 million). Trait acronyms and other

details of all GWASs are summarized in Table S1. Out of

1,128 pairs of traits in total, we identified 176 pairs with

statistically significant genetic correlation after Bonferroni

correction (Table S2 and Figure S3). We also applied LDSC

to the same datasets and identified only 127 significant

pairs (Table S3 and Figure S4). A total of 52 significantly

correlated trait pairs were uniquely identified by GNOVA

while only 3 trait pairs were uniquely identified using

LDSC. Overall, the genetic correlations estimated using

GNOVA and LDSC are concordant (Figure 2). Consistent

with our simulation results, GNOVA is more powerful

when genetic correlation is moderate.

To evaluate model validity, we examined correlations be-

tween several traits that are closely related either physio-

logically or epidemiologically (Table S4). As expected,

femoral and lumbar bone mineral density (FNBMD and

LSBMD) and depressive symptoms (DEP) and major

depressive disorder (MDD [MIM: 608516]) showed strong

positive genetic correlations. We also observed negative

correlations between subjective well-being (SWB) and

neuropsychiatric disorders such as schizophrenia (MIM:

181500), anxiety (MIM: 607834), two depression traits

(DEP and MDD), and neuroticism.

We further examined pairwise correlations between 48

traits (Figures 3 and S3). Following hierarchical clustering,

broad patterns suggesting disease relatedness emerged.

These results are well documented in the literature: neuro-
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psychiatric conditions, metabolic dis-

eases, and gastrointestinal inflamma-

tory disorders clustered together with

positive correlations within each indi-

vidual cluster. We replicated several

previous genetic correlation find-

ings,7 including significant correla-

tions of adult height (HGT) with coro-

nary artery disease (CAD [MIM:

608320]) and age at menarche (AM),

and of years of education (EDU) with

CAD, bipolar disorder (BIP), body-

mass index (BMI), triglycerides, and

smoking status (SMK). Furthermore,

two previous results that passed mul-

tiple correction testing at only 1%
FDR passed Bonferroni correction in our analysis; namely,

we observed a statistically significant negative correlation

between AM and CAD and a positive correlation between

autism (ASD [MIM: 209850]) and EDU.

We also identified a number of genetic correlations that

are consistent with the genetic relationships reported in

the previous literature. For example, previous genetic

correlation analyses identified a negative correlation be-

tween anorexia nervosa (AN [MIM: 606788]) and obesity,

a result we also observed.7 In addition, we found negative

correlations of AN with glucose and triglyceride levels, as

well as a positive correlation with high-density lipoprotein

(HDL). These results provide further support for existing

hypotheses proposing an underlying neural, rather than

metabolic, etiology for metabolic syndrome.12,21,24 We

see an unsurprising positive correlation between glucose

and insulin levels, which is consistent with our under-

standing of diabetes.25 Positive correlations between mul-

tiple sclerosis (MS [MIM: 126200]) and Crohn disease

(CD) and more generally, inflammatory bowel disease

(IBD [MIM: 266600]), agree with existing reports of shared

susceptibility for these diseases.26–28 We demonstrate a

positive correlation between asthma (MIM: 600807) and

eczema (MIM: 603165), which share numerous loci identi-

fied in previous GWASs.29 We also reproduced recent find-

ings linking bone mineral density with metabolic dysfunc-

tion with positive correlations between FNBMD and

both glucose and type II diabetes (T2D [MIM: 125853]).30
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Figure 3. Estimated Genetic Correlations
of 435 Pairs of Traits from 30 GWASs
To visualize a large number of pairwise cor-
relations more efficiently, we excluded
closely related traits and studies with
smaller sample sizes (N < 30,000) in this
figure. Asterisks highlight significant ge-
netic correlations after Bonferroni correc-
tion for all 1,128 pairs (p < 4.4 3 10�5).
The complete heatmap matrix is presented
in Figure S3. The order of traits was deter-
mined by hierarchical clustering.
Interestingly, however, we did not see significant correla-

tions of bone mineral density with cardiovascular diseases.

Among neuropsychiatric disorders, we identified positive

correlations between BIP and both depression and neurot-

icism. Associations between neuroticism and depression

are well documented. Neuroticism is highly comorbid

with MDD,31,32 and our findings are consistent with previ-

ously observed genetic pleiotropy among neuroticism,

MDD, BIP, and schizophrenia.33,34

Especially notable are findings that suggest a genetic

basis for associations between traits regarding which the

literature is either equivocal or absent, and which provide

useful information to guide further study. For example, we

observed correlations of serum urate (SU) with AM (�0.12),

T2D (0.275), and triglycerides (0.38), and we consistently

observed associations of SU and markers of metabolic

syndrome. In the literature, the genetic architecture of

this association has not been extensively studied.35 Alleles

in IRF8 (MIM: 601565), a regulatory factor of type I

interferons, are associated with MS and systemic lupus

erythematosus (SLE [MIM: 152700]), but with opposite

effect; high type I IFN titers are thought to be causal in

SLE but are lower in MS relative to healthy controls.36 In

this analysis, however, we found a positive correlation

between MS and SLE. We also draw attention to the

significant negative correlation between MS and ASD.

This replicates a previous genetic association between MS

and ASD, with more recent evidence suggesting shared

biomedical markers, such as increase in concentrations

of tumor necrosis factor-alpha (TNF-a) in serum in ASD

and in cerebrospinal fluid in MS.37,38 However, previous
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treatment of MS with anti-TNF-a led

to an increase in the number of demy-

elinating lesions and a significantly

higher relapse rate.39 Furthermore,

we observed a positive genetic correla-

tion between ulcerative colitis (UC)

and primary billary cirrhosis (PBC

[MIM: 109720]). CD, also an IBD

and thus closely related, has been re-

ported to share susceptibility genes

with PBC including TNFSF15 (MIM:

604052), ICOSLG (MIM: 605717),

and CXCR5 (MIM: 601613).40 Here
we show that ulcerative colitis may also be genetically

related to PBC.

Stratification of Genetic Covariance by Functional

Annotation

In this section, we apply functional annotations to further

dissect the shared genetic architecture of 48 complex traits.

We have previously developed GenoCanyon, a statistical

framework to predict functional DNA elements in the hu-

man genome through integration of annotation data.20

We partitioned the genome into two non-overlapping

categories (i.e., functional and non-functional) based on

GenoCanyon scores (Material andMethods) and estimated

genetic covariance within the functional and the non-

functional genome for each pair of traits (Table S5). The

total genetic covariance estimated using the stratified

model is highly concordant with covariance estimated us-

ing the non-stratified model (Figure 4A). However, genetic

covariance is enriched in the predicted functional genome

for most traits (Figure 4B). Based on this approach, we

identified one more pair of correlated traits, i.e., low-den-

sity lipoprotein (LDL) and total cholesterol (TC), whose ge-

netic covariance largely concentrated in the predicted

functional genome and achieved significance (rfunc ¼
0.060; p ¼ 1.0 3 10�6) while the overall covariance did

not (roverall ¼ 0.062; p ¼ 7.7 3 10�5).

Next, we partitioned genetic covariance based on

quartiles of SNPs’ minor allele frequencies (MAFs) in

subjects with European ancestry from the 1000 Genomes

Project (Material and Methods; Table S6). Similar to

the previous analysis, we identified high concordance



Figure 4. Annotation-Stratified Covariance Analysis
(A) Stratify genetic covariance by genome functionality predicted by GenoCanyon. Total genetic covariance estimates were highly
concordant between stratified and non-stratified models.
(B) For significantly correlated pairs of traits based on the non-stratified model, we compared genetic covariance in the functional and
the non-functional genome. Solid line marks the expected value based on annotation’s size. Trait pair LDL-TC is also plotted.
(C) Stratify genetic covariance by MAF quartile. We compared the genetic covariance estimated by MAF-stratified and non-stratified
models.
(D) Six pairs of traits that are uniquely correlated in the lowest MAF quartile. Intervals show the standard error of covariance estimates.
Asterisks indicate p values below 4.4 3 10�5.
(E) Stratify genetic covariance by tissue type. Each bar denotes the log-transformed p value. Dashed line highlights the Bonferroni-
corrected significance level 0.05/(7 3 1128) ¼ 6.3 3 10�6.
between the total covariance estimated using MAF-strati-

fied model and the covariance estimates based on non-

stratified model (Figure 4C). Overall, the estimated genetic

covariance in four MAF quartiles was comparable

(Figure S5). However, we identified three pairs of traits

that are uniquely correlated in the lowest MAF quartile

(Figure 4D), namely asthma with chronic kidney

disease (CKD; p ¼ 1.8 3 10�5), gout (MIM: 138900)

with CKD (p ¼ 4.2 3 10�8), and asthma with gout

(p ¼ 4.4 3 10�5). For several trait pairs, covariance in

the lowest MAF quartile showed reversed direction

compared to other quartiles. Covariance between CKD

and gout even showed reversed direction compared to

the estimated total covariance, highlighting the distinc-

tion in how common and less common variants are

involved in the shared genetic architecture between these

traits. Our findings also hint at the possible selection pres-

sure on DNA variations contributing to metabolic traits
The American
including CKD and gout, as well as immune diseases

including asthma.

Finally, we studied tissue specificity of genetic covari-

ance through integration of GenoSkyline-Plus annotations

(Material and Methods). GenoSkyline-Plus integrates mul-

tiple epigenomic and transcriptomic annotations from the

Roadmap Epigenomics Project to identify tissue- and cell

type-specific functional regions in the human genome.14

We utilized seven broadly defined tissue and cell types

(i.e., brain, cardiovascular, epithelium, gastrointestinal,

immune, muscle, and other) to stratify genetic covariance

for 1,128 pairs of traits (Table S7). Six tests from four pairs

of traits passed Bonferroni correction, i.e., p < 0.05/

(1,128 3 7) ¼ 6.3 3 10�6 (Figures 4E and S6). As expected,

UC, as an IBD, was significantly and positively corre-

lated with IBD in immune-related functional genome

(p ¼ 2.0 3 10�6), and two psychiatric diseases, BIP and

schizophrenia, were specifically correlated in the genome
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Table 1. Dissection of Genetic Covariance between LOAD and ALS

Annotation Category Covariance p Value

Non-stratified GNOVA 0.016 (0.004) *2.0 3 10�4

LDSC 0.012 (0.007) 0.075a

GenoCanyon functional 0.016 (0.004) *8.2 3 10�5

non-functional 0.003 (0.004) 0.377

MAF Q1 �0.001 (0.003) 0.842

Q2 0.003 (0.004) 0.361

Q3 0.004 (0.004) 0.327

Q4 0.008 (0.003) *0.005

Numbers in parentheses indicate standard errors. Significant p values after ad-
justing for multiple testing within each section are indicated by an asterisk (*).
ap value in LDSC was calculated from genetic correlation instead of genetic
covariance.
predicted to be functional in brain (p ¼ 8.7 3 10�8). In

addition, we identified cognitive function (COG) and

EDU, and birth weight (BW) and HGT to be significantly

correlated in both brain- and immune-related functional

genome. Of note, since the sizes of functional annotations

are linked to statistical power, p values here should not be

interpreted as reflecting the importance of each tissue.

Some tissues may be critically involved in the etiology of

analyzed traits even if they may have p values that are

not statistically significant. For example, IBD and UC

were substantially correlated in the gastrointestinal tract

(p ¼ 3.7 3 10�4). Many of these tests may become signifi-

cant in the near future as GWASs with larger sample sizes

are published.

Dissection of Shared and Distinct Genetic Architecture

between LOAD and ALS

LOAD and ALS are neurodegenerative diseases. Despite

success of large-scale GWASs,19,41 our understanding

of their genetic architecture is still far from complete.

We applied GNOVA to dissect the genetic covariance

between LOAD and ALS using publicly available GWAS

summary statistics (NLOAD ¼ 54,162; NALS ¼ 36,052;

Table S8).

We identified positive and significant genetic correlation

between LOAD and ALS (correlation ¼ 0.175, p ¼ 2.0 3

10�4). LDSC provided similar estimates but failed to

achieve significance (Table 1). 82.6% of the total genetic

covariance between LOAD and ALS is concentrated in

33% of the genome predicted to be functional by

GenoCanyon (p ¼ 8.2 3 10�5). Furthermore, MAF-strati-

fied analysis showed that 54.6% of the covariance could

be explained by the SNPs in the highest MAF quartile

(p ¼ 0.005). In fact, genetic covariance is lower with

lower MAF, and covariance in the lowest MAF quartile is

nearly negligible. This is surprising considering that

the heritability of ALS is enriched in variants with

lower MAF.19 We also performed tissue-stratified analysis
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using GenoSkyline-Plus annotations (Table S9). No tissue

passed the significance threshold after multiple testing

correction, but covariance is more concentrated in im-

mune, brain, and cardiovascular functional genome, and

showed nominal significance in the immune annotation

track (p ¼ 0.014). Whether this will lead to a potential

neuroinflammation pathway shared between LOAD and

ALS remains to be studied in the future using larger

datasets.

Next, we stratified genetic covariance between LOAD

and ALS by chromosome. Somewhat surprisingly, we

did not observe a linear relationship between per-chro-

mosome genetic covariance and chromosome size

(Figure 5A) given that the overall genetic covariance is

positive and significant. Since we have observed the con-

centration of genetic covariance in the functional

genome, we further partitioned each chromosome by

genome functionality. We identified a clear and positive

linear relationship between genetic covariance in the

functional genome and the size of predicted functional

DNA on each chromosome (Figure 5B). The correlation

between per-chromosome genetic covariance in the

non-functional genome and the size of non-functional

chromosome is negative and significantly smaller than

the corresponding quantity in the functional genome

(Figure S7; p ¼ 0.044; tested using Fisher transfor-

mation). Our findings suggest a polygenic covariance

architecture between LOAD and ALS and highlight the

importance of stratifying genetic covariance by functional

annotation.

Finally, we jointly analyzed LOAD, ALS, and 48 other

complex traits (Table S10). Interestingly, LOAD and ALS

showed distinct patterns of genetic correlations with

other complex traits (Figure 6). We identified negative

and significant correlations between LOAD and cognitive

traits including COG and EDU. HGT and age at first

birth (AFB), two traits related to hormonal regulation as

well as socio-economic status, were also significantly

and negatively correlated with LOAD. Consistent with

previous reports, we did not identify substantial correla-

tion between LOAD and other neurological and/or psychi-

atric diseases.7,9 We identified negative correlations

between LOAD and gastrointestinal inflammatory diseases

including a significant correlation with PBC. Asthma and

eczema were both positively correlated with LOAD,

suggesting a complex genetic relationship between

LOAD and different immune-related diseases. Although

some of these traits had the same correlation direction

with ALS, none of them were significant. Instead, ALS

was significantly and positively correlated with MS, a

neurological disease with a well-established immune

component.42 ALS was also positively correlated with

several other immune-related diseases including celiac

disease (CEL [MIM: 212750]), asthma, PBC, and IBD

(including CD and UC), though none of these were statis-

tically significant. The nominal correlations between

ALS and neurological and psychiatric diseases including
ber 7, 2017



Figure 5. Stratification ofGenetic Covari-
ance between LOAD and ALS by Chro-
mosome
(A) Comparisons of the estimated per-chro-
mosome genetic covariance with chromo-
some size.
(B) Comparisons of the estimated genetic
covariance in the predicted functional
genome on each chromosome with size of
the functional genome.
epilepsy, schizophrenia, BIP, AN, and MDD also remain to

be validated in the future using studies with larger sample

sizes.
Discussion

Although our understanding of complex disease etiology is

still far from complete, we have gained valuable knowl-

edge about the genetic architecture of numerous complex

traits from large-scale association studies, partly due to ad-

vances in statistical genetics. First, a large proportion of

trait heritability can be explained by SNPs that do not

pass the Bonferroni-corrected significance threshold.1

Therefore, it is often helpful to utilize genome-wide data

instead of focusing only on significant SNPs in post-

GWAS analyses. Second, sample size is critical for many

statistical genetics applications. However, individual-level

genotype and phenotype data from consortium-based

GWASs are not always easily accessible due to policy and

privacy concerns. Thanks to the great efforts from large in-

ternational collaborations such as the Psychiatric Geno-

mics Consortium in promoting open science and data

sharing, it has become a tradition for GWAS consortia to

share summary statistics to the broader scientific commu-

nity. Therefore, it is of practical interest to use GWAS sum-

mary statistics as the input of downstream analytical

methods.8 Finally, integration of high-throughput tran-

scriptomic and epigenomic annotation data has been

shown to improve statistical power as well as interpret-

ability in many recent complex trait studies.12–14 As large

consortia such as ENCODE22 and Roadmap Epigenomics

Project23 continue to expand, integrative approaches

based on functional genome annotations will become an

even greater success. In this paper, we developed a novel

method to estimate and partition genetic covariance be-

tween complex traits. Our method enjoys all the afore-

mentioned advantages. It requires only genome-wide

summary statistics and a reference panel as input and

allows stratification of genetic covariance by functional

genome annotation, which provides novel insights into
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the shared genetic basis between com-

plex traits and, in some cases, im-

proves the statistical power.

Numerous studies have hinted at a

shared genetic basis among neurode-
generative diseases.43,44 Due to the convenience and effi-

ciency of LDSC and the wide accessibility of GWAS sum-

mary statistics, several attempts have been made to

estimate genetic correlation between neurodegenerative

diseases.9,45 To date, these efforts have not been as success-

ful as similar studies on psychiatric diseases and immune-

related traits. One reason is that existing methods may not

be statistically powerful enough to identify moderate ge-

netic correlation using GWASs with limited sample sizes.

In addition, the shared genetics among neurodegenerative

diseases may not fit the global, infinitesimal covariance

structure that most existing tools are based on. In this

study, we applied GNOVA to dissect the genetic covariance

between LOAD and ALS, twomajor neurodegenerative dis-

eases, using summary statistics from the largest available

GWASs. Our findings suggest that covariance between

LOAD and ALS is concentrated in the predicted functional

genome and in very common SNPs. Moreover, after

applying functional annotations to stratify the genome,

estimated per-chromosome genetic covariance is propor-

tional to chromosome size, suggesting a shared polyge-

netic architecture between LOAD and ALS and also

demonstrating the importance of incorporating predicted

genetic activity with GenoCanyon. In addition, joint anal-

ysis with 50 complex traits also revealed distinctive genetic

covariance profiles for LOAD and ALS. LOAD is negatively

correlated withmultiple traits related to cognitive function

and hormonal regulation, while ALS is positively corre-

lated with MS and a few other immune-related traits. Our

findings provided novel insights into the shared and

distinct genetic architecture between LOAD and ALS and

also further demonstrated the benefits of incorporating

functional genome annotations into genetic covariance

analysis.

Also of note are findings involving serum urate. SU

was positively correlated with gout but also with a few

metabolic traits. Gout is an arthritic inflammatory process

caused by deposition of uric acid crystals in joints,

and the role of hyperuricemia in gout is well established.

More recently, a role for hyperuricemia in the patho-

physiology of metabolic syndrome and CKD has been
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Figure 6. Genetic Correlations between
LOAD, ALS, and 48 Complex Traits
Significant pairs with p < 0.05/(48 3 2) ¼
5.2 3 10�4 are highlighted in red.
suggested.46 While associations between hyperuricemia

and cardiovascular disease are well described,47 multiple

hypotheses exist regarding details of its involvement.48

For example, hyperuricemia may lead to inflammation
950 The American Journal of Human Genetics 101, 939–964, December 7, 2017
in the kidney through vascular

smooth muscle proliferation, inducing

hypertension via pre-glomerular

vascular changes.49 It has also been

shown to induce oxidative stress in

various settings; in adipocytes and islet

cells, this may be involved in develop-

ment of diabetes, and it may also

result in impaired endothelin function

and activation of the renin-angio-

tensin-aldosterone system, leading to

hypertension.50–53 Despite this evi-

dence, genetic investigations have

not identified a strong relationship be-

tween hyperuricemia and metabolic

syndrome. Polymorphism in gene

SLC22A12 (MIM: 607096) was associ-

ated with hyperuricemia but not with

metabolic syndrome.54 Mendelian

randomization studies showed an as-

sociation between uric acid and gout

but did not find an association with

T2D or cardiovascular risk factors

such as hypertension, glucose, or

CAD.55,56 Our results suggest that

GNOVA successfully isolated a signal

of biological and clinical significance

that provides important impetus for

further inquiry in the etiology of

metabolic syndrome.

Dissecting relationships among com-

plex traits is a major goal in human ge-

netics research. Genetic covariance is a

useful metric to quantify such relation-

ships, but it has its limitations. First, ge-

netic covariance implicitly imposes a

strong assumption on the shared ge-

netic basis between complex traits.

Not only may the same set of genetic

components affect multiple traits, but

their effect sizes on both traits are also

assumed to be proportional. In the

future, it is of interest to extend our

method to estimate more generalized

metrics, e.g., consistency in effect di-

rections. Second, genetic covariance

analysis does not highlight specific
DNA segments with pleiotropic effects. Several SNP-based

methods have been developed to identify pleiotropic asso-

ciations using GWAS summary statistics.57,58 However, due

to the large number of SNPs in the genome, statistical



power is a critical issue and large-scale inference remains

challenging. In addition, we have demonstrated that inte-

grating functional annotations into genetic covariance

analysis could reveal subtle structures in shared genetics be-

tween complex traits, but interpretation of genetic covari-

ance remains a challenge. Pickrell et al. recently proposed

an approach to distinguishing causal relationships among

traits from pleiotropic effects via independent biological

pathways.59 Han et al. developed a method to distinguish

pleiotropy from phenotypic heterogeneity.60 Although

many questions remain unanswered, these recent studies

have broadened our view on interpreting complex genetic

relationships between human traits. Further, statistical po-

wer in genetic covariance analysis will be reduced if the

shared genetic components have discordant effect direc-

tions on different traits. This problem can be partly ad-

dressed by the aforementioned SNP-based methods.

Recently, Shi et al. developed a method to estimate local

heritability and genetic correlation.61,62 This approach pro-

vides an alternative methodological option for analyzing

genetic effects at specific loci. Finally,wenote that common

SNPs in GWASs do not fully explain phenotypic similarity.

For example, the estimated genetic covariance among lipid

traits explains only 10%–15% of their phenotypic covari-

ance available on LD Hub.10 Other factors such as rare var-

iants, copy-number variations, and environmental factors

may have substantial contributions to the phenotypic

covariance among complex traits. Dissection of these com-

plex relationships will be an interesting topic to pursue in

the future. Our method, in conjunction with many other

tools, provides the most complete picture to date about

shared genetics between complex phenotypes.

In summary, we developed GNOVA, a novel statistical

framework to perform powerful, annotation-stratified ge-

netic covariance analysis using GWAS summary statistics.

Through theoretical proof, we have established GNOVA’s

statistical optimality within the framework of method of

moments. Compared to LD score regression, GNOVA pro-

vides more accurate genetic covariance estimates and

powerful statistical inference. Its unique feature of per-

forming annotation-stratified analysis also adds depth to

existing analysis strategies. Using GNOVA, we were able

to expand the discovery of genetic covariance among a

spectrum of common diseases and complex traits. Our

findings shed light onto the shared and distinct genetic

architecture of complex traits. As the sample sizes in ge-

netic association studies continue to grow, our method

has the potential to continue identifying shared genetic

components and providing novel insights into the etiol-

ogy of complex diseases.
Appendix A

Model Details

We begin with introducing a general scenario. Assume two

standardized traits y1 and y2 follow a linear model:
The American
y1 ¼ Xbþ e

y2 ¼ Zgþ d:

Matrices X and Z denote the standardized genotype infor-

mation for two GWASs. To simplify the algebra, we as-

sume both the genotypes (X and Z) and phenotypes

(y1 and y2) are standardized. We define K possibly overlap-

ping functional annotations S1, S2, ., SK. All together,

these annotations cover the entire genome. We assume

two studies share the same list of m SNPs. Vectors b

and g are random effect terms that quantify the

genetic effects on traits y1 and y2, respectively. Variables

e and d denote the non-genetic effects. Genetic and

non-genetic effects on the same trait are assumed to be in-

dependent. A SNP’s genetic effects on two different traits

can be correlated. The genetic covariance depends on

functional annotations and follows an additive structure

in regions where functional annotations overlap. Specif-

ically, we have

E
�
bSNPj

�
¼ E

�
gSNPj

�
¼ 0 and E

�
gSNPj

bSNPj

�
¼
X
c:j˛Sc

rc

mc

;

j ¼ 1;.;m

E
�
gSNPi

bSNPj

�
¼ 0; isj;

where mc denotes the total number of SNPs in annotation

Sc. Notation j˛Sc indicates that the jth SNP is located in

functional annotation Sc. If we use Xi and Zi to denote

the genotype matrices within annotation Si (some SNPs

may be counted multiple times if the functional annota-

tions overlap) and use bi and gi to denote the correspond-

ing genetic effects, the model can be equivalently re-writ-

ten as follows:

y1 ¼
XK
i¼1

Xibi þ e

y2 ¼
XK
i¼1

Zigi þ d

E
�
gib

T
i

� ¼ ri

mi

I; i ¼ 1;.;K:

In practice, two different GWASs often share a subset of

samples. Without loss of generality, we assume N1 and N2

to be the sample sizes of two studies and the first NS sam-

ples in each study are shared. Therefore, the first NS rows

of matrices Xi and Zi (i ¼ 1, ., K) are identical. To account

for the non-genetic correlation introduced by sample over-

lapping, we allow random error terms e and d to be

correlated.

E
�
eidj
� ¼ � re;1%i ¼ j%Ns

0; otherwise
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To summarize, this framework explicitly models the

annotation-stratified genetic covariance in the genome.

It also allows functional annotations to overlap, which is

important when applied to real-world annotation data.

Furthermore, we take the sample overlap between different

GWASs into account. Finally, our model does not require

any additional assumption on the heritability structure.

In following sections, we discuss how to estimate covari-

ance parameters r1, ., rK.
Estimate Covariance Parameters

First, for an arbitraryN13N2 matrix A, we study the expec-

tation of yT1Ay2.

E
�
yT1Ay2

� ¼ E

  XK
i¼1

bT
i X

T
i þ eT

!
A

 XK
i¼1

Zigi þ d

!!

¼ tr

 
E

  XK
i¼1

bT
i X

T
i þ eT

!
A

 XK
i¼1

Zigi þ d

!!!

¼ tr

 
E

 XK
i¼1

bT
i X

T
i AZigi

!
þ E
�
eTAd

�!

¼ E

 
tr

 XK
i¼1

bT
i X

T
i AZigi

!
þ tr

�
eTAd

�!

¼ E

 XK
i¼1

tr
�
AZigib

T
i X

T
i

�!þ E
�
tr
�
AdeT

��
¼
XK
i¼1

tr
�
AZiE

�
gib

T
i

�
XT

i

�þ tr
�
AE
�
deT
��

¼
XK
i¼1

ri

mi

tr
�
AZiX

T
i

�þ re

 XNs

t¼1

Att

!

Here, quantity Att denotes the tth diagonal element of ma-

trix A. To estimate the covariance parameters, we plug in

Kþ1 different matrices A1,...,AKþ1 into the equation above.

Next, we apply method of moments to approximate

EðyT1 ~Ajy2Þ using the observed value yT1
~Ajy2. After these

steps, we get the following equations:

yT1Ajy2 ¼
XK
i¼1

ri

mi

tr
�
AjZiX

T
i

�þ re

XNs

t¼1

�
Aj

�
tt
; j ¼ 1;.;K þ 1:

Solving this linear system of Kþ1 equations would get us

a set of point estimates br1;.; brK for covariance parameters.

We discuss the details in the following section.
Choose Matrix A

The estimation approach described the previous section

works for an arbitrary set of A matrices. So how do

we properly choose them in practice? We begin with

solving a practical issue. Processing large-scale GWASs

requires a substantial amount of resource for both

computation and data storage. Moreover, individual-level

genotype and phenotype data from consortium-based
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GWASs are often non-accessible due to policy concerns.

However, sharing the summary statistics has become

a common practice in the field of complex disease ge-

netics. Summary data for many GWASs are openly

accessible online. Therefore, it is of practical interest

to estimate genetic covariance based on summary statis-

tics only. To achieve this goal, we define the first K

matrices as:

~Aj ¼
XjZ

T
j

mj

; j ¼ 1;.;K:

Plugging in these matrices, the first K equations become:

1

mj

�
XT

j y1
�T

ZT
j y2 ¼

XK
i¼1

ri

mimj

tr
�
XjZ

T
j ZiX

T
i

�
þ re

mj

XNs

t¼1

�
XjZ

T
j

�
tt

¼
XK
i¼1

ri

mimj

tr
�
ZT
j ZiX

T
i Xj

�
þ re

mj

XNs

t¼1

�
XjX

T
j

�
tt
; j ¼ 1;.;K:

The second equality is based on the property of trace and

the fact that first NS samples are shared between two

studies. To calculate all the terms in these equations, we

note that

XNs

t¼1

�
XjX

T
j

�
tt
¼
XNs

t¼1

Xmj

l¼1

�
Xj

�
tl
¼
Xmj

l¼1

XNs

t¼1

�
Xj

�
tl
z
Xmj

l¼1

Ns

¼ mjNs:

Here, we used approximation ðPNs

t¼1ðXjÞtlÞ=Nsz1. This is

because genotype data are standardized and the shared

sub-cohort is a subset of all individuals. In practice, if

twoGWASs share samples, the shared sample size is usually

greater than several hundred, which is sufficient to make

this approximation reasonable.

1

mimj

tr
�
ZT
j ZiX

T
i Xj

�
¼ N1N2

mimj

tr

  
ZT
j Zi

N2

!�
XT

i Xj

N1

	!

z
N1N2

mimj

tr
�
DT

ij Dij

�
¼ N1N2

mimj

Xmi

l¼1

Xmj

l0¼1

r2lðiÞ l0ðjÞ :

We approximate the sample linkage disequilibrium

(LD) matrices from both studies, i.e., ðZT
i ZjÞ=N2 and

ðXT
i XjÞ=N1, using the population LD matrix Dij. In

practice, we estimate LD using a reference panel, e.g., sam-

ples from the 1000 Genomes Project with European

ancestry. In the formula, r2
lðiÞl0ðjÞ denotes the LD between

the lth SNP from category Si and the (l0)th SNP from cate-

gory Sj.

�
XT

j y1
�T

ZT
j y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p �
1ffiffiffiffiffiffi
N1

p XT
j y1

	T�
1ffiffiffiffiffiffi
N2

p ZT
j y2

	
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ðz1ÞTj ðz2Þj
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Here, z1 and z2 denote the z-scores of SNP-level associa-

tions from two GWASs; ðz1Þj and ðz2Þj represent z-scores

corresponding to the SNPs in annotation category Sj.

We plug in these quantities and divide N1N2 on both

sides of the K equations, then we get:

1

mj

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTj ðz2Þj ¼
XK
i¼1

ri

mimj

Xmi

l¼1

Xmj

l0¼1

r2lðiÞl0ðjÞ

þ Nsre

N1N2

; j ¼ 1;.;K:

Next, we study the (Kþ1)th equation. We define:

~AKþ1 ¼
�
INs 3Ns

0
0 0

	
N1 3N2

:

We make the following observations.

yT1
~AKþ1y2 ¼

XNs

t¼1

�
y1
�
t

�
y2
�
t

1

mi

tr
�
~AKþ1ZiX

T
i

� ¼ 1

mi

XNs

t¼1

�
ZiX

T
i

�
tt
¼ 1

mi

XNs

t¼1

�
XiX

T
i

�
tt

z
1

mi

miNs ¼ Ns

Again, the approximation is based on the facts that the

genotype data are standardized, the first NS rows of

matrices Xi and Zi are identical, and the shared sub-

cohort is a subset of the complete study with sufficient

sample size.

XNs

t¼1

�
~AKþ1

�
tt
¼
XNs

t¼1

1 ¼ Ns

Plugging in these quantities and dividing N1N2 on both

sides of the (Kþ1)th equation, we get:
0BBBBBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1 �
1

N1N2

XNs

t¼1

�
y1
�

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK �
1

N1N2

XNs

t¼1

�
y1

0BBBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ �
Ns

N1N2

/
m

« 1

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þ l0ðKÞ �
Ns

N1N2

/
m

The American
1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t
¼ Ns

N1N2

XK
i¼1

ri þ
Ns

N1N2

re:

We denote all Kþ1 equations in matrix form:

0BBBBBBBBBBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK

1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t

1CCCCCCCCCCCCCCA
¼

0BBBBBBBBBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ
Ns

N1N2

« 1 « «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ
Ns

N1N2

Ns

N1N2

/
Ns

N1N2

Ns

N1N2

1CCCCCCCCCCCCCCCA

3

0BBBBB@
r1

«

rK

rKþ1

1CCCCCA:

Since r1,., rK are the parameters of interest, we subtract

the (Kþ1)th equation from the first K equations and re-

move rKþ1 from the linear system:
t

�
y2
�
t

�
t

�
y2
�
t

1CCCCCCCCCA
¼

1

Km1

XmK

l¼1

Xm1

l0¼1

r2lðKÞ l0ð1Þ �
Ns

N1N2

«

1

KmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ �
Ns

N1N2

1CCCCCCCCCA

0BB@
r1

«

rK

1CCA

Journal of Human Genetics 101, 939–964, December 7, 2017 953



When the sample sizes of both GWASs are large and

the sample overlap between two studies is moderate,

thenNS / (N1N2) is a small quantity.We use the approxima-

tion Ns=ðN1N2Þz0. Similarly, we have:

1

N1N2

XNs

t¼1

�
y1
�
t

�
y2
�
t
¼ Ns

N1N2

 
1

Ns

XNs

t¼1

�
y1
�
t

�
y2
�
t

!
z0:

Here, ðPNs

t¼1ðy1Þtðy2ÞtÞ=Ns is the phenotypic correlation be-

tween two traits among the shared NS samples and is

bounded by 1. Therefore the approximation is reasonable.

Additional justification on these approximations will be

given in the next section.

In summary, the K equations can be approximated by:0BBBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK

1CCCCCCCA ¼

0BBBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ

1CCCCCCCCCA

0BB@
r1

«

rK

1CCA:

We denote

v ¼
�

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1;.;
1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK
	T

M ¼

0BBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞ l0ðKÞ

1CCCCCCCA:

Then, the point estimate of covariance parameters can be

denoted as

br ¼ M�1v:

Importantly, we emphasize that M can be estimated us-

ing a reference panel and v is based only on GWAS sum-

mary data. No individual-level genotype or phenotype in-

formation from the original GWASs is needed in this

framework. Finally, we note that in some rare cases (e.g.,

very similar annotations are used simultaneously in the

analysis), matrix M may not be invertible. In that case,

we can acquire the genetic covariance estimator through

the following minimization problem.

br ¼ min
r

kMr� v k 2
2
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Remarks on Approximation

Several approximations are critical in the estimation

framework described above. In this section, we discuss

why these approximations are reasonable.

Approximation 1.

1

Ns

XNs

t¼1

�
Xj

�
tl
z1

This approximation is based on law of large numbers and

two assumptions. (1) The genotype matrix is standardized.

(2) If two GWASs share samples, the shared sample size NS

needs to be sufficiently large. The first assumption is

commonly seen in complex trait genetic models. It is actu-

ally not a required condition, but it simplifies the algebra.

The second assumption is also most likely going to hold in

practice. If two GWASs have a sample overlap, it is often

because one or more cohorts were used in both studies. A

cohort like this usually has a sample size that ranges

from several hundred to a few thousand, which is suffi-

ciently large for the law of large numbers to hold.

Approximation 2.

1

mimj

Xmi

l¼1

Xmj

l0¼1

r2lðiÞ l0ðjÞ �
Ns

N1N2

z
1

mimj

Xmi

l¼1

Xmj

l0¼1

r2lðiÞl0ðjÞ

Since the first term ðPmi

l¼1

Pmj

l0 ¼1
r2
lðiÞl0ðjÞ Þ=mimj does not

depend on GWAS sample size, this approximation holds

when N1 and N2 are large and the shared sample size NS

is moderate. Notably, this condition does not contradict

with the condition in approximation 1. In approximation

1, we require the value of NS to exceed several hundred so

that the law of large numbers could hold. Here, we require

the ratio between NS and the actual GWAS sample size to

be small. Since large-scale GWAS meta-analyses published

in recent years often have sample sizes on the scale of

104 or 105, this approximation is reasonable. Of note, the

term NS / N1N2 is introduced when we remove parameter

rKþ1 from the linear system by subtracting the (Kþ1)th

equation from the first K equations. If the true value of

rKþ1, i.e., the non-genetic covariance introduced by sample

overlap, is in fact very small compared with the genetic

covariance, then this approximation can be omitted.

Finally, we note that even if the two GWASs are performed

on the identical cohort (i.e., complete sample overlap),

then NS / N1N2 ¼ 1/N is still a small quantity as long as

the sample size N is big.

Approximation 3.

1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
�
1

mj

ðz1ÞTj ðz2Þj
	
� Ns

N1N2

 
1

Ns

XNs

t¼1

�
y1
�
t

�
y2
�
t

!

z
1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
�
1

mj

ðz1ÞT1 ðz2Þ1
	

The z-scores in GWASs usually do not deviate much from

the standard normal distribution. Therefore ðz1ÞTj ðz2Þj=mj

is close to the true correlation between z1 and z2. Simi-

larly, since we assume the phenotypes are standardized,
ber 7, 2017



ðPNs

t¼1ðy1Þtðy2ÞtÞ=Ns is the phenotypic correlation between

two traits among the shared NS samples. Therefore, as

long as

Ns

N1N2

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p

or equivalently,

Nsffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p � 1;

then it is reasonable to omit the term ðPNs

t¼1ðy1Þtðy2ÞtÞ=
N1N2. Therefore, similar to the condition in approxima-

tion 2, if the GWAS sample sizes N1 and N2 are large and

the shared sample sizeNS is moderate, then approximation

3 holds. However, we note that if there is a substantial

overlap between two studies (e.g., when analyzing two

traits measured on the same cohort), then Ns=
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
z1

and we can no longer omit the term ðPNs

t¼1ðy1Þtðy2ÞtÞ=
N1N2 from the equation.

Special Cases

(1) Two Independent GWASs

If samples from two GWASs do not overlap, then the

non-genetic effects e and d are independent and re ¼ 0.

So only K equations are needed for estimating covariance

estimators. We still define ~Aj ¼ ðXjZ
T
j Þ=mj for j ¼ 1,.,K.

That gives us:0BBBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK

1CCCCCCCA ¼

0BBBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ

1CCCCCCCCCA

0BB@
r1

«

rK

1CCA:

Therefore, none of the approximations discussed in the

previous section is needed in this simple scenario. The

covariance estimator remains the same:

br ¼ M�1v:

(2) No Annotation Stratification

If we do not stratify covariance by functional annota-

tion, then br is just a one-dimensional estimator for the

overall genetic covariance.

br ¼ v=M ¼
�

1

m
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTðz2Þ
	, 

1

m2

Xm
l¼1

Xm
l0¼1

r2ll0

!

¼ z1z2

r2
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p

The American
Here, z1z2 is the average product of z-scores from two

GWASs; r2 is the average LD across all SNP pairs in the

study, or equivalently, the average LD score across all

SNPs in the study. Interestingly, this estimator can be

seen as a two-trait extension of the heritability estimator

proposed by Bulik-Sullivan.16

(3) Two Different Traits Measured on the Same

Cohort

If the samples completely overlap between two GWASs

(i.e.,N1¼N2¼NS¼N), as we discussed in the previous sec-

tion, approximations 1 and 2 still hold as long as the sam-

ple size is large but approximation 3 would fail. Therefore,

after subtracting the (Kþ1)th equation from the first K

equations and removing parameter rKþ1, we get:0BBBBBBBB@

1

m1N
ðz1ÞT1 ðz2Þ1 �

1

N2

XN
t¼1

�
y1
�
t

�
y2
�
t

«

1

mKN
ðz1ÞTKðz2ÞK �

1

N2

XN
t¼1

�
y1
�
t

�
y2
�
t

1CCCCCCCCA
¼

0BBBBBBBB@
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m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þ l0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ

1CCCCCCCCA
0B@ r1

«

rK

1CA:

In practice, since we do not assume access to the

individual-level phenotype data, an estimate of pheno-

typic correlation brpheno needs to be acquired elsewhere

(since we assumed phenotypes to be standardized, this

is equivalent to phenotypic covariance). Then, we

could get the covariance estimate under sample overlap

correction:

br ¼ M�1

0BBBBB@
1

m1N
ðz1ÞT1 ðz2Þ1 �

1

N
brpheno

«

1

mKN
ðz1ÞTKðz2ÞK �

1

N
brpheno

1CCCCCA ¼ M�1

�
v � brpheno

N
1

	
:

For some traits, brpheno may have been reported in the

literature. Otherwise, we need to estimate brpheno using

GWAS summary statistics. Bulik-Sullivan et al. showed

the following LD score regression equation without anno-

tation structure in the genome:7

E
�
ðz1Þjðz2Þj

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
r

m

Xm
i¼1

r2ij þ
Nsrphenoffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p :

In this special case when two traits are measured on the

same cohort, the formula becomes

E
�
ðz1Þjðz2Þj

�
¼ Nr

m

Xm
i¼1

r2ij þ rpheno:
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Therefore, we could apply LD score regression and use the

estimated intercept as brpheno.
(4) Binary Traits

In this section, we investigate whether we could analyze

ascertained case-control studies using our framework. It

has been previously shown that the following formula

holds under the liability threshold model:7

E

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞSNPj
ðz2ÞSNPj

	
¼ robs

m

Xm
i¼1

r2ij

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1� P1ÞP2ð1� P2Þ

p
3

�
Ncas;cas

Ncas
1 Ncas

2

þ Ncon;con

Ncon
1 Ncon

2

� Ncas;con

Ncas
1 Ncon

2

� Ncon;cas

Ncon
1 Ncas

2

	
;

where robs denotes the covariance on the observed scale,

Na,b denotes the number of samples with phenotype a in

study 1 and phenotype b in study 2, Na
i denotes the total

number of samples with phenotype a in study i, and Pi de-

notes the sample prevalence of trait yi. Using the same

approximation we used in method of moments,

E

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞSNPj
ðz2ÞSNPj

	
z

1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞSNPj
ðz2ÞSNPj

;

it is straightforward to extend it to the following matrix

form that allows annotation stratification:

0BBBBBB@

1

m1

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞT1 ðz2Þ1 � h

«

1

mK

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ðz1ÞTKðz2ÞK � h

1CCCCCCA ¼

0BBBBBBBB@

1

m1m1

Xm1

l¼1

Xm1

l0¼1

r2lð1Þl0ð1Þ /
1

mKm1

XmK

l¼1

Xm1

l0¼1

r2lðKÞl0ð1Þ

« 1 «

1

m1mK

Xm1

l¼1

XmK

l0¼1

r2lð1Þl0ðKÞ /
1

mKmK

XmK

l¼1

XmK

l0¼1

r2lðKÞl0ðKÞ

1CCCCCCCCA
0B@ robs;1

«

robs;K

1CA;

where

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð1� P1ÞP2ð1� P2Þ

p �
Ncas;cas

Ncas
1 Ncas

2

þ Ncon;con

Ncon
1 Ncon

2

� Ncas;con

Ncas
1 Ncon

2

� Ncon;cas

Ncon
1 Ncas

2

	
:

We note that h ¼ 0 when two GWASs do not share

any sample. In that case, covariance estimator remains

the same:

br ¼ M�1v:

We just need to interpret it as the covariance on the

observed scale.
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When two studies have a substantial sample overlap,

h cannot be ignored in the equations and therefore

needs to be estimated. Notably,
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
h is in fact the inter-

cept term in cross-trait LD score regression. Therefore,

similar to the previous scenario in this section, we could

estimate bh by running LD score regression first and then

plug it in the equations to calculate the covariance

estimate:

br ¼ M�1

0BBBBB@
1

m1N
ðz1ÞT1 ðz2Þ1 � bh

«

1

mKN
ðz1ÞTKðz2ÞK � bh

1CCCCCA ¼ M�1ðv � bh 1Þ:

Finally, we note that the argument can be extended to

estimate the covariance between a continuous trait and a

binary trait. However, the estimated genetic covariance

will be on the half-observed scale.7

Remarks on Overlapping Functional Annotations

We have discussed parameter estimation in previous sec-

tions. Our framework allows functional annotations to

overlap, which is an important feature in real data analysis.

However, when functional annotations overlap, the

covariance parameter r is not the real quantity of interest.

Instead, the total covariance in each annotation category is

more meaningful biologically. For instance, the total

covariance in functional annotation S1 is

covarianceðS1Þ ¼
XK
i¼1

ri
miX1

mi

;

where miX1 denotes the number of SNPs in region S1XSi.

Of note, this quantity equals to r1 when S1 does not

overlap with any other functional annotation. Therefore,

we use the weighted estimator brW to estimate the total

covariance in each category when functional annotations

overlap:

brW ¼ Wbr:
Here, W is a K 3 K matrix with element

Wij ¼ mjXi

mj

;1%i; j%K:

Theoretical Properties of Covariance Estimator and

Some Numerical Justifications

As discussed in previous sections, matrices ~Aj have twoma-

jor properties under the ideal case where two GWASs do

not share samples.

(1) Vector v ¼ ðyT1 ~A1y2;.; yT1
~AKy2ÞT=N1N2 can be

directly calculated using GWAS summary statistics.

(2) EðyT1 ~Ajy2Þ ¼
PK

i¼1trð~AjZiX
T
i Þri=mi, where terms

trð~AjZiX
T
i Þ only depends on LD and therefore can

be estimated using a reference panel.
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In this section, we investigate whether changing A could

get us another covariance estimator, brA, that is even better

than br, which is based on ~Aj. We show that under reason-

able conditions, all estimators in our framework are unbi-

ased but br ¼ M�1v ‘‘almost’’ has the minimal variance.

The proof is an extension of the MINQUE theory devel-

oped in Rao et al.63

To prove the theoretical properties, we need an addi-

tional assumption on the distribution of y1 and y2. We as-

sume that y1 and y2 are marginally standardized and follow

a multivariate normal distribution:�
y1
y2

	
� MVN

�
0;

�
H1 Q
QT H2

		
:

H1 and H2 denote the variance-covariance matrices of two

traits; Q denotes the covariance elements between two

traits. Based on the model we have described throughout

the paper:

Q ¼ E
�
y1y

T
2

� ¼XK
i¼1

ri

mi

XiZ
T
i :

We begin with calculating the variance of the quadratic

form-like quantity yT1Ay2.

Proposition 1. Let A be a N1 3 N2 matrix. Then

VarðyT1Ay2Þ ¼ trðATH1AH2Þ þ trðATQATQÞ.
Proof:

We note that

E
�
y1 j y2

� ¼ QH�1
2 y2

Var
�
y1 j y2

� ¼ H1 �QH�1
2 QT :

Therefore,

Var
�
yT1Ay2

� ¼ E2

�
Var1 j 2

�
yT1Ay2

��þ Var2
�
E1 j 2

�
yT1Ay2

��
¼ E2

�
Var1 j 2

�
yT2A

Ty1
��þ Var2

�
E1 j 2

�
yT2A

Ty1
��

¼ E2

�
yT2A

T
�
H1 �QH�1

2 QT
�
Ay2

�
þ Var2

�
yT2A

TQH�1
2 y2

�
¼ tr

�
AT
�
H1 �QH�1

2 QT
�
AH2

�
þ Var2

�
yT2A

TQH�1
2 y2

�
¼ tr

�
ATH1AH2

�� tr
�
ATQH�1

2 QTAH2

�
þ Var2

�
yT2A

TQH�1
2 y2

�
:

Since

yT2A
TQH�1

2 y2 ¼ yT2H
�1
2 QTAy2;

we have

yT2A
TQH�1

2 y2 ¼ 1

2

�
yT2A

TQH�1
2 y2 þ yT2H

�1
2 QTAy2

�
¼ 1

2
yT
2

�
ATQH�1

2 þH�1
2 QTA

�
y2:

Matrix ATQH�1
2 þH�1

2 QTA is symmetric; therefore

yT2 ðATQH�1
2 þH�1

2 QTAÞy2 is a quadratic form. This gives us
The American
Var
�
yT2A

TQH�1
2 y2

� ¼ 1

4
32tr

��
ATQH�1

2

þH�1
2 QTA

�
H2

�
ATQH�1

2

þH�1
2 QTA

�
H2

�
¼ 1

2
tr
�
ATQATQþ ATQH�1

2 QTAH2

þH�1
2 QTAH2A

TQþH�1
2 QTAQTAH2

�
¼ 1

2

�
2tr
�
ATQATQ

�
þ 2tr

�
ATQH�1

2 QTAH2

��
¼ tr

�
ATQATQ

�þ tr
�
ATQH�1

2 QTAH2

�
:

Therefore,

Var
�
yT1Ay2

� ¼ tr
�
ATH1AH2

�� tr
�
ATQH�1

2 QTAH2

�
þ tr

�
ATQATQ

�þ tr
�
ATQH�1

2 QTAH2

�
¼ tr

�
ATH1AH2

�þ tr
�
ATQATQ

�
:

Notably, if y1 ¼ y2 and A is symmetric, then this result be-

comes thewell-knownvariance formula forquadratic forms.

Var
�
yT1Ay1

� ¼ 2trðAH1AH1Þ

Proposition 1 tells us that the variance of yT1Ay2 contains

two parts. Later we will show that the second part, i.e.,

trðATQATQÞ, is very small compared to the first term,

trðATH1AH2Þ, when analyzing real GWAS data. This is

because the individuals in GWASs are almost independent

samples and the elementsofmatrixQ are small.On the con-

trary,weassume thedata tobe standardized, so thediagonal

elements of matrices H1 and H2 are always 1. This leads to

tr
�
ATH1AH2

�
[ tr

�
ATQATQ

�
:

With this in mind, the following claim is approximately

true.

Var
�
yT1Ay2

�
ztr

�
ATH1AH2

�
In the next proposition, we define a N1 3 N2 matrix A�

and show that A� minimizes trðATH1AH2Þ under some con-

ditions. Based on the argument above, A� ‘‘almost’’ mini-

mizes VarðyT1Ay2Þ too.
Proposition 2. Assume two GWASs do not share sam-

ples. We define the following quantities.

(i) Let p ¼ ðp1;.pKÞT be an arbitrarily given K-dimen-

sional vector;

(ii) Let S be a K3K symmetric matrix with element

Sll0 ¼ trðH�1
1 Xl0Z

T
l0 H

�1
2 ZlX

T
l Þ=mlml0 for 1%l; l0%K;

(iii) Let l ¼ ðl1;.lKÞT be a vector such that Sl ¼ p;

(iv) Define A� ¼
PK

j¼1ðlj=mjÞH�1
1 XjZ

T
j H

�1
2 .

Then, we have:

(1) EðyT1A�y2Þ ¼
PK

t¼1ptrt ;

(2) Let A be a matrix such that EðyT1Ay2Þ ¼
PK

t¼1ptrt .

Then, trðATH1AH2ÞRtrðAT
� H1A�H2Þ.
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Proof:

(1)

Note that

E
�
yT1A�y2

� ¼XK
t¼1

tr
�
A�ZtX

T
t

�
rt

mt

:

Therefore, it is equivalent to show

tr
�
A�ZtX

T
t

�
mt

¼ pt ;1%t%K:

In fact,

1

mt

tr
�
A�ZtX

T
t

� ¼XK
j¼1

lj

mjmt

tr
�
H�1

1 XjZ
T
j H

�1
2 ZtX

T
t

�
¼
XK
i¼1

ljStj ¼ pt :

(2)

Let B ¼ A� A�, then

tr
�
ATH1AH2

� ¼ tr
�
ðA� þ BÞTH1ðA� þ BÞH2

�
¼ tr

�
AT

�H1A�H2

�þ tr
�
AT

�H1BH2

�
þ tr

�
BTH1A�H2

�þ tr
�
BTH1BH2

�
:

First, we show that trðAT
� H1BH2Þ ¼ trðBTH1A�H2Þ ¼ 0.

tr
�
AT

�H1BH2

� ¼ tr
�
HT

2 B
THT

1 A�
� ¼ tr

�
H2B

TH1A�
�

¼ tr
�
BTH1A�H2

�
¼ tr

 
BTH1

XK
j¼1

ljH
�1
1

~AjH
�1
2 H2

!

¼
XK
j¼1

ljtr
�
BTH1H

�1
1

~AjH
�1
2 H2

�
¼
XK
j¼1

ljtr
�
BT ~Aj

�
In the first part of this proof, we have shown that

tr
�
A�ZjX

T
j

�
mj

¼ pj;1%j%K:

Since

E
�
yT1Ay2

� ¼XK
t¼1

ptrt

or equivalently,

pj ¼
tr
�
AZjX

T
j

�
mj

¼ tr
�
ðA� þ BÞ~AT

j

�
;1%j%K:

Therefore,

tr
�
BT ~Aj

� ¼ tr
�
B~A

T

j

�
¼ 0;1%j%K:
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This gives us

tr
�
AT

�H1BH2

� ¼ tr
�
BTH1A�H2

� ¼ 0:

Thus, all that remains is to show that trðBTH1BH2ÞR0.

Since H1 and H2 are positive definite, dD1, D2 such that

H1 ¼ DT
1D1 and H2 ¼ DT

2D2. Then,

tr
�
BTH1BH2

� ¼ tr
�
BTDT

1D1BD
T
2D2

� ¼ tr
�
D1BD

T
2D2B

TDT
1

�
¼ tr

�
D1BD

T
2

�
D1BD

T
2

�T�
R0:

Hence,

tr
�
ATH1AH2

�
Rtr

�
AT

�H1A�H2

�
:

Proposition 2 tells us that given arbitrary p ¼ ðp1;.pKÞT,
if dl ¼ ðl1;.lKÞT such that Sl ¼ p, then yT1A�y2 is an

unbiased estimator for
PK

t¼1ptrt. Furthermore, among all

unbiased estimators with the form yT1Ay2, y
T
1A�y2 has the

minimum value of trðAT
� H1A�H2Þ, hence ‘‘almost’’ the min-

imum variance VarðyT1A�y2Þ.
Corollary 1. (without annotation stratification)

We assume:

(i) Samples from two GWASs do not overlap;

(ii) The samples in each study are completely indepen-

dent;

(iii) True LD in both studies (i.e., ZTZ and XTX) is

known.

Consider all matrices A that suffice

tr
�
AZXT

� ¼ trðZTZXTXÞ
m

:

We define

brA ¼ m
�
yT1Ay2

�

tr
�
AZXT

�
:

Then, br ~A
with ~A ¼ ðXZTÞ=m has the lowest variance.

Proof:

LetA be amatrix that suffices trðAZXTÞ ¼ trðZTZXTXÞ=m.

The goal is to show that

VarðbrAÞRVarðbr ~A
Þ

Since the samples in each GWAS are completely indepen-

dent, we have:

H1 ¼ IN1 3N1

H2 ¼ IN2 3N2

Therefore,

S ¼ 1

m2
tr
�
H�1

1 XZTH�1
2 ZXT

� ¼ 1

m2
tr
�
ZTZXTX

�
:

Let p ¼ S and l ¼ 1. Then, by definition we have

A� ¼ H�1
1 XZTH�1

2

m
¼ XZT

m
¼ ~A:
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Since we have

1

m
tr
�
AZXT

� ¼ 1

m2
tr
�
ZTZXTX

� ¼ p;

by proposition 2, we know that

Var
�
yT1Ay2

�
RVar

�
yT1

~Ay2
�
:

Therefore,

VarðbrAÞ ¼ Var

 
yT1Ay2

1
m2 trðZTZXTXÞ

!

¼
�

m2

trðZTZXTXÞ
	2

Var
�
yT1Ay2

�
R

�
m2

trðZTZXTXÞ
	2

Var
�
yT1

~Ay2
� ¼ Varðbr ~A

Þ:

Of note, br ~A
is identical to the non-annotation-stratified

covariance estimator we developed in previous sections

(see section Special Cases). Although we initially defined
~A ¼ ðXZT Þ=m for the purpose of simplifying calculation,

corollary 1 tells us that ~A actually enjoys some good theo-

retical properties. As we have emphasized before, matrix ~A

could greatly simplify the estimation procedure because (1)

yT1
~Ay2 can be calculated from GWAS summary statistics

and (2) trð~AZXTÞ ¼ trðZTZXTXÞ=m depends only on LD.

In corollary 1 we showed that if we want to keep the conve-

nient property trðAZXT Þ ¼ trðZTZXTXÞ=m, then it is

impossible to improve the variance of estimator br by

choosing another matrix A. We note, however, additional

variability may be introduced when we estimate LD using

a reference panel in practice.

Similarly, we have a corollary for annotation-stratified

covariance estimator.

Corollary 2. (with annotation stratification) We

assume:

(i) Samples from two GWASs do not overlap;

(ii) The samples in each study are completely indepen-

dent;

(iii) The two LD matrices are known and identical (i.e.,

XTX=N1 ¼ ZTZ=N2);

(iv) SNPs in different functional annotations are not

in LD.

Consider all matrix sets Aj ð1%j%KÞ that suffice

tr
�
AjZjX

T
j

�
¼

tr
�
ZT
j ZjX

T
j Xj

�
mj

; 1%j%K:

We define

brA ¼

0BBBBB@
1

m1

tr
�
~A1Z1X

T
1

�
/ 1

mK
tr
�
~A1ZKX

T
K

�
« 1 «

1

m1

tr
�
~AKZ1X

T
1

�
/ 1

mK
tr
�
~AKZKX

T
K

�

1CCCCCA
�10@ yT1

~A1y2
«

yT1
~AKy2

1A:
The American
Then, br ~A
with ~Aj ¼ ðXjZ

T
j Þ=mj ð1%j%KÞ has the lowest

variance.

Proof:

Since the samples in each GWAS are completely inde-

pendent, we have:

H1 ¼ IN1 3N1

H2 ¼ IN2 3N2

Therefore,

Sll0 ¼ 1

mlml0
tr
�
H�1

1 Xl0Z
T
l0 H

�1
2 ZlX

T
l

� ¼ 1

mlml0
tr
�
Xl0Z

T
l0 ZlX

T
l

�
:

Given integer c such that 1%c%K, let pðcÞ ¼ ðp1;.pKÞT
where

pi ¼ 1

mcmi

tr
�
XcZ

T
c ZiX

T
i

�
;1%i%K

and lðcÞ ¼ ðl1;.lKÞT where

li ¼
�
1; i ¼ c
0; isc

:

Then, by definition we have

A� ¼
XK
j¼1

lj

mj

H�1
1 XjZ

T
j H

�1
2 ¼ XcZ

T
c

mc

¼ ~Ac:

By condition (iii), it is straightforward to check

pðcÞ ¼ SlðcÞ:

Therefore, by proposition 2 we know that

Var
�
yT1Acy2

�
RVar

�
yT1A�y2

� ¼ Var
�
yT1

~Acy2
�
:

Since c is arbitrary, we have

Var
�
yT1Acy2

�
RVar

�
yT1

~Acy2
�
; 1%c%K:

Finally, since SNPs in different functional annotations are

not in LD,

1

mj

tr
�
~AiZjX

T
j

�
¼ 1

mimj

tr
�
ZT
i ZjX

T
j Xi

�
¼ 0; cisj:

Therefore, the variance of the cth estimated covariance

component:

Var
�ðbrAÞc

� ¼ Var

 
yT1Acy2

1

m2
c

tr
�
ZT
c ZcX

T
c Xc

�
!

¼
 

m2
c

tr
�
ZT

c ZcXT
c Xc

�!2

Var
�
yT1Acy2

�
R

 
m2

c

tr
�
ZT
c ZcXT

c Xc

�!2

Var
�
yT1

~Acy2
�

¼ Var
�ðbr ~A

Þc
�
;1%c%K:
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It is straightforward to check that br ~A
is identical to the

annotation-stratified covariance estimator we developed

in previous sections. In corollary 2, we showed that under

some reasonable conditions, the annotation-stratified

covariance estimator also has the minimal variance prop-

erty. However, since we assumed linkage equilibrium for

SNPs in different functional annotations, this result does

not apply to overlapping annotations.

In this section, we have shown some theoretical proper-

ties of our covariance estimator. However, the claim

tr
�
ATH1AH2

�
[ tr

�
ATQATQ

�
is critical in our argument. Moreover, each proposition and

corollary has its assumptions, which may or may not hold

in practice. Therefore, we provide numerical justifications

to our claims.

Numerical Study 1. Compare trðATH1AH2Þ and

trðATQATQÞ
Simulation workflow:

Step 1.We simulate a 5003500 matrix A whose elements

are independently sampled from standard normal distribu-

tion Nð0;1Þ.
Step 2. We simulate the 1;00031;000 matrix

E

��
y1
y2

	�
yT1 yT2

�	 ¼
�
H1 Q

QT H2

	
by fixing the diagonal elements to be 1 and sampling

the non-diagonal elements from uniform distribution

Unif ð0;0:05Þ. Sample pairs with a genetic relatedness coef-

ficient greater than 0.05 are often removed from GWAS

analysis. Therefore, the matrix we simulate here closely

mimics the phenotypic covariance matrices we see in real

studies.

Step 3. We sample 10,000 independent vectors from the

distribution �
y1
y2

	
� MVN

�
0;

�
H1 Q

QT H2

		
:

Step 4.Wecalculate and record trðATH1AH2Þ, trðATQATQÞ,
and the sample variance of yT1Ay2.

Step 5. Repeat steps 1–4 100 times.

From the simulations, we can see that trðATH1AH2Þ
closely approximates the sample variance of yT1Ay2, while

trðATQATQÞ is a negligible term (Figure S9). The median

log fold, i.e., log10ð
��trðATH1AH2Þ=trðATQATQÞ �� Þ, is 3.12.

Therefore, trðATH1AH2Þ is on average around 1,300 times

greater than trðATQATQÞ in our simulation, which is

consistent with our claim.

Numerical Study 2. Compare VarðyT1Ay2Þ and

VarðyT1 ~Ay2Þ
Simulation workflow:

Step 1. Randomly divide 15,918 samples from the Well-

come Trust Case Control Consortium (WTCCC) dataset

into two subgroups (each with 7,959 samples and

m ¼ 254,221 SNPs after quality control). We simulate

100 independent sets of continuous traits y1 and y2 using
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real genotype data fromWTCCC and the following covari-

ance structure on heritability and genetic covariance:

�
b

g

	
� MVN

0BB@0;
1

m

0BB@
1

2
I

1

10
I

1

10
I

1

2
I

1CCA
1CCA:

Step 2. We simulate a 7,959 3 7,959 matrix A whose ele-

ments are independently sampled from standard normal

distribution N(0,1). We also simulate a matrix A0 of the

same size by permuting elements of ~A. Then we rescale

matrices A and A0 so that

E
�
yT1Ay2

� ¼ E
�
yT1A

0y2
� ¼ E

�
yT1

~Ay2
�

or equivalently,

tr
�
AZXT

� ¼ tr
�
A0ZXT

� ¼ tr
�
~AZXT

�
:

This makes all three matrices comparable.

Step 3. Calculate yT1Ay2 and yT1A
0y2 for all 100 indepen-

dent sets. Record the sample variance for each quantity.

Step 4. Repeat steps 2–3 100 times and get a distribution

for dVarðyT1Ay2Þ and dVarðyT1A0y2Þ. Compare them with the

sample variance of yT1
~Ay2.

The results are consistent with our previous conclusions.

Both dVarðyT1Ay2Þ and dVarðyT1A0y2Þ are consistently and sub-

stantially greater than dVarðyT1 ~Ay2Þ. In fact, the variances

are not on the same scale. Median dVarðyT1Ay2Þ is

8.4 3 107 times greater than dVarðyT1 ~Ay2Þ and mediandVarðyT1A0y2Þ is also 2.5 3 107 times greater (Figure S10).

These results suggest that matrix ~A indeed enjoys the min-

imal variance property when applied to real genetic data.

Estimate Variance via Block-wise Jackknife

In the previous section, we showed that if two traits follow

multivariate normal distributions, then VarðyT1 ~Ajy2Þ ¼
2trð~AT

j H1
~AjH2Þ. In fact, we could get similar results for

covariance, too.

Cov
�
yT1

~Aiy2; y
T
1
~Ajy2

� ¼ 2tr
�
~A
T

i H1
~AjH2

�
Therefore, the variance-covariance matrix of br can be

calculated accordingly:

CovðbrÞ ¼ Cov
�
M�1v

� ¼ Cov

0B@ 1

N1N2

M�1

0B@ yT1
~A1y2

«

yT1
~AKy2

1CA
1CA

¼ 2

ðN1N2Þ2
M�1

3

0BBB@
tr
�
~A
T

1H1
~A1H2

�
/ tr

�
~A
T

KH1
~A1H2

�
« 1 «

tr
�
~A
T

1H1
~AKH2

�
/ tr

�
~A
T

KH1
~AKH2

�
1CCCAM�1:

However, it is difficult to calculate trð~AT

i H1
~AjH2Þ. Esti-

mating H1 and H2 would involve additional assumptions

on the heritability structure. Even if we could accurately
ber 7, 2017



estimate H1 and H2, trð~AT

i H1
~AjH2Þ cannot be calculated us-

ing standard GWAS summary statistics. Therefore,

following Bulik-Sullivan et al.,7 we apply a block-wise jack-

knife approach to estimate the variance.

First, we estimate the variance-covariance matrix of

v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p

0BBBBB@
1

m1

ðz1ÞT1 ðz2Þ1
«

1

mK

ðz1ÞTKðz2ÞK

1CCCCCA:

We divide the genome into b (e.g., b ¼ 200) blocks B1, .,

Bb. Let

v
ðtÞ
i ¼ ðz1ÞTi ðz2Þi � ðz1ÞTSiXBt

ðz2ÞSiXBt�
mi �mSiXBt

� ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ;1%i%K and 1%t%b:

Here, subscript SiXBt indicates the subset of SNPs in both

functional annotation Si and block Bt. Therefore, v
ðtÞ
i is the

re-calculated vi after removing all SNPs in block Bt from the

analysis. Then, Cov(v) is estimated as:�dCovðvÞ�
ij
¼ b� 1

b

Xb
t¼1

 
v
ðtÞ
i � 1

b

Xb
s¼1

v
ðsÞ
i

! 
v
ðtÞ
j � 1

b

Xb
s¼1

v
ðsÞ
j

!
:

Therefore, we get

dCovðbrÞ ¼ M�1dCovðvÞM�1:

If annotations overlap,

dCov�brW� ¼ WM�1dCovðvÞM�1WT :

Finally, the test statistic for each covariance parameter is

z� scorei ¼ briffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dCovðbrÞ�
ii

r ;1%i%K:

When annotations overlap,

z� scoreWi ¼ brW
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dCovðbrWÞ

�
ii

r ;1%i%K:

Genetic Correlation

In non-stratified analysis, we could provide the genetic cor-

relation estimate as follows:

cor ¼ brffiffiffiffiffiffiffiffiffiffiffibh2

1
bh2

2

q :

We use the estimator proposed in Bulik-Sullivan16 to esti-

mate heritability for each trait.

bh2

t ¼
1

m
ðztÞTðztÞ � 1

N

m2

Xm
l¼1

Xm
l0¼1

r2ll0

¼ c2
t � 1

Nr2
; t ¼ 1;2
The American
Compared to genetic covariance, genetic correlation is a

more interpretable metric. It is also robust against certain

systematic bias that exists in both genetic covariance and

heritability (e.g., genomic control correction). However,

statistical inference based on genetic covariance is equiva-

lent to that based on genetic correlation. Estimating

heritability requires additional model assumptions on the

heritability structure and introduces additional variability

into the estimation framework. Therefore, although we

report the point estimate for genetic correlation, the statis-

tical inference in our method is completely based on ge-

netic covariance only.

In annotation-stratified analysis, the heritability in each

annotation category may be small. This is especially true

when applying annotations related to the repressed

genome. Although methods for estimating annotation-

stratified heritability have been proposed,11,12 they may

provide unstable, sometimes even negative, heritability

estimates. Therefore, we focus on genetic covariance

only when performing annotation-stratified analysis.
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