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ABSTRACT Salmonella is estimated to cause one million foodborne illnesses in the
United States every year. Salmonella-contaminated poultry products are one of the
major sources of salmonellosis. Given the critical role of the gut microbiota in Sal-
monella transmission, a manipulation of the chicken intestinal microenvironment
could prevent animal colonization by the pathogen. In Salmonella, the global regula-
tor gene fnr (fumarate nitrate reduction) regulates anaerobic metabolism and is es-
sential for adapting to the gut environment. This study tested the hypothesis that
an attenuated Fnr mutant of Salmonella enterica serovar Typhimurium (attST) or pre-
biotic galacto-oligosaccharides (GOS) could improve resistance to wild-type Salmo-
nella via modifications to the structure of the chicken gut microbiome. Intestinal
samples from a total of 273 animals were collected weekly for 9 weeks to evaluate
the impact of attST or prebiotic supplementation on microbial species of the cecum,
duodenum, jejunum, and ileum. We next analyzed changes to the gut microbiome
induced by challenging the animals with a wild-type Salmonella serovar 4,[5],12:r:�
(Nalr) strain and determined the clearance rate of the virulent strain in the treated
and control groups. Both GOS and the attenuated Salmonella strain modified the
gut microbiome but elicited alterations of different taxonomic groups. The attST
produced significant increases of Alistipes and undefined Lactobacillus, while GOS
increased Christensenellaceae and Lactobacillus reuteri. The microbiome structural
changes induced by both treatments resulted in a faster clearance after a Salmonella
challenge.

IMPORTANCE With an average annual incidence of 13.1 cases/100,000 individuals,
salmonellosis has been deemed a nationally notifiable condition in the United States
by the Centers for Disease Control and Prevention (CDC). Earlier studies demon-
strated that Salmonella is transmitted by a subset of animals (supershedders). The
supershedder phenotype can be induced by antibiotics, ascertaining an essential
role for the gut microbiota in Salmonella transmission. Consequently, modulation of
the gut microbiota and modification of the intestinal microenvironment could assist
in preventing animal colonization by the pathogen. Our study demonstrated that a
manipulation of the chicken gut microbiota by the administration of an attenuated
Salmonella strain or prebiotic galacto-oligosaccharides (GOS) can promote resistance
to Salmonella colonization via increases of beneficial microorganisms that translate
into a less hospitable gut microenvironment.
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Salmonella, Salmonella enterica serovar Typhimurium attenuated strain, galacto-
oligosaccharides

With an average annual incidence of 13.1 cases/100,000 individuals, salmonellosis
has been deemed a nationally notifiable condition in the United States by the

Centers for Disease Control and Prevention (CDC). Specifically, foodborne infections
after the consumption of poultry meat or egg products contaminated with Salmonella
enterica are a major public health concern (1–3). In 2009, the United States produced
and sold 8.5 billion broilers (meat-type birds), 247 million turkeys, and 90.4 billion eggs
from 337 million laying hens. It is estimated that 1 in 8 chickens are contaminated with
Salmonella (4, 5). The two serotypes most commonly associated with foodborne illness
in poultry foods are S. enterica serovar Typhimurium and S. enterica serovar Enteritidis,
accounting for approximately 40 to 60% of all reported Salmonella infections (6, 7).
Salmonella enterica is a Gram-negative intracellular pathogen that causes gastroenteri-
tis in the human host. Although it is not life threatening in healthy adults, it can be fatal
for children and immunocompromised individuals. The infection proceeds via two main
stages: invasion and systemic infection. During the invasion stage, the pathogen
adheres to and colonizes the intestine, gaining access to the epithelial cells. Subse-
quently, Salmonella crosses the epithelial cells and gets internalized by the macro-
phages, where it multiplies, spreads in the host, and causes systemic infection (8–10).

Considerable effort is made by farmers and food processors, both pre- and post-
harvest, to prevent Salmonella contamination of food products. One of the primary
preharvest tools employed in poultry production has been the use of vaccines. The
objective is to condition the chicken immune system to decrease the levels of Salmo-
nella associated with the animals, consequently reducing the transmission of poten-
tially pathogenic strains to human populations. Multiple Salmonella vaccines have been
developed and used for this purpose, representing the three main categories of
vaccines: inactivated, live attenuated, and subunit vaccines (11). While many of these
vaccines are capable of eliciting strong serum antibody responses, vaccination does not
seem adequate for producing immune responses that eliminate Salmonella from the
intestinal tract, leaving a reservoir for reintroduction and contamination (12). Further-
more, most of the live attenuated strains used commercially are dependent on au-
totrophic mutations (e.g., harboring defects in amino acids, nucleic acid biosynthesis,
and UDP-glucose 4-epimerase), which have the potential for reversion to the virulent
phenotype and are influenced by the diet of the host (13). Indeed, the search continues
for live attenuated Salmonella strains that can reduce colonization and invasion by the
challenge strains (14). We have previously developed an attenuated Fnr mutant (NC983
[attST]) of Salmonella Typhimurium (15, 16) and showed that it is stable, elicits
Salmonella-specific antibodies, and provides protection against S. Typhimurium in mice
(our unpublished data). In Salmonella and other enteric bacteria, fumarate nitrate
reduction (FNR) is a global regulator of anaerobic metabolism (17) and hence is
essential for adapting to the gut environment.

Transmission of S. Typhimurium in mice occurs only via a subset of the infected
mice, i.e., supershedders, that shed high levels of the virulent organism (�108 CFU/g)
in their feces (18). The immune response is the main determinant of Salmonella levels
in the colon, as immunosuppression of the infected mice does not induce suppershed-
ding. However, altering the indigenous microbiota by antibiotics induces the super-
shedder phenotype (18). These findings clearly demonstrate the critical role of the
intestinal microbiota and gut homeostasis in controlling Salmonella transmission,
infection, and disease. In pigs, chickens, and mice, it has been shown that supershed-
ders have increased innate inflammatory responses (19); however, there is limited data
on the role of the chicken microbiota in controlling the spread of Salmonella spp. in
poultry and poultry products (20, 21).

The gut microbiota plays important roles in the digestion of complex plant fibers
and polysaccharides, the development of the host immune system, and protection
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against colonization by invasive pathogenic organisms (colonization resistance [CR])
(22–25). Abundant information is available on how the human gut microbiota can
control pathogen colonization (26–28); however, limited information on the role of the
chicken intestinal microbiota in resistance to disease (i.e., Salmonella) is available.
According to recent reports, the cecum contains the most diverse bacterial populations,
with Bacteroidetes and Firmicutes being the most prevalent phyla in the cecal micro-
biota of egg-laying hens (29). On the other hand, the microbiota in the ceca of
meat-type birds are dominated by Firmicutes and to a lesser extent by Bacteroidetes (30,
31). The difference in the microbiota of broilers versus layers may be related to the diet
(29). Indeed, diet modification through the inclusion of prebiotics has been shown to
affect the intestinal microbiota, modifying transit time, luminal pH, and the production
of microbial metabolites in humans and animal models (32–36), including poultry (37).
Prebiotics have been identified as potential interventions for gut disorders due to their
capacity to modulate the gut microbiota (38, 39) and act as soluble decoy receptors,
preventing pathogen attachment to mucosal surfaces (40–44). The prebiotics inulin,
fructo-oligosaccharides (FOS), and mannan-oligosaccharides (MOS) have been shown
to confer a protective effect in chicks during the first few days postinfection, reducing
the colonization by and shedding of Salmonella (37, 45, 46).

In the present study, we tested the hypothesis that the live attenuated Salmonella
strain (attST) or prebiotic galacto-oligosaccharides (GOS) could improve resistance to
wild-type Salmonella via modifications to the structure of the chicken gut microbiome.

RESULTS
Scope of the study. A total of 273 1-day-old female commercial white leghorn

chicks were randomly assigned to three groups, namely, control, prebiotics (GOS), and
attST (Rifr, NC983), and samples were collected weekly (Fig. 1a). Each week, 7 animals
from each group were euthanized and sampled for microbiome and bacteriological
analyses as outlined in Materials and Methods. After collecting week 4 samples, half of
the remaining birds in all groups were challenged with Salmonella serovar 4,[5],12:r:�
(Nalr), and samples were collected weekly until week 8. An analysis of the attST strain
clearance rate, by culturing on XLT4-MOPS (xylose-lysine-tergitol 4 medium with
morpholinepropanesulfonic acid) containing rifampin (100 �g/ml), showed that the
attenuated strain was undetectable or at the lower limit of detection in the ceca of
treated birds by week 5 (Fig. 1b).

Effect of attST and GOS treatments on Salmonella challenge. We hypothesized
that the attST strain or prebiotic GOS would improve resistance to wild-type Salmonella
via modifications to the structure of the chicken gut microbiome. To test our hypoth-
esis, after 4 weeks of treatment, one-half of each group (attST, GOS, and control) was
administered 1.7 � 109 CFU of Nalr Salmonella serovar 4,[5],12:r:� by oral gavage.
Figure 2 shows that at 1 week postchallenge, the attST and GOS groups had reduced
levels of the Salmonella serovar 4,[5],12:r:� (Nalr) compared to that in the control. By
weeks 2 to 4 postchallenge, the challenge strain was undetectable in animals in all
treatment groups.

Chicken gut microbiome. We used 16S rRNA amplicon sequencing to determine
the effects of the attST strain and prebiotic supplementation on the diversity of the
microbial species in the intestinal tract of chickens, as well as the correlation between
microbiome structural changes and resistance to Salmonella challenges. We first de-
termined the compositions of the microbiomes of 273 cecum samples by 16S rRNA
amplicon pyrosequencing targeting the V1–V2 region of the 16S rRNA gene. Pyrose-
quencing of amplicons resulted in a total of 2,355,189 reads after quality filtering,
representing 5,810 operational taxonomic units (OTUs). Samples yielded 8,627 � 3,295
reads on average.

Confirming previous reports (21, 47), the early cecum microbiome was characterized
by a low bacterial diversity (Fig. 3), which increased in all treatment groups until it
reached a plateau at week 4. Accordingly, an unweighted UniFrac principal-coordinate
analysis (PCoA) of samples showed statistically significant clustering of samples first by
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age (in weeks) (Fig. 3b) and then by treatment (Fig. 3c), with significant differences
between the attST/attST-challenged group and the other groups: control/control
challenged and GOS/GOS challenged. In our study, interindividual differences, i.e.,
differences between animals, were not statistically significant (analysis of similari-
ties [ANOSIM], R � �0.015, P � 0.05).

At the phylum level, nonchallenged groups were characterized by a relatively high
abundance of Proteobacteria, from 38.4% in the control to 57.7% in the prebiotics group
(Fig. 4), mostly of uncharacterized species of the family Enterobacteriaceae. The other
main phylum characterizing the early cecum microbiome was Firmicutes of the family
Clostridiaceae (uncharacterized). Both Enterobacteriaceae and Clostridiaceae declined at
week one, with corresponding increases in the phylum Firmicutes and a significant
proportion of unknown taxa. The main lineages within Firmicutes increasing from week
1 included Lactobacillus, Clostridiales_other, uncharacterized Clostridiales, uncharacter-
ized Lachnospiraceae, Ruminococcus, uncharacterized Ruminococcaceae, Faecalibacte-
rium, and Oscillospira. The main difference between groups was the noticeable spike in
the abundance of uncharacterized Rikenellaceae (Bacteroidetes) in the attST-treated
group at 5 weeks. A further BLAST analysis showed that the main contributor to this
difference was an OTU assigned to the genus Alistipes, although no clear identification

FIG 1 (a) Experimental design. A total of 273 1-day-old chicks were assigned to the following groups: control,
prebiotics (galacto-oligosaccharides [GOS]), and attST. A total of 7 animals were sampled at 0, 7, 14, 21, and 28 days.
After sampling on day 28, half of the remaining birds in each treatment group were challenged with the virulent
Salmonella strain. There are 3 groups from 0 to 28 days (i.e., control, GOS, and attST) and 6 groups after challenging
with the virulent Salmonella (i.e., control challenged, GOS challenged, and attST challenged). After the challenge,
birds were sampled weekly (n � 7 birds) for up to 8 weeks (56 days). (b) Kinetics of clearance of the attST strain
in the ceca of chickens in the treated group. Determination of the number of CFU was done by culturing.
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of species was made. The increased abundance of Rikenellaceae was inversely corre-
lated with the clearance of the attST strain (Fig. 5). Additionally, the Clostridiales_other
group was reduced in the GOS and the attST groups compared to that in the control
at 6, 7, and 8 weeks.

Location and treatment, but not Salmonella challenge, had major impacts on
the structure of the gut microbiome. We next analyzed the structural changes to the
gut microbiome induced by challenging the animals at 4 weeks with a wild-type strain
of Salmonella serovar 4,[5],12:r:� (Nalr). The structure of the microbiome was deter-
mined by sequencing the V1–V2 region of the 16S rRNA genes of 432 samples from the
cecum and three locations of the small intestine (duodenum, jejunum, and ileum) at
weeks 5 through 8 using the Ion Torrent PGM sequencing platform, as outlined in
Materials and Methods. Sequencing of the amplicons yielded 18,989,684 reads after
quality filtering. The samples yielded 43,957 � 27,354 reads per sample.

FIG 2 Clearance of the challenge Salmonella strain from the ceca of control, GOS-treated, and attST-treated animals during
the 4-week period postchallenge. **, P � 0.01; ***, P � 0.001; ns, nonsignificant (P � 0.05).
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Our analysis revealed marked differences between the cecum and small intestine
sections (ileum, duodenum, and jejunum) (Fig. 6, top), with the highest diversity and
number of species found in the cecum (Fig. 6, bottom). Moreover, significant decreases
in diversity were observed when progressing from the duodenum to the ileum.
Supervised learning methods using even rarefied biological observation matrix (BIOM)
tables were applied to identify highly discriminant OTUs (see Table S2 in the supple-
mental material). Regardless of treatment and time point, 3 Lactobacillus crispatus OTUs
were discriminant between the duodenum and the cecum, being clearly more abun-
dant in the duodenum. Conversely, 13 Clostridiales OTUs were significantly associated
with the cecum. A further BLAST analysis putatively assigned those OTUs to the
following taxa: Eisenbergiella tayi, Ihubacter massiliensis, Sporacetigenium, Romboutsia,
Clostridium sphenoides, Clostridium indolis, Desulfotomaculum guttoideum, Ruminococ-
cus, and Pseudoflavonifractor capillosus. Four OTUs within the phylum Proteobacteria
were discriminant between the cecum and duodenum, being clearly overrepresented
in the duodenum. These OTUs were designated Ralstonia pickettii (or Ralstonia insidi-
osa), a waterborne organism, and Janthinobacterium lividum, a soil-dwelling bacterium.
Likewise, 10 OTUs of the order Streptophyta, most probably originating from the feed,
were identified as more prevalent in the duodenum (Table S2).

The PCoA plot depicted in Fig. 7 (top left) shows clear clustering by treatment in the
cecum but not a noticeable impact of the Salmonella challenge on the different groups.
Moreover, no significant differences (analysis of variance [ANOVA], P � 0.05) were
observed in sample diversity between the groups (Fig. 7, bottom left). Data analysis
showed that 18 defined taxonomic groups (not including unassigned reads) contained
OTUs that were differentially represented in the sample groups formed by treatment
and Salmonella challenge based on Kruskal-Wallis tests (see Table S3). A further
exploration of the data by supervised learning methods using even rarefied BIOM
tables confirmed the analysis by identifying lineages significantly discriminant between

FIG 3 (a) Shannon diversity index of samples by time (weeks) and treatment, including all time points. (b and c) Unweighted UniFrac principal-coordinate
analysis (PCoA) plot of chicken cecal samples colored by time (b) and treatment (c). PERMANOVA and ANOSIM statistics for each category are indicated. The
numbers between brackets in the legends indicate the numbers of samples included in the analyses.
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the groups (Table 1). The taxa with the highest discriminant power included Rikenel-
laceae (Bacteroidetes phylum), which was overrepresented in the attST-treated group,
Christensenellaceae (Firmicutes phylum), overrepresented in the prebiotics (GOS) group,
and RF39 (Tenericutes phylum), overrepresented in the control (Fig. 7, right). Also, the
genus Faecalibacterium was discriminant between unchallenged and challenged sub-
groups (not shown).

DISCUSSION

Salmonella contaminations in poultry, and hence the potential for foodborne out-
breaks, are highly prevalent due to the traditional processing practices that can dramati-
cally impact the animal gut microbiome structure and function (48, 49). Our study aimed to
determine the efficacy of a new attenuated Salmonella strain on Salmonella clearance after
a challenge with a virulent strain of Salmonella and to evaluate its impact on the gut
microbiota of poultry. We also determined how galacto-oligosaccharides (GOS) modified
the structure of the gut microbiome and the impact of this modification on Salmonella
infection clearance. We applied 16S rRNA amplicon sequencing to determine the effects of
the attST strain and prebiotic supplementation on the diversity of the microbial species in

FIG 4 Relative abundance of phyla and genera over time in nonchallenged and challenged groups. For clarity, only taxa represented at �1% were included
in the legends.
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the chicken intestinal tract and the potential association between microbiome diversity and
resistance to Salmonella serovar 4,[5],12:r:� (Nalr) challenges.

As the new hatchling exchanges its nutrient source from the yolk for carbohydrates
and proteins during the early posthatching period, the intestinal tract provides an ideal
niche for microbial colonization. In our study, the first-week microbiome was charac-
terized by a high abundance of uncharacterized species of the families Enterobacteri-
aceae (Proteobacteria) and Clostridiaceae (Firmicutes). Similar to our study, recent anal-
yses (21, 50) reported that at day 1, animals had a dominance of Proteobacteria of the
Enterobacteriaceae family and Firmicutes of the Enterococcaceae family. Also confirming
previous reports (51), the cecum had the highest diversity, while the ileum had the
lowest. Our analysis revealed that Lactobacillus crispatus was significantly overrepre-
sented in the small intestine compared to the cecum regardless of treatment. L.
crispatus could be considered a biomarker of a healthy gut. It has been isolated from
the chicken gut and shown to competitively exclude Salmonella enterica serovar
Enteritidis in vitro when tested in a coculture with Clostridium lactatifermentans (52), as
well as Salmonella Typhimurium and Escherichia coli O157:H7 (53), in vitro. Other taxa
significantly associated with the small intestine included the Proteobacteria Ralstonia
pickettii (or Ralstonia insidiosa), a waterborne organism, and Janthinobacterium lividum,
a soil-dwelling bacterium. Conversely, 13 Clostridiales taxa were significantly associated
with the cecum, including Eisenbergiella tayi, Ihubacter massiliensis, Sporacetigenium,
Romboutsia, Clostridium sphenoides, Clostridium indolis, Desulfotomaculum guttoideum,
Ruminococcus, and Pseudoflavonifractor capillosus. The order Clostridiales comprises a
heterogeneous group of genera characterized by their capacity to form endospores,
their strictly anaerobic metabolism, and their inability to reduce sulfate to sulfite (54).
Of the Clostridiales taxa listed above, Clostridium indolis has been described as having
a high prevalence in the ceca of commercial Ross-hybrid broilers fed a vegetarian
corn-soy broiler diet devoid of feed additives (31).

During the last century, the incorporation of growth promoters, including antibiot-
ics, probiotics, and prebiotics, into the feed of productive animals has resulted in
improvements to health conditions and a decrease of food production costs. However,
several research studies have revealed concerning effects of subtherapeutic antibiotics
in animal feed, leading to the search for nonantibiotic additives that improve animal
health without contributing to the spread of bacterial antibiotic resistance genes. In our
study, the early microbiome (until 4 weeks of age) was not impacted by treatment, the
only difference being an increase in the Alistipes genus in the attST group. This genus
was previously identified in the chicken gut microbiota (55, 56), although isolates have
not been characterized and its role in the gut has not been clearly defined. From week
5, we observed a clear separation between samples from different treatments. Our

FIG 5 Detection of the order Bacteroidales in the ceca of attST-treated birds in relation to the clearing of
the attenuated strain.
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study demonstrated that both the attST strain and GOS treatment modified the
structure of the gut microbiome; however, the treatments elicited increases in different
taxonomic groups. Importantly, the changes from both treatments resulted in a faster
clearance after Salmonella infection (Fig. 2). Treatment with the attST strain resulted in
a significant increase of Rikenellaceae, specifically of the genus Alistipes, and three OTUs
of the Lactobacillus genus, among others, while GOS feeding was associated with
increases of Christensenellaceae and Lactobacillus reuteri. The family Christensenellaceae
has been associated with a healthy body mass index (BMI) (57) and shown to be
enhanced by GOS in humans (35). Likewise, L. reuteri is a species containing numerous
strains of recognized probiotic properties. Research has shown that L. reuteri adminis-
tration in ovo singly or in combination with gentamicin followed by L. reuteri admin-
istration via drinking water or feed appeared to have the potential to control enteric
pathogens in poultry (58). We also observed a trending increase of bifidobacteria,
although changes in abundances did not reach statistical significance (data not shown).
A previous study reported a 21-fold increase in Bifidobacterium in response to a diet
containing a high concentration of GOS (3 kg per 25 kg; 12% GOS) and Bifidobacterium
lactis in comparison to that of the control-fed birds (59). Of note is that while our study

FIG 6 Effect of intestinal location on composition and diversity of the microbiome. (Top) PCoA analysis
of samples with repeated resampling according to location. Only time points from week 5 and later (i.e.,
weeks 5 to 8) were included in this analysis. PERMANOVA and ANOSIM statistics are indicated in the
figure. (Bottom) Shannon diversity indices of samples by location starting at week 5.
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was under way, the sequencing primers used for 16S rRNA amplicon sequencing were
reported to underrepresent the phylum Actinobacteria and, specifically, species of
Bifidobacterium (60).

This study identified microorganisms impacted by attST (Alistipes, Lactobacillus) and
by GOS (Christensenellaceae, L. reuteri) that could be regarded as beneficial in the
acceleration of Salmonella clearance rates in poultry. GOS administration resulted in the
expected enrichment of the species that can metabolize the �1-4 linkage available in
the polysaccharide. Since Salmonella and the host lack the enzymes required for GOS
utilization, one could appreciate the presence of Christensenellaceae and L. reuteri,
which do possess such enzymes (61, 62), in GOS-treated animals. However, an eluci-
dation of the mechanisms involved in the enrichment of Alistipes and Lactobacillus
upon administration of attST will require further studies. A recent report demonstrated
the use of a metabolically competent but attenuated strain of Salmonella as a probiotic
to prevent Salmonella infection in mice (63). The authors suggested that the attenuated
strain of Salmonella could compete with the virulent strain for the Salmonella-specific
nutrients available in the gut. The attenuated strain used in this study elicited
Salmonella-specific antibodies and provided protection against S. Typhimurium chal-
lenges in mice (our unpublished results); however, no antibody response was observed
in chickens (unpublished results). Indeed, future mechanistic studies will be essential to

FIG 7 Effect of treatment on composition and diversity of the cecum microbiome. (Top left) PCoA analysis of samples with repeated resampling, colored
according to treatment. Only time points from week 5 and later were included in this analysis. PERMANOVA and ANOSIM statistics are indicated in the figure.
(Bottom left) Shannon diversity indices of samples by treatment starting at week 5. (Right) Highly discriminant bacterial taxa determined by random forest
analysis differentially represented in the different treatments (Kruskal-Wallis test, Bonferroni’s correction, P � 0.05).
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determine if competitive exclusion mechanisms are responsible for the observed effect
of the attST on accelerating the rate of Salmonella clearance in poultry.

MATERIALS AND METHODS
Animals and IACUC approval. Day-old female commercial white leghorn chicks (W-36; Hy-Line

North America, Mansfield, GA) were used in this study. The birds were housed in climate-controlled
HEPA-filtered isolation units, 50 birds per isolator (934-1 WP; Federal Designs, Inc., Comer, GA). Water and
feed were provided ad libitum. Each week, 7 animals from each group (control, prebiotic, and attST) were
euthanized according to a protocol (15-065-A) approved by the Institutional Animal Care and Use
Committee at NC State University (OLAW D16-00214) and sampled for gut microbiome and Salmonella
analyses.

Bacterial strains and growth conditions. A live attenuated strain of Salmonella enterica serovar
Typhimurium (attST NC983; Rifr) derived from strain ATCC 14028s (15) was used in this study. The
complete genome sequence of NC983 (16) and its efficacy and protection in mice against virulent S.
Typhimurium have been established (unpublished data).

A nalidixic acid-resistant Salmonella enterica serovar 4,[5],12:r:� (Nalr) strain was used for challenging
the birds. This strain was obtained from the laboratory of B. W. Sheldon (Poultry Science Department, NC
State University); it was originally isolated from North Carolina commercial turkey farms. The antigenic
formula for this strain, according to the Kauffmann-White classification scheme, was determined by the
National Veterinary Service Laboratories, Ames, IA. The Salmonella strains {attST NC983 (Rifr) and the
challenge strain, 4,[5],12:r:� (Nalr)} were grown statically for approximately 17 h (overnight) at 37°C in
Luria-Bertani (LB) medium without antibiotics. The concentration of nalidixic acid used in this study was
based on previous publications (64, 65).

Prebiotics. Oligomate 55 from Yakult Pharmaceutical Industry (Japan) was used in this study. This
product contains 55 to 56% GOS, and the remainder (44 to 45%) is monosaccharides and lactose. GOS
was added to a standard poultry feed diet (see Table S1 in the supplemental material) at 1% (equivalent
to 0.55% pure GOS).

Experimental design and sample collection. A scheme of the experimental design is depicted in
Fig. 1. A total of 300 1-day-old female commercial white leghorn chicks were used in this study. Upon
arrival, 100 birds were assigned to each of the following treatment groups: control, prebiotics (GOS), and
attenuated Salmonella (attST NC983). Each group was placed in two isolators (50 birds/isolator) and
housed in separate animal biosafety level 2 (ABSL-2) rooms (i.e., separate rooms per treatment). All
groups were sampled (7 birds per group) on day zero. Also, on day zero, birds in the attST group received
0.1 ml per chick of a phosphate-buffered saline (PBS)-washed cell suspension containing 8.6 � 109

CFU/ml by oral gavage (i.e., 8.6 � 108 CFU per bird). All groups were provided ad libitum water and feed;
the prebiotic group received a standard diet supplemented with 0.55% GOS (i.e., 1% Oligomate 55), while
the control and attST groups received a standard diet supplemented with 0.45% D-glucose to account
for the monosaccharides present in Oligomate 55. Subsequently, all groups were sampled weekly (7 birds
from each group) for 4 weeks. After week 4 samples were obtained, half of the remaining birds from each
group were challenged with 1.7 � 109 CFU of Salmonella serovar 4,[5],12:r:� (Nalr) per bird via oral
gavage in 0.1 ml. The other half of the birds in each treatment group received 0.1 ml of PBS.

After the challenge, samples (7 birds) were collected weekly (i.e., at weeks 5, 6, 7, and 8) from the
different treatment groups and their corresponding challenged groups. In summary, samples were
collected at the following time points: 0, 1, 2, 3, 4, 5, 6, 7, and 8 weeks. There were 3 groups from 0 to
4 weeks (i.e., control, GOS, and attST) and 6 groups from 5 to 8 weeks (i.e., control, control challenged,
GOS, GOS challenged, attST, and attST challenged). Intestinal (cecum and small intestine) contents were
collected in duplicate tubes for microbiome analyses and a single tube for bacteriological analysis.

Bacteriological analysis. Samples collected for the enumeration of the attST (Rifr) strain and the
4,[5],12:r:� challenge strain (Nalr) were individually weighed and suspended at 100 mg/ml in PBS
containing 25% glycerol and 2 mM MgSO4. The suspended samples were serially diluted and plated on
XLT4 solid medium containing 100 mM MOPS (pH 7.4) and 100 �g/ml rifampin or 200 �g/ml nalidixic
acid for the enumeration of attST or the challenge strain, respectively. The plates were incubated at 37°C
for 24 h before colonies were counted. The data are reported as CFU/g of cecum content.

DNA isolation. The isolation of total genomic DNA was carried out on a Qiagen BioRobot universal
system (Qiagen, Valencia, CA) using an E.Z.N.A. stool DNA kit (Omega Bio-Tek, Norcross, GA) according
to the manufacturer’s instructions with bead-beating modifications. Briefly, 200 mg of intestinal content
was added to a tube containing 540 �l of SLB buffer (Qiagen) and 200 mg of 100-�m glass beads (Sigma,
St. Louis, MO). Samples were homogenized using a TissueLyser II (Qiagen, Germantown, MD) for 5 min
at 30 Hz, and then 20 �l of proteinase K (Qiagen) was added according to the manufacturer’s instructions.
The mixture was then incubated at 70°C for 10 min, followed by another incubation at 95°C for 5 min.
Subsequent purification steps were as described by the manufacturer, with the following modifications:
300 �l of the supernatant was then transferred to a new tube containing 300 �l of BL buffer (Qiagen)
and 300 �l 100% ethanol. The elution step was performed twice in 25 �l of elution buffer at 65°C. The
quality of isolated DNA was validated by agarose gel electrophoresis, and the purity verified using
A260/A280 and A260/A230 ratios measured by a NanoDrop 1000 instrument (Thermo Fisher Scientific,
Pittsburgh, PA). The DNA concentration was quantified using Quant-iT PicoGreen dsDNA reagent
(Molecular Probes, Life Technologies division, Grand Island, NY).

Amplicon sequencing of the V1–V2 region of the 16S rRNA gene. The initial amplification of the
hypervariable V1–V2 region of the bacterial 16S rRNA gene was performed on total DNA from collected
samples as previously described (66, 67). The reaction master mixes contained the Qiagen HotStar
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HiFidelity polymerase kit reagents (Qiagen, Valencia CA), with a forward primer composed of the Roche
Titanium fusion primer A (5=-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3=), a 10-bp multiplex identifier
(MID) sequence (Roche, Indianapolis, IN) unique to each of the samples, and the universal bacterial
primer 8F (5=-AGAGTTTGATCCTGGCTCAG-3=). The reverse primer was composed of the Roche Titanium
primer B (5=-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-3=), the 10-bp MID sequence identical to that in
the forward primer, and the reverse bacterial primer 338R (5=-GCTGCCTCCCGTAGGAGT-3=). The thermal
profile for amplification had an initial denaturing step at 94°C for 5 min, followed by a cycling of
denaturation at 94°C for 45 s, annealing at 50°C for 30 s, and a 1-min 30-s extension at 72°C (35 cycles),
and a 10-min final extension at 72°C. Negative controls, not containing template, were amplified for all
barcode-primer sets. Each sample was gel purified individually using the E-Gel electrophoresis system
(Thermo Fisher Scientific, Life Technologies division, Grand Island, NY) and standardized prior to pooling.
The 16S rRNA gene amplicons from the pooled sample were sequenced on a 454 genome sequencer FLX
Titanium instrument (Roche, Indianapolis, IN) at the Microbiome Core Facility (University of North
Carolina, Chapel Hill, NC) using the GS FLX Titanium XLR70 sequencing reagents and the corresponding
protocol.

For the analysis of the structure of the gut microbiome from weeks 5 to 8 in different locations
(cecum, duodenum, jejunum, and ileum), we transitioned to the Ion Torrent PGM sequencing platform
from Life Sciences. Before performing the analysis, we compared the Ion Torrent PGM and Roche 454 GS
FLX Titanium platforms with standard and modified protocols for library preparation and showed that
while there were differences in the depth of coverage and phylogenetic diversity, all workflows
demonstrated comparable treatment effects on microbial diversity. Moreover, the platforms compared
were able to discriminate samples by treatment, despite differences in diversity and abundance, leading
to similar biological conclusions (68). PGM sequencing libraries were prepared from total genomic DNA
by adding the adapter sequences during PCR using a fusion primer method for amplification of the
V1–V2 hypervariable region of the 16S rRNA gene (66, 67). The forward primer was composed of the Ion
Torrent adapter, a 10-bp Ion Xpress barcode unique to each sample (Thermo Fisher Scientific, Life
Technologies division, Grand Island, NY), and the universal bacterial primer 8F. The reverse primer
consisted of the Ion Torrent trP1 adapter followed by the reverse bacterial primer 338R.

The complete primer sequences were 8F, 5=-CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNN
NAGAGTTTGATCCTGGCTCAG-3=; and 338R, 5=-CCTCTCTATGGGCAGTCGGTGATGCTGCCTCCCGTAGGAGT;
where NNNNNNNNNN is the Ion Xpress barcode sequence. The PCR mixtures contained 50 ng of DNA
template, 2.5 units of HotStar HiFidelity DNA polymerase (Qiagen, Valencia, CA), 1� HotStar HiFidelity
PCR buffer containing deoxynucleoside triphosphates (dNTPs), and 0.6 �M each primer. The reaction
conditions consisted of an initial denaturation for 5 min at 94°C followed by 35 cycles of denaturing at
94°C for 60 s, annealing at 57°C for 60 s, and extension at 72°C for 60 s, with a final extension of 72°C
for 10 min. All libraries were purified, mixed at equimolar concentrations, and clonally amplified onto the
proprietary Ion Sphere particles. Clonal amplification was accomplished by emulsion PCR using an Ion
PGM template OT2 400 kit (Life Technologies) according to the manufacturer’s instructions. The prepared
template was sequenced on the Ion Torrent PGM instrument (Life Technologies) using the Ion PGM 400
sequencing reagents. The initial data analysis, base pair calling, and trimming of each sequence were
performed on the Ion Torrent browser to yield high-quality reads.

Sequencing data analysis. Roche 454 sequencing results were initially processed using a GS data
analysis software package (69). Demultiplexing and quality filtering were performed on the joined results.
MID and linker primer sequences were trimmed, and the reads were subsequently filtered for quality. The
quality control of both raw and processed sequencing reads was verified by FastQC (70). For Roche 454
and PGM sequencing data, the sequences were clustered into OTUs based on the de novo OTU picking
algorithm using the QIIME 1.8.0 (71) implementation of UCLUST (72) at a similarity threshold of 97%.
OTUs identified as chimeric by ChimeraSlayer (73) and those composed of a single read (singletons) were
eliminated. The remaining OTUs were assigned taxonomic identifiers with respect to the Greengenes
database (74), their sequences were aligned using template alignment through PyNAST (75), and a
phylogenetic tree was built with FastTree 2.1.3 (76).

The phylogenetic diversity whole tree, Shannon index, Chao1, and observed species number metrics
were estimated using QIIME at a rarefaction depth of 2,265 sequences per sample for Roche 454 data and
4,487 sequences per sample for PGM data. Beta diversity estimates were calculated within QIIME using
weighted and unweighted UniFrac distances (77). The results were summarized and visualized with a
principal-coordinate analysis as implemented in QIIME. Supervised classification with the random forest
classifier was done using the QIIME script supervised_learning.py. We ran 10-fold cross-validation on a
directory of OTU tables rarefied at even depths to obtain more robust estimates of the generalization
error and feature importance (including standard deviations). We then produced a single file of results
that contained the average estimated generalization error of the classifications and the pooled standard
deviation. The baseline error for random guessing was 80%.

Statistical analysis. A one-way ANOVA using Holm-Sidak’s multiple comparisons (GraphPad Prism
7.03) was used to evaluate the clearance of Salmonella serovar 4,[5],12:r:� from the chicken cecum at 6
days postchallenge (dpc). To evaluate similarities or dissimilarities between the groups, we computed the
distance matrix between OTUs using an analysis of similarities (ANOSIM) and permutational multivariate
analysis of variance (PERMANOVA) within QIIME. ANOVAs with pairwise comparisons were used to identify
significant differences in alpha diversity between the different time points, while Kruskal-Wallis tests with
Bonferroni’s correction for multiple comparisons were used to identify significant differences in bacterial taxa
between groups. P values of less than 0.05 were considered significant unless otherwise stated.
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