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Introduction

Atherosclerosis is the leading cause of death in the western 
world, and is responsible for the majority of cerebrovascu-
lar and cardiovascular events such as ischemic stroke and 
myocardial infarction [1]. Atherosclerosis consists in the for-
mation of “plaques” in the arterial vessel wall. Endothelial 
dysfunction, mainly related to local reduction of wall shear 
stress in the presence of non-laminar flow profiles, plays 
a pivotal role in the initiation and progression of athero-
genesis. Disruption of the endothelial barrier facilitates the 
subendothelial accumulation of lipids, which triggers the 
initial inflammatory response that leads to plaque formation. 
Subsequent progression of atherosclerotic disease involves 
numerous processes that continuously alter vessel wall com-
position, including smooth muscle proliferation and angio-
genesis, as well as the formation of intraplaque hemorrhage 
(IPH), lipid necrotic core and calcifications [2, 3].

Non-invasive imaging techniques have played an impor-
tant role in the assessment of different plaque phenotypes, 
as well as in measuring changes in biological processes 
that occur during the different stages of atherosclerosis 
development [4]. Vessel wall magnetic resonance imaging 
(MRI) has proven to be a powerful technique for charac-
terizing atherosclerosis in various regions of the vascular 
system, including the carotid and coronary arteries, aorta, 
and peripheral and intracranial arteries [5–10]. By ena-
bling the evaluation of plaque composition and physiology, 
in vivo vessel wall MRI has helped refine the assessment 
of plaque risk profiles for rupture and subsequent cardio-
vascular events beyond simple lesion size [11, 12]. Initial 
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studies used qualitative imaging primarily for identifying 
distinct patterns of high/low signal intensity associated with 
different phenotypes of atherosclerotic plaque. In the past 
few years, however, there has been increasing interest in 
developing imaging methods that provide quantitative data 
related to vessel wall structure and function. Not only does 
this improve longitudinal monitoring of the progression of 
atherosclerosis; it also provides sensitive disease markers 
that may serve as surrogate endpoints for evaluating the 
effect of novel treatment strategies.

Contrast between different plaque components may origi-
nate from differences in their relaxation time constants T1 
and T2. These values can be quantified in each voxel by 
parametric fitting of several images with different contrast 
weighting. The resulting T1 and T2 maps enable automated 
plaque segmentation in its various constituents. Addition-
ally, the MR signal can be made sensitive to water diffusion, 
which can be used to map the spatial variation in the appar-
ent diffusion coefficient (ADC) within the plaque. This is 
of particular interest for detecting lipid accumulation, one 
of the major risk factors associated with plaque rupture. 
Contrast-enhanced MRI has been used to assess changes 
in vessel wall permeability, which can be increased both 
through disruption of the luminal endothelial layer and by 
the formation of leaky angiogenic vessels within the plaque. 
More specifically, imaging with dynamic contrast-enhanced 
(DCE) MRI, a technique that samples the influx of contrast 
agent in the plaque over time using fast T1-weighted (T1w) 
imaging sequences, has enabled the quantification of several 
pharmacokinetic parameters, including endothelial perme-
ability and microvascular volume. Finally, blood flow meas-
urements with phase-contrast MRI can be used to quantify 
pulse wave velocity (PWV), which is a common evaluation 
of vessel wall stiffness. More recently, 4D flow MRI has ena-
bled local measurement of wall shear stress (WSS), which 
plays a crucial role in vascular endothelial function.

In this review, we present emerging techniques for quan-
titative MR imaging of the vessel wall. While the main 
focus will be on the carotid arteries, the most extensively 
studied vascular bed, examples in other vascular regions 
(aorta, intracranial vessels) will also be touched upon. We 
will present the latest developments in MR sequence and 
protocol design, and discuss their advantages and pitfalls in 
the quantification of vessel wall composition and function. 
While vessel wall thickness reflects anatomical rather than 
structural/functional information, it is still considered an 
important quantitative parameter in characterizing athero-
sclerotic burden. We therefore start with a short overview 
of different two- and three-dimensional sequences that are 
used for this purpose, which are often the basis for other 
quantitative methods as well. Finally, we will present cur-
rent promising developments in MRI that will allow further 
improvement in the techniques presented here.

Plaque burden

Vessel wall thickening is one of the early visible manifesta-
tions of atherosclerosis, and therefore remains one of the 
most important diagnostic readouts of atherosclerotic bur-
den. Large clinical studies have demonstrated an associa-
tion between carotid intima-media thickness as measured 
with ultrasound, and overall risk for cardiovascular events 
such as stroke or myocardial infarction [13, 14]. Ultrasound 
still remains the first choice in clinical practice for assess-
ing carotid stenosis after ischemic events, not least for its 
cost effectiveness. However, black-blood MRI techniques 
for measuring plaque burden have improved tremendously in 
recent years, and are increasingly used in studies on athero-
sclerosis progression or treatment effect [15–17]. Moreover, 
MRI has no limitations in depth penetration and is thus a 
powerful tool for investigating not only superficial arteries 
such as the carotids, but also those such as the intracranial 
[18] and coronary arteries [7].

2D black‑blood MRI

Blood suppression is essential for achieving accurate deline-
ation of the vessel wall, which would otherwise be compro-
mised by smearing of the bright-blood lumen signal. Two-
dimensional (2D) T2-weighted (T2w) spin-echo sequences 
have inherent blood suppression due to outflow effects at 
long echo times; however, this mechanism is not compatible 
with short echo times needed for T1w imaging.

The first robust technique allowing for 2D T1w black-
blood imaging of the arterial vessel wall was proposed by 
Edelman et al. [19]. This spin-echo-based method achieves 
blood suppression by using a pair of non-selective and slice-
selective inversion pulses (double-inversion recovery axial 
image recovery, or DIR), thereby effectively inverting only 
the tissue and blood outside the imaging slice (Fig. 1a). The 
inversion time (TI) between the inversion pulses and imag-
ing readout is chosen such that blood longitudinal magneti-
zation is nulled (as a result of T1 relaxation), while at the 
same time non-inverted blood flows out of the imaging slice. 
The slightly higher signal-to-noise ratio (SNR) and robust 
blood suppression make T1w imaging the preferred choice 
for 2D vessel wall thickness measurements.

Unfortunately, the dependency on blood outflow from 
the imaging slice renders a multi-slice or three-dimensional 
(3D) implementation ineffective [20]. Another problem 
obviously arises when post-contrast measurements are per-
formed, where the T1 of blood decreases significantly, and 
the optimal TI is difficult to determine beforehand. Yarnykh, 
however, has proposed an elegant solution by introducing 
a second inversion pair (quadruple inversion recovery, or 
QIR), making blood suppression effective over a much larger 
range of T1 values [21].
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3D black‑blood MRI

Increasing interest in isotropic 3D imaging protocols 
has led to the development of 3D black-blood imaging 
sequences that do not rely on outflow effects and are there-
fore more robust against slow flow artifacts. 3D turbo spin-
echo (TSE) sequences actually have inherent black-blood 
properties themselves, caused by the buildup of intravoxel 
dephasing as a result of the positive gradient moment of 
the readout gradient during the echo train. While this was 
presented in the early literature as an alternative to bright-
blood brain angiography [22], successful implementation 
for vessel wall imaging required novel variable-flip-angle 
(VFA) refocusing schemes [23–25] that also allowed a 
stable signal response for longer echo trains (Fig. 1b). 

This ensures a favorable point-spread function to pre-
vent blurring of the thin vessel wall. Naturally, this can 
only be achieved for specific values of T1 and T2, and 
the exact choice of flip angle scheme will always be a 
trade-off between tissue contrast and effectiveness of flow 
suppression.

Another class of black-blood methods achieves blood 
suppression independent of the acquisition scheme through 
the use of black-blood preparation modules. One method, 
motion-sensitized driven equilibrium (MSDE, Fig.  1c), 
combines T2 preparation with flow-sensitizing gradients 
[26, 27]. If the first moment of the preparation module is 
sufficiently high, intravoxel dephasing for flowing blood 
occurs, while the static tissue effectively only undergoes T2 
relaxation during the time interval TEprep .

Fig. 1   2D/3D blood suppres-
sion techniques. a 2D double/
quadruple inversion recovery. 
Non-selective inversion of 
inflowing blood generates 
black-blood at a correctly timed 
inversion time. b 3D variable 
flip angle TSE. Frequency 
encoding gradients within the 
TSE readout have flow suppres-
sion properties in that direction. 
The point-spread function of 
the acquisition can be improved 
by variable flip angle schemes. 
c 3D motion-sensitized driven 
equilibrium (MSDE). Within a 
T2 preparation module, strong 
gradients dephase moving 
spins within a voxel, effectively 
crushing the blood signal. 
Magnetization of static tissue, 
although slightly T2-weighted, 
is restored by a final tip-up 
pulse. Subsequently, a 3D TFE/
TSE readout can be applied
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The final tip-up pulse restores the static tissue longi-
tudinal magnetization for subsequent readout using turbo 
field-echo (TFE) or TSE acquisition schemes. As shown 
by Fan et al. [23], the latter seems the more effective 
strategy, as it adds the black-blood properties of the TSE 
readout.

An alternative preparation method uses so called-
DANTE (delay alternating with nutation for tailored 
excitation), consisting of a non-selective train of small-
flip-angle RF pulses [28, 29]. While this preparation is 
much longer than MSDE (~100–150 ms), static tissue 
signal is better preserved and suppression occurs even 
at low velocities. DANTE is particularly promising for 
intracranial imaging, where it also enhances suppression 
of cerebrospinal fluid closely surrounding the vessels 
[30–33].

2D versus 3D imaging

Figure 2a shows examples of 3D MSDE TFE and VFA TSE 
carotid scans in the same volunteer, illustrating the ability to 
acquire black-blood coronal images covering the common and 
internal carotid arteries. Because of the isotropic voxels, these 
data can easily be reformatted into sagittal and axial views. 
Figure 2b clearly illustrates that 2D compared to 3D imaging 
may result in overestimation of wall thickness in regions near 
or within the bifurcation, where the vessel diameter changes 
quickly. On the other hand, we also know that in locations 
with less curvature, ECG-gated 2D DIR scans with in-plane 
resolution of 0.25 mm have optimal vessel wall delineation, as 
shown in Fig. 2c. These measurements were validated against 
histology and ultrasound in a pig model [34], and resulted in a 
mean carotid vessel wall thickness of 0.49 mm [35].

Fig. 2   Vessel wall imaging using 2D and 3D imaging sequences. 
Sequence parameters: a FOV  =  144  ×  144  ×  35  mm, resolu-
tion  =  0.7  ×  0.7  ×  0.7  mm. 3D MSDE, TR/TE  =  10.0/3.5  ms, 
TEprep  =  11.5  ms, TFE factor  =  60, Acq time  =  3  min. 3D 
VFA TSE, TR/TE  =  1000/28  ms, ∆TE  =  4.3  ms, TSE fac-

tor = 40, start-up echoes = 4, Acq time = 6 min. b 3D TSE, same 
as (a), 2D DIR, ST  =  2  mm, resolution  =  0.5  ×  0.5  mm, TR/
TE  =  1000/3.5  ms, TI  =  400  ms c 2D DIR, same as (b), but with 
resolution = 0.25 × 0.25 mm
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Given the current resolution in 3D MRI protocols, over-
estimation of vessel wall thickness is likely to occur [36]—
especially considering smaller vessels such as the intracra-
nial or coronary arteries [37, 38]—although this issue may 
be less problematic in later stages of atherosclerosis, where 
plaque formation has caused significant wall thickening [39].

While excellent reproducibility values for 2D thickness 
measurements have been reported for carotid and aortic 
vessel walls [40, 41], a great advantage of 3D imaging is 
that it requires no tedious, accurate planning of the imag-
ing slices, while still allowing reconstructions in arbitrary 
planes. This may partly explain the good reproducibility of 
3D black-blood methods reported for various applications, 
such as the carotid arteries [42, 43], thoracic aortic wall [8, 
24, 44], abdominal aorta [44] and even the coronary arteries 
[38]. While generally not applied, ECG and/or respiratory 
triggering can further minimize blurring due to vessel wall 
pulsation or breathing motion [8].

Although different black-blood mechanisms can be easily 
described, their exact performance in terms of SNR, tissue/
lumen contrast-to-noise ratio (CNR), and effective resolu-
tion are highly dependent on the exact sequence parame-
ters, including both the preparation module and the specific 
acquisition scheme (e.g. TFE vs. TSE).

While comparisons between different methods have been 
reported [29], the large number of sequence parameters 
makes a fair comparison very challenging. Consequently, 
no consensus on optimal vessel wall imaging protocols has 
been reported thus far.

Plaque composition

The excellent intrinsic soft tissue contrast of MRI has ena-
bled visualization of different structural components within 
the plaque, such as lipid-rich necrotic core (LRNC), calci-
fication (CA), fibrous tissue (FIB) and intraplaque hemor-
rhage (IPH). To this end, many studies have used multi-
contrast-weighted imaging, in which each component can be 
identified by the specific combination of hypo- and/or hyper-
intense signal intensities on T1-, T2(*) - and protein density-
weighted (PDw) images [6, 45, 46]. Although accumulating 
evidence from imaging studies shows that the presence or 
absence of these components can be related to subsequent 
cardiovascular events [11, 47], qualitative interpretation of 
these images or the need to calculate relative signal inten-
sities (e.g. compared to sternocleidomastoid muscle) gives 
rise to high intra/inter-observer variability [48]. This is 
mainly due to the strong influence of spatial variations in 
coil sensitivity on relative signal intensity, as well as the 
specific choice of MR sequence parameters. Therefore, the 
quantification of T1 and T2(*) relaxation time constants of 
tissue on a voxel-wise basis—as quantitative measures of the 

underlying tissue composition—is of great interest. While 
quantitative T1 and T2(*) values have been reported in his-
tological studies of carotid endarterectomy specimens [49, 
50], translation of existing techniques to in vivo vessel wall 
imaging has long been complicated by the additional need 
for high-resolution imaging, blood suppression and cardiac 
gating. The following sections will present the newest tech-
niques that have overcome most of these challenges.

T1 and T2(*) relaxometry

Results from multi-contrast imaging studies show that 
LRNC has lower T2 than healthy intima/media. Although 
IPH may show large changes in T2 over time [51], the most 
commonly found “recent IPH” is associated with elevated 
T2 values. A traditional way of measuring T2 is by expo-
nential fitting of signal intensities acquired with multi-echo 
spin-echo sequences (Fig. 3a). While the early literature 
had already reported in vivo vessel wall T2 quantification 
from dual spin-echo sequences [52], Biasiolli et al. have 
only recently improved this approach, allowing for acquisi-
tion of multiple echoes between 25 and 100 ms [53]. Since 
the need for relatively short echo times reduces the outflow 
effect compared to regular T2w spin-echo sequences, blood 
suppression was enhanced using DIR preparation (Fig. 1a). 
Figure 3b nicely illustrates a T2w image of an advanced 
plaque, along with corresponding quantitative T2 maps. In 
this study, the mean values for FIB and LRNC were 56 ± 9 
and 37 ± 5 ms, while various patches of IPH had T2 values 
>90 ms. By training a Bayes classifier using expert readings 
of co-registered multi-contrast data, the authors developed 
an automated segmentation algorithm that discriminates the 
various plaque components based on their absolute T2 val-
ues. A significant drawback of the method is that it is limited 
to 2D imaging, with a relatively long acquisition time of 320 
R–R intervals despite the use of 5/8 partial Fourier accelera-
tion. Nonetheless, these results show that all relevant plaque 
components may be discriminated on the basis of T2 alone.

Instead of using multi-echo spin-echo-based sequences, 
T2* can be determined using a blood-suppressed multi-echo 
gradient echo approach, with typical echo times of 3–40 ms. 
Unlike T2, T2* is strongly affected by the presence of mag-
netic field inhomogeneities and thus might not solely reflect 
tissue structure. At the same time, this makes T2* imag-
ing very sensitive in detecting protein-bound iron. Raman 
et al. [54] were the first to conduct an extensive study of 
the role of iron in atherosclerosis using quantitative T2* 
measurements. They found a significant decrease in T2* 
between asymptomatic (34.4 ± 2.7 ms) and symptomatic 
patients (20.0 ± 1.8 ms). Furthermore, ex vivo iron quan-
tification in endarterectomy specimens showed equal total 
iron content in both groups, but greatly reduced levels of 
paramagnetic Fe(III) complexes. Overall, these results 
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strongly suggest that symptomatic plaques are associated 
with higher amounts of ferritin-bound iron, which was sen-
sitively assessed using quantitative T2* MRI. In addition to 
endogenous iron, T2*-weighted imaging has also been fre-
quently used to detect macrophage-mediated uptake of intra-
venously injected superparamagnetic iron oxide (SPIO) par-
ticles as a surrogate marker of plaque inflammation [55, 56]. 
However, such studies still suffered from the use qualitative 
MRI methods [57]. In more recent studies, quantitative T2* 
mapping has been applied in combination with QIR blood 
suppression in order to increase the accuracy in assessing 
SPIO accumulation by calculating ΔT2* or ΔR2* between 
pre- and post-contrast scans [58, 59]. While T2* values can 
be prone to magnetic field inhomogeneities, both studies did 
report similar baseline T2* values of approximately 25 ms, 
indicating good reproducibility with this approach. Unfor-
tunately, 3D implementation of these multi-echo techniques 
has not yet proven feasible, most likely due to the inevitable 
increase in repetition time, leading to clinically unacceptable 
acquisition times.

T1 mapping methods are well validated in areas such as 
brain or cardiac imaging, and in these areas they are gener-
ally based on steady-state imaging at multiple flip angles 
or sampling of the inversion recovery longitudinal relaxa-
tion curve [60, 61]. Unfortunately, these are all bright-blood 
techniques that compromise vessel wall delineation and 
are susceptible to flow artifacts. We recently developed a 

black-blood version of the DESPOT1 approach [60] by using 
MSDE blood suppression with short pre-pulses of 11.5 ms 
and maintaining steady-state conditions of the 3D RF spoiled 
gradient echo train by adding dummy pulses after signal 
acquisition [62]. This enabled 3D vessel wall T1 mapping 
with isotropic resolution of 0.7 mm. Moreover, T2 mapping 
was possible using the same sequence by varying the TEprep 
time of the MSDE pre-pulse. While good reproducibility of 
this 3D approach was shown, both carotid T1 and T2 values 
(844 ± 96 ms/39 ± 5) were lower than with single-slice 
TSE-based measurements (1227 ± 47/55 ± 11 ms) [63]. 
Furthermore, the use of MSDE pre-pulses causes T1 modu-
lation in k-space, which can lead to some blurring of the 
resulting T1 maps. Figure 4a shows quantitative T1 mapping 
results from a carotid plaque where significantly reduced T1 
is indicative of IPH. Simultaneous non-contrast angiography 
and intraplaque hemorrhage (SNAP) is a recently published 
method for detecting IPH, which can identify regions of IPH 
by phase-sensitive reconstruction of inversion recovery data 
[64]. Figure 4b shows SNAP+ and SNAP− images corre-
sponding to the region shown in Fig. 4a, representing IPH 
and arterial blood, respectively. Since the sign of the SNAP 
signal changes below a specific T1 value, we can show that 
the IPH region visible in the SNAP+ image can be recreated 
from the quantitative T1 map by simple thresholding.

While the main benefit in using quantitative T1 and T2(*) 
mapping—compared to multi-contrast T1w and T2(*)w 

Fig. 3   a Quantitative vessel 
wall T2 mapping. ECG-gated 
multi-echo spin-echo data 
are acquired with echo times 
between 25–100 ms. Blood 
suppression is obtained through 
double-inversion recovery 
preparation. b T2w image along 
with quantitative T2 map of an 
advanced plaque (SM smooth 
muscle, * lumen). Semi-auto-
mated segmentation of plaque 
components from the T2 map 
is shown on the right. Adapted 
from Biasiolli et al. (19) and 
Chai et al. [66]
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imaging—is to improve reproducibility and facilitate lon-
gitudinal monitoring of changes in plaque composition, it 
still does not allow for direct assessment of the relative con-
tribution of different tissues in each voxel. In contrast, for 
instance, Koppal et al. were able to assess quantitative maps 
of fat content based on Dixon imaging, showing significant 
differences between the lipid core (12.6%) and surround-
ing tissue (9.2%) [65]. On the other hand, the use of multi-
contrast imaging to detect different plaque components (i.e. 
LRNC, IPH) has been well validated against histology [45, 
51]. Quantitative relaxation parameter mapping extends this 
concept and might enable better definition of thresholds for 
discriminating between these different tissue types. Indeed, 
a recent study reported that LRNC detection based on T2 
mapping—pixels with T2 <42 or T2 >90 ms when IPH 
was included—showed very good correlation with histol-
ogy (R = 0.85) and had good sensitivity (AUC = 0.79) for 
detecting recently symptomatic plaques [66].

Diffusion

MRI is also able to quantify water diffusion within tissues. 
Strong field gradients applied on each side of a 180° refocus-
ing pulse cause diffusion-mediated signal attenuation due 
to phase dispersion of spins. Conversely, in static tissue, the 
effect of both gradients cancels out and the signal is main-
tained. The degree of diffusion weighting is given by the 
b-value, which depends on the gradient strength, duration 
and spacing [67]. Similar to varying TE to quantify T2(*), 
the apparent diffusion coefficient (ADC) can be estimated by 
an exponential fit of signals acquired at different b-values, 
which determines the amount of diffusion weighting. In ves-
sel wall imaging, diffusion weighting is of particular interest 
for detecting the presence of an LRNC, which from ex vivo 
studies has been known to have a strongly decreased ADC 
[68, 69]. In fact, Clarke et al. showed that, compared to T1 
and T2 quantification, ADC was the parameter that could 
best distinguish LRNC from FIB [70].

Diffusion-weighted imaging (DWI) is typically performed 
using 2D single-shot echo-planar imaging (EPI) sequences, 
which provides time efficiency for sufficient averaging of 
the low DW signal (because of the additional need for long 
TEs). However, EPI is very susceptible to B0 inhomoge-
neities, because phase errors accumulate for each addi-
tional phase encoding step. Kim et al. [71] were the first 
to apply inner-volume imaging for vessel wall applications, 
reducing the effective field of view (FOV) and thereby the 
echo train length by a factor of 4. In this way, good-quality 
ADC maps of 2-mm slices were obtained with a resolu-
tion of 1 × 1 mm2. This spatial resolution, however, is still 
inferior to the resolution used for vessel wall thickness 
measurements.

A novel approach enabling 3D vessel wall DWI was 
recently presented by Xie et al. [72]. They decoupled dif-
fusion weighting from the imaging readout through the 
use of a motion-compensated diffusion-weighted pre-pulse 
(Fig. 5a). Combined with 3D TSE acquisitions, this resulted 
in high-resolution imaging of 0.6 × 0.6 × 2 mm3 (Fig. 5b). 
Additional double-inversion recovery preparation and 
low-b-value motion-sensitized gradient on top of diffusion 
weighting further guaranteed efficient blood suppression. 
A large decrease in LRNC ADC values compared to FIB 
(0.6 × 10−3 vs. 1.27 × 10−3 mm2/s) was shown, indicat-
ing that ADC mapping may serve as a sensitive and quan-
titative non-contrast technique for plaque characterization 
(Fig. 5c). Using a similar approach but with a stimulated 
echo pathway, Zhang et al. [73] recently showed that phase 
errors arising from eddy currents could be prevented. This 
resulted in stable carotid artery ADC values across subjects 
of 1.4 ± 0.23 × 10−3, which is comparable to results of ear-
lier studies.

Fig. 4   a Quantitative 3D vessel wall T1 mapping. The slice on the 
left shows regions of greatly reduced T1, indicating IPH. Adapted 
from Coolen et  al. [31] b Masked images corresponding to panel 
a showing regions with T1 <400  ms, alongside registered SNAP 
images showing regions of IPH (SNAP+) or arterial blood (SNAP−). 
Regions with low quantitative T1 values match IPH-positive regions 
from SNAP (unpublished data)
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While challenging, extension of DWI to a diffusion tensor 
imaging (DTI) protocol using multiple gradient directions 
would allow calculation of the fractional anisotropy (FA) of 
the vessel wall microscopic fiber structure. Opriessnig et al. 
[74] were recently the first to apply a 2D DTI sequence using 
four b-values and 18 diffusion directions on a 10-mm carotid 
artery segment. In 12 healthy volunteers, the authors found a 
significant correlation between FA and age, indicating pos-
sible alterations of the vessel wall microstructural integrity. 
Moreover, the reproducibility of FA measurements appeared 
very high, with CV values no higher than approximately 5%.

Quantification of permeability with dynamic 
contrast‑enhanced MRI

Inflammation in vulnerable atherosclerotic plaques, at high 
risk for causing severe, acute cardiovascular events, is accom-
panied by the proliferation of existing and new microvessels 
with high endothelial permeability [75]. Dynamic contrast-
enhanced (DCE) MRI, a technique widely used to quan-
tify endothelial permeability and microvascular volume in 
tumors [76], has been widely adopted in the past 15 years for 
quantification of these parameters in atherosclerotic plaques 
as well. DCE-MRI consists in the rapid serial acquisition 
of T1-weighted MR images of a volume of interest while 
a T1-shortening, gadolinium (Gd)-based contrast agent is 
injected [76]. During imaging, the contrast agent extravasates 
from the plasma compartment, and causes MR signal enhance-
ment in permeable tissues. Tissue microvascular volume and 
permeability can then be extracted from the kinetics of tissue 

signal enhancement over time. To calculate these quantities, 
MR signal enhancement curves are first converted to con-
trast agent concentration values, either by estimating the T1 

Fig. 5   3D quantitative diffusion vessel wall imaging a ECG-gated 
3D diffusion-prepared variable-flip-angle TSE sequence. Motion-
compensated diffusion gradients are combined with low b-value flow-
sensitizing gradients for additional blood suppression. b Diffusion-
weighted vessel wall images of a healthy volunteer at b values of 30 

and 300 mm2/s, along with corresponding quantitative ADC map. c 
Diffusion-weighted imaging of a lipid-rich atherosclerotic plaque 
with high signal on the b = 300 mm2/s image and corresponding low 
ADC values. Adapted from Xie et al. [72]

Fig. 6   a Representative concentration versus time curve kinetics in 
atherosclerotic plaques. Data fitting is shown with 4 different models. 
Ext. extended. b Example of pixel-by-pixel parametric Ktrans maps of 
the carotid arteries, calculated using a Patlak model. Both maps were 
generated from the same individual and from images acquired 1 week 
apart, in order to evaluate inter-scan reproducibility. Adapted from 
Gaens et al. [79]
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relaxation time at each dynamic time frame, or by assuming 
a linear relationship between MR signal intensity and con-
trast agent concentration. After conversion to concentration, 
pixel-by-pixel or region of interest (ROI) concentration curves 
are typically analyzed using either model-based or non-model 
based approaches to calculate tissue properties (Fig. 6a), such 
as microvascular volume, permeability (Fig. 6b) and extravas-
cular extra-cellular space volume. The most common kinetic 
models used for analysis of DCE-MRI are typically based on 
the modified Tofts model [77]:

Ctissue(t) = vp ⋅ Cp(t) + K
trans

t

∫
0

Cp(t
�) ⋅ e−K

trans∕ve⋅(t
�−t)dt�,

 where Ctissue (t) is the concentration of contrast agent in the 
tissue of interest, Cp is the contrast agent concentration in the 
plasma compartment, vp (%) is the fractional microvascular 
volume, Ktrans indicates the permeability (min−1), ve (%) is 
the extravascular extracellular space fraction, and t is time. 
In atherosclerosis, this model has often been used under the 
Patlak assumption [78, 79], which assumes no contrast agent 
“backflow” from the tissue to the plasma compartment, as 
shown below:

In the literature, average plaque Ktrans values calcu-
lated using this model have ranged from 0.05 to 0.3 min−1 
[80–88], while average vp values were found to vary between 
4 and 25% [78, 83, 85, 87, 89]. These broad ranges may 
reflect differences in patient populations and/or disease 
stages in animal models, or different acquisition or analysis 
methods. Using a 2D bright-blood (i.e. allowing sampling 
of the MR signal in the blood plasma during the dynamic 
acquisition) spoiled gradient recalled echo (SPGR) MR 
sequence and Patlak kinetic analysis, Kerwin et al. [78] were 
the first to demonstrate a significant, positive correlation 
between microvessel density in human carotid atheroscle-
rotic plaques (CD31 immunostaining) and the parameter vp 
(fractional microvascular volume) derived from DCE-MRI. 
Using this methodology, the same group also demonstrated 
a significant, positive relationship between vp, Ktrans (perme-
ability) and plaque macrophages, neovasculature and loose 
matrix (LM) [83]. As for clinical parameters, Ktrans was 
found to correlate with lower levels of high-density lipo-
proteins (HDL) [83] and higher levels of C-reactive pro-
tein [80], and was higher in smokers than non-smokers [80, 
83]. This analysis was extended to quantify the difference 
in DCE-MRI parameters between different plaque compo-
nents including LRNC, IPH, LM, FIB and CA [89]. It was 
demonstrated that while LM and FIB showed relatively high 
values of Ktrans and vp, NC, IPH and CA exhibited signifi-
cantly lower Ktrans and vp. O’Brien et al. [85, 90] recently 
demonstrated a relationship between the duration of statin 
therapy and vp from DCE-MRI: the shorter the duration 
of statin therapy, the higher the vp values. The presence of 
metabolic syndrome, higher body mass index and plasma 
lipoprotein(a) values were also associated with higher vp 
values.

While the Patlak model has been widely used for quanti-
fying endothelial permeability and microvascular volume in 
atherosclerosis, the best choice of model for analyzing DCE-
MRI data of the vessel wall is still a topic of investigation 
[79, 91]. As an alternative to kinetic modeling, non-model-
based approaches, such as area under the enhancement curve 

Ctissue(t) = vp ⋅ Cp(t) + K
trans

t

∫
0

Cp(t
�) dt�.

Fig. 7   3D vessel wall imaging. a Multiplanar reconstruction (MPR) 
of 3D images acquired after the injection of Gd-DTPA into the aorta 
of an atherosclerotic rabbit. TFE turbo field echo. b Representative 
2D turbo spin-echo (TSE) double-inversion recovery axial image 
acquired after injection of Gd-DTPA into the aorta of an atheroscle-
rotic rabbit. c Corresponding AUC permeability maps (MPR) from 
3D TFE DCE-MRI and near-infrared fluorescence (NIRF) after 
Evans blue (EB) injection in one representative atherosclerotic and 
control rabbit. Prominent uptake of MR contrast and EB is shown in 
the diseased animals compared to the control. Adapted from [86]
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(AUC), uptake slope, time to peak or maximum concentra-
tion, can also be used to analyze DCE-MRI data. While the 
relationship between these non-model based parameters and 
microvascular volume and permeability is not straightfor-
ward, AUC has been particularly valuable as a surrogate 
measure of plaque neovascularization and permeability 
calculated from so-called black-blood DCE-MRI data, 
where the MR signal from the blood plasma is purposively 
suppressed to improve vessel wall delineation, and kinetic 
modeling cannot be easily performed. Using black-blood 
DCE-MRI, Calcagno et al. [92] demonstrated a positive, 
significant correlation between the parameter AUC and 
plaque microvessels count (CD31 immunostaining) in aortic 
plaques of atherosclerotic rabbits. The reproducibility of this 
technique was also evaluated and was found to be very good 
[93]. In addition, AUC has been used as a surrogate marker 
of drug efficacy to evaluate the impact on vascular perme-
ability/inflammation of several approved (atorvastatin [94], 
pioglitazone [95]) and novel (liposomal corticosteroids [96], 
liver X receptor [LXR] agonist [94]) drugs. Chen et al. [97] 
showed an increase in both plaque Ktrans relative to skeletal 
muscle [98] and AUC in aortic plaques of atherosclerotic 
rabbits between 3 and 6 months of an atherosclerotic diet. 
AUC was also used by Calcagno et al. [99] to compare per-
fusion/permeability by DCE-MRI to vascular inflammation 
by 18F-fluorodeoxyglucose (FDG) uptake by positron emis-
sion tomography with computed tomography (PET/CT) in 
sub-clinical plaques of patients with risk factor for coronary 
artery disease (CAD). In this case the authors found a weak 
negative relationship between the two techniques in this 
patient population.

Since these initial applications, several significant devel-
opments have occurred in DCE-MRI of atherosclerosis. For 
example, both bright- and black-blood studies described 
above primarily employed 2D single- or multi-slice imaging 
with high spatial and temporal resolution, but offered lim-
ited coverage along the vascular bed examined. More recent 
studies have improved upon this aspect [86, 88, 100–102], 
and proposed the use of 3D isotropic high-resolution vessel 
wall imaging with extensive coverage for vascular DCE-
MRI. Using a bright-blood 3D gradient recalled echo (GRE) 
approach, Taqueti et al. [100] demonstrated a positive, sig-
nificant relationship between permeability by DCE-MRI and 
18F-FDG PET/CT in patients with advanced carotid disease. 
The authors also confirmed a positive, significant relation-
ship between Ktrans and microvessels (CD31 immunostain-
ing) and inflammation (CD68 and major histocompatibility 
complex II [MHCII] immunostaining) in the same patient 
population. Similarly, van Hoof et al. [88] demonstrated a 
correlation between the vessel wall and adventitial Ktrans and 
plaque microvessels by histology in patients with carotid 
atherosclerosis. Using black-blood DCE-MRI instead, Kim 

et al. [103], Lobatto et al. [102] and Calcagno et al. [86] 
were able to quantify endothelial permeability in the whole 
abdominal aorta of atherosclerotic rabbits. These find-
ings were confirmed by a positive, significant relationship 
between AUC by 3D DCE-MRI and endothelial permeabil-
ity by ex vivo near-infrared fluorescence using fluorescent 
albumin or Evans blue dye (Fig. 7). 

Despite these significant advances, vascular DCE-MRI is 
still significantly challenged in achieving accurate quantifi-
cation of plaque microvascular burden and permeability. As 
mentioned above, it is difficult to extract fully quantitative 
information from black-blood vascular DCE-MRI (either 
2D or 3D), due to the inability to sample the concentration 
of contrast agent in the blood plasma (the so-called arte-
rial input function, AIF), which is a necessary input for 
kinetic models. On the other hand, even bright-blood vas-
cular DCE-MRI approaches may carry some degree of error 
in the quantification of vascular permeability parameters, 
also stemming from potential inaccuracies when estimating 
the AIF from the MR signal itself. As with all other ves-
sel wall imaging techniques, vascular DCE-MRI requires 
imaging with high spatial resolution, which may render the 
temporal resolution of the acquisition inadequate for sam-
pling the fast contrast agent kinetics in the blood plasma. 
In addition, MR sequence parameters used for DCE-MRI 
are typically optimized to accurately capture the dynamic 
signal range of enhancement in atherosclerotic plaques, and 
may not be adequate to accurately capture signal enhance-
ment in the vessel lumen, where contrast agent concentra-
tions are much higher, and T1 much lower, during dynamic 
imaging. Recent studies have focused on overcoming these 
challenges by proposing either 2D [104] or 3D [105, 106] 
sequences that allow for accurate sampling of both blood 
and plaque kinetics, interleaving the acquisition of images 
with different spatial and temporal resolution and differ-
ent imaging parameters. For example, AIF images can be 
acquired with lower spatial resolution, which allows for 
faster imaging (high temporal resolution) and imaging 
parameters optimized for the high signal enhancement (low 
T1 values) found in the vessel lumen. Conversely, plaque 
dynamic images can be acquired with high spatial resolu-
tion, lower temporal resolution, and imaging parameters 
optimized to capture the signal enhancement of the arterial 
vessel wall. Other authors have instead explored the use of 
phased-based rather than magnitude-based AIFs for kinetic 
modeling of vascular DCE-MRI data [107]. Using simu-
lations and phantom experiments, the authors found that 
phase-based AIF offered a more accurate sampling of the 
true contrast agent kinetics in the blood plasma. While the 
absolute value of kinetic parameters derived from magni-
tude- and phase-based AIF were different, they were shown 
to be highly correlated.
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Alternative techniques for measuring permeability

In addition to DCE-MRI, various other techniques have 
been proposed for quantifying endothelial permeability in 
atherosclerotic plaques. Delayed-enhancement imaging 
with either low molecular weight gadolinium chelates or 
albumin-binding agents has been used as a semi-quantitative 
measure of plaque permeability in both animal models (mice 
[108], rabbits [109–111]) and humans [112, 113]. Phinika-
ridou et al. [114] and Bar et al. [115] quantified endothelial 
permeability in the brachiocephalic artery of atherosclerotic 
mice as a change in the vessel wall relaxation rate (R1, s−1) 
30 min after injection of an albumin-binding contrast agent 
(gadofosveset trisodium). This technique has also been 
used successfully to quantify changes in permeability in the 
murine brachiocephalic artery after therapeutic intervention 
[111, 116]. More recently, Phinikaridou et al. [117] used 
this same technique to quantify endothelial permeability in 
aortic plaques in atherosclerotic rabbits, and demonstrated 
higher R1 (indicative of higher permeability) in aortic seg-
ments more prone to disruption after injection of Russell’s 
viper venom. Unlike quantitative dynamic imaging with 
DCE-MRI, these techniques measure signal enhancement 
or quantify tissue relaxation time only at a fixed point after 
contrast agent injection. This approach is particularly well 
suited for higher molecular weight or albumin-binding con-
trast agents, whose plaque uptake kinetics are intrinsically 
slower. While failing to capture the dynamic uptake of con-
trast agents over time, these techniques offer a simpler and 
robust alternative to DCE-MRI for quantification of plaque 
microvascularization and permeability.

Flow‑derived biomechanical wall parameters

Wall shear stress

Atherosclerosis originates predominantly at regions with 
perturbed flow that can occur at the outer edges of vessel 
bifurcations. In these regions, hemodynamic wall shear 
stress (WSS), the frictional force sensitized by endothelial 
cells forming the inner lining of blood vessels, is weaker 
than in protected regions and can even exhibit direction 
reversal. The atherogenic endothelial phenotype result-
ing from low WSS mediates recruitment and activation of 
monocytes, which can subsequently lead to plaque forma-
tion [118]. WSS is also known to increase with increasing 
blood flow. In response, the vessel dilates to reduce blood 
flow such that WSS returns to normal values. Regions where 
WSS is chronically elevated, such as the apices of bifurca-
tions in the cerebral vasculature, are predisposed to the for-
mation of aneurysms [119]. WSS therefore represents a key 

Fig. 8   a Peak systolic WSS vectors along the carotid (left) and tho-
racic aorta (right). Adapted from Potters et  al. [135]. b Example of 
a 3D wall thickness (WT [mm]) map of the carotid bifurcation and 
corresponding time-averaged 3D wall shear stress WSS (Pa) map of 
the same subject (top). WT was significantly different in each tertile 
and the highest WT was found in the lowest WSS tertile (bottom). 
Adapted from Cibis et al. [136]
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link between blood flow and alterations in biomechanical 
vessel wall parameters.

Flow measurement using MRI has traditionally been per-
formed using 2D phase-contrast imaging in most vascular 
beds. With gating to the cardiac cycle, a time-resolved (cine) 
measurement can be performed [120]. Currently, a com-
prehensive assessment of flow in an entire 3D volume (3D 
cine phase-contrast MRI or 4D flow MRI) is feasible [121], 
enabling the measurement of full time-varying 3D velocity 
fields in a wide variety of cardiovascular regions [122].

The importance of WSS in vascular disease has led to 
widespread interest among researchers in obtaining reli-
able estimates of WSS from MRI-measured velocity data. 
Oshinski et al. were the first to develop a method based on 
linear fitting through velocity values to obtain the velocity 
derivative (the shear rate) at the wall [123]. Multiplication 
of the shear rate by dynamic viscosity yields the WSS. Other 
groups developed WSS estimation based on parabolic fitting, 
which showed greater accuracy than linear fitting [124, 125]. 
Stalder et al. used cubic B-splines to derive the shear rate 
at the wall [126]. Another important hemodynamic param-
eter shown to correlate with atherosclerosis is the oscilla-
tory shear index (OSI) [127]. OSI represents the temporal 
oscillation of WSS during the cardiac cycle, the deviation of 
WSS from its predominant direction parallel to the vessel. 

Thus, the OSI can be calculated using methods to estimate 
time-resolved WSS.

These techniques applied to MRI-measured flow data 
have provided valuable insight into the relation between 
abnormal WSS and pathophysiology. Duivenvoorden et al. 
showed that WSS was an independent predictor of carotid 
wall thickness, lumen area and vessel size [128]. Mutsaerts 
et al. found that WSS was associated with periventricular 
white matter lesions and cerebral infarcts [129]. Markl et al. 
observed that low WSS and high OSI, which are potentially 
atherogenic wall parameters, were predominantly concen-
trated at the posterior wall of the internal carotid artery in 
normal controls, a region known to be prone to atheroscle-
rosis [130]. Wentzel et al. reported that the presence of ath-
erosclerotic plaques in the descending aorta was associated 
with low WSS [131]. Other studies showed that WSS on the 
ascending aorta was elevated compared to healthy controls 
in bicuspid valve disease, which implicates a relationship 
between elevated WSS and aortic dilation [132, 133].

However, these algorithms were based on 2D phase-
contrast MRI or the manual placement of planes in 4D flow 
MRI data perpendicular to the vessel of interest. With 2D 
techniques highly focused on specific vascular landmarks, 
focal abnormal WSS expression on the vessel of interest 
may be missed. Also, the manual placement of 2D planes 

Fig. 9   Different techniques for 
determing pulse wave velocity 
(PWV) in the aorta. a foot-
foot method. The path length 
between two slices perpendicu-
lar to the aorta is divided by 
the time difference between the 
initial upslopes of the two flow 
curves. b QA-method. Lumen 
area is plotted as function of 
flow during the cardiac cycle. 
PWV is defined as the change in 
lumen area (A) divided by the 
change in flow (Q) during the 
linear portion of the QA-plot. 
Adapted from [148]
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for WSS analysis can be a laborious task. Bieging et al. were 
the first to develop a WSS algorithm based on 4D flow MRI 
that was capable of estimating WSS along the entire wall of 
the ascending aorta [134]. The linear least squares method 
was used to fit a line through three velocity vectors along the 
inward normal. Potters et al. expanded on this method with 
the use of smoothing spline fitting to mitigate the influence 
of noise. The feasibility of estimating WSS along the entire 
aorta (the arch and descending part included) and the carotid 
bifurcation was also demonstrated (see Fig. 8a [135]). Cibis 
et al. recently found an inverse relationship between wall 
thickness and time-averaged WSS in patients with asymp-
tomatic plaque, calculated with the algorithm described in 
Potters et al. in the carotid bifurcation (Fig. 8b) [136]. 

Some important considerations should be kept in mind 
when estimating 4D flow MRI-derived WSS. First, several 
studies showed that an accurate definition of the vessel wall 
is paramount [125, 135]. Nonetheless, low inter-observer 
variability in WSS was found for both 2D (<10%) and 3D 
(<5%) WSS algorithms [137, 138]. Second, the absolute 
value of WSS decreases with spatial resolution [126, 135]. 
Thus, 4D flow MRI-derived WSS is always underestimated 
compared to computational fluid dynamics where fine 
meshes are used [139]. Qualitatively, however, regions of 
high and low WSS and the direction of WSS tend to cor-
respond well [140–142](Fig. 7).

Arterial stiffness

Another parameter that can be assessed using phase-contrast 
MRI is pulse wave velocity (PWV), which characterizes the 
speed of the arterial pulse through a specific part of the cir-
culation. PWV is a measure of arterial stiffness and can be 
directly correlated with the vessel wall elastic modulus E 
using the Moens-Korteweg equation:

 where h is the vessel wall thickness, ρ is the blood den-
sity and d is the vessel diameter. The elasticity of the vessel 
wall decreases as part of natural aging. MRI-based PWV 
measurements have indeed shown significant increases in 
PWV as a function of age in the carotid arteries and the 
aorta [143], ranging from roughly 5 m/s for young adults 
to 7–8 m/s in the elderly. More importantly, arterial stiff-
ness has also been associated with atherosclerosis [144], and 
studies have shown that the measurement of PWV in various 
vascular beds significantly improves the prediction of future 
cardiovascular events [145–147].

While Doppler ultrasound is the clinical workhorse for 
determining PWV, MRI might offer several advantages. 
Particularly in 3D anatomical imaging, MRI enables 

PWV =

√

Eh

�d
,

better visualization of each vessel segment, independent 
of angle and depth. This likely improves reproducibility 
due to ease of planning, as well as by a more accurate 
determination of the path length of the pulse wave [148, 
149]. Many approaches to calculate PWV are mentioned 
in the literature and unfortunately no clear consensus 
exists on which method produces most reliable PWV val-
ues. The most widely used method is by measuring flow-
time curves at two different slices along the vessel. The 
so-called foot–foot method can then be used to calculate 
PWV by dividing the path length between the slices by 
the time difference between the initial up-slopes of the 
two flow curves (Fig. 9a). The exact location of the foot 
is slightly affected by the baseline definition and the num-
ber of points used to define the linear part of the up-slope 
(usually 20–80% of the maximum flow). Another analysis 
method finds the time shift at which both curves have the 
highest correlation; however, this can be affected by the 
correlation window and presence of wave reflections start-
ing from the systolic downslope [150]. Instead of relying 
on phase-contrast acquisitions in two slices, PWV could 
be calculated from measurements in a single or multiple 
oblique sagittal slices [151, 152]. Flow–time curves could 
then be plotted for each pixel along a centerline of the 
vessel, which produces a set of time shifts as a function 
of distance, presumably resulting in a more reliable esti-
mate of PWV. For the aorta, this has been extended to 
volumetric flow measurements using highly accelerated 4D 
flow acquisitions, which further facilitates the planning of 
the imaging volume (see [153], Fig. 8). Tortuous vessels 
such as the carotids could benefit from this methodology, 
although temporal and spatial resolution still appear to be 
too low for this specific application. A third method pro-
vides even more local vessel wall PWV values by assessing 
changes in lumen diameter (A) as a function of flow (Q) at 
different time points during the cardiac cycle, where PWV 
is given by ΔQ/ΔA during the initial up-slope of this rela-
tion (Fig. 9b). In a study comparing the above-mentioned 
methods for the aorta, Ibrahim et al. found the best agree-
ment between the foot–foot and cross-correlation methods, 
which also showed the highest reproducibility [148]. While 
analytical methods vary widely among studies, results for 
group-averaged aortic PWV have been quite consistent 
(4–5 m/s) in young adults [149–151, 154]. Unfortunately, 
less data is available on carotid PWV (~5.5 m/s) and femo-
ral arteries (~7 m/s) [143, 155], for which the latter inter-
estingly seems to decrease with age. Finally, while repeated 
measurements on the same day have shown good repeat-
ability [149, 156], day-to-day physiological variations in 
blood pressure and blood flow might limit the applicability 
of PWV measurements for sensitive monitoring of gradual 
changes over time.
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Summary and future perspectives

In the last decade, technological advances have strength-
ened the position of MRI in the assessment of quantita-
tive, physiological parameters regarding tissue structure 
and pathology. 3D blood suppression techniques and 3D 
time-resolved (4D) imaging have enabled the development 
of strategies for assessing the anatomical, structural and 
functional status of the vessel wall. A few consensus state-
ments have been published on specific applications dis-
cussed in this review [157, 158]. Similar publications on 
“best practice” vessel wall imaging protocols are needed, 
and will help to propel this novel research field forward. In 
this respect, reproducibility studies on quantitative vessel 
wall T1/T2(*), DCE and flow imaging protocols are highly 
important.

Aside from what is presented in this review, the search 
continues for MR techniques that quantify other specific 
markers related to vessel wall pathology, e.g. strain [159], 
or other contrast mechanisms to increase sensitivity for spe-
cific atherosclerotic plaque features. The latter might include 
T1rho imaging for assessment of fibrosis [160] or suscepti-
bility-weighted imaging to detect calcifications [161]. While 
there is much interest in techniques that do not rely on the 
use of MRI contrast agents, this review has shown the rel-
evance of DCE imaging for measuring plaque microvascular 
volume and permeability, which are strongly associated with 
vessel wall inflammation. The use of untargeted iron oxide 
nanoparticles has also been briefly discussed here. Novel 
“smart” nanoparticles that specifically target biomarkers of 
inflammation have yielded very promising results in ani-
mal models of atherosclerosis [162–164]. By labeling with 
MRI contrast agents, accumulation of these nanoparticles 
could be quantified using T1 and/or T2 mapping protocols as 
described in this review. MRI of nuclei other than 1H, such 
as 19F, is also a topic of active investigation for the absolute 
quantification of plaque inflammation using perfluorocar-
bons [165].

Quantifying physiologically relevant parameters in addi-
tion to standard anatomical imaging naturally entails longer 
acquisition times and/or reduced SNR. Furthermore, several 
sources of errors, such as the choice of fitting algorithm, 
motion artifacts, and data SNR, may affect parameter quan-
tification. Aside from developing new quantitative readouts, 
current efforts are predominantly focused on improving the 
accuracy, precision and scan efficiency of existing methods 
by making use of ultra-high-field imaging as well as novel 
reconstruction algorithms.

7T MRI

Recent years have seen the introduction of 7T imaging in 
clinical research, with the direct advantage of an increase 

in SNR directly proportional to the strength of the magnetic 
field [166].

While challenging at 3T [167], this makes 7T MRI 
of particular interest for characterization of intracra-
nial atherosclerosis, where the even smaller vessel size 
requires sufficient signal for accurate delineation of the 
vessel wall. Researchers from UMC Utrecht have been 
pioneers in this field by developing 7T intracranial ves-
sel wall imaging protocols [168], as well as evaluating 
the benefit of 7T versus 3T MRI in detecting atheroscle-
rotic plaques (see also Fig. 10) [18]. On the one hand, 
they found that 7T MRI resulted in better wall definition. 
This was mainly achieved by exploiting the increased 
SNR for higher acceleration factors, enabling the use 
of very robust but inherently time-inefficient inversion 
recovery-based cerebrospinal fluid (CSF) suppression. 
Although in many cases lesions were detected only at 
7T, the authors also noted a significant number of cases 
showing the opposite. Similarly, studies to date on carotid 
plaque characterization have shown no strong indications 
of the superiority of 7T over 3T [169, 170], which might 
be related to the more inhomogeneous transmit field at 
7T compromising non-selective blood suppression tech-
niques, as well as signal homogeneity. In this respect, 
there is a considerable need for better-designed high-field 
carotid coils in order to achieve improved transmit and 
receive characteristics [171, 172]. Similarly, develop-
ments in cardiac 7T coil design may boost the field of 
coronary imaging by exploiting the increase in SNR for 
obtaining higher spatial resolution [173].

Advanced reconstruction techniques

Quantitative imaging generally comes with the need to 
acquire multiple images, either having different sensitiv-
ity to the parameter of interest (T1, T2, ADC) or sam-
pling a dynamic process over time (DCE, flow). Long 
acquisition times are therefore one of the big hurdles in 
this field, and complicate the translation of such methods 
to a clinical environment. What may be able to change 
this in the near future is the rapid improvements in recon-
struction and post-processing techniques. In recent years, 
mathematics has played an increasingly important role in 
advancing MRI technology. In particular, the introduction 
of “compressed sensing” has taught us that images can 
be reconstructed with far less data than was considered 
necessary using assumptions of image sparsity in combi-
nation with iterative reconstruction algorithms [174]. As 
this is quite a generally applicable concept, many research-
ers have already experimented with compressed sensing 
to improve vessel wall MRI. For example, 3D MSDE 
acquisitions were accelerated to a factor of 5 without 
significant deviations in assessing vessel wall or plaque 
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component dimensions [175, 176]. Gong et al. realized 
that multi-contrast vessel wall MRI could be significantly 
accelerated by assuming significant shareable information 
between the different contrast acquisitions [177]. The use 
of their proposed reconstruction algorithm allowed for 
highly accelerated T2w and PDw scans (up to a factor 
of 6) once a moderately accelerated T1w scan (e.g. using 
SENSE) was available. Using regular CS techniques, Yuan 
et al. reduced a 3D MSDE-based T2 mapping protocol 
to a clinically acceptable imaging time of 7 min [178]; 
reconstruction of separate images was done independently. 
A more promising technique related to quantitative relaxa-
tion time (T1/T2) mapping are model-based algorithms 
that use prior knowledge of the relaxation equations to 
reconstruct undersampled scans at multiple inversion or 
echo times [179, 180]

For dynamic or time-resolved imaging, temporal rela-
tions between images are used in order to achieve high 
undersampling factors for the individual time frames. 
This technique shows great promise for achieving higher-
temporal-resolution 3D DCE imaging [86] or allowing 

interleaved sampling of black- and bright-blood images for 
the simultaneous measurement of the arterial input func-
tion and vessel wall signal response [106]. For 4D flow 
applications, the use of k-t GRAPPA has enabled accelera-
tion factors of up to 5 without substantial errors in derived 
WSS parameters [181].

Perhaps the greatest benefit of freely undersampling 
k-space data is the ability to select the optimal data ret-
rospectively. This can be used to circumvent the need for 
cardiac and respiratory gating, without losing scan effi-
ciency, and order the data in the reconstruction process 
based on available data of cardiac and respiratory motion 
from either sensors or MR navigators. Using appropriate 
motion correction algorithms, this even allows for 100% 
scan efficiency [182, 183]. Recent impressive data from 
Ginami et al. [184] showed high-quality coronary vessel 
wall imaging by making reconstructions using different 
timings of the acquisition window within the cardiac cycle 
in order to retrospectively achieve the optimal vessel wall 
delineation.

Multimodal imaging: PET/MRI

In addition to the development of novel MR methods and 
contrast mechanisms, the integration of MRI with other 
imaging modalities that interrogate different aspects of 
plaque physiology is quickly becoming a reality. As a nota-
ble example, the introduction of simultaneous PET/MRI 
systems allows for the seamless combination of anatomi-
cal and physiological imaging with MRI, and metabolic/
functional imaging with PET. PET is a highly sensitive 
modality, and has already been extensively validated for 
quantification of plaque macrophages with 18F-FDG [185, 
186]. However, PET is an imaging modality with intrinsi-
cally low spatial resolution, and it is traditionally combined 
with computed tomography (CT) for improved anatomical 
localization. Combining PET with MRI instead of CT offers 
several advantages. MRI provides high-spatial-resolution 
imaging and better soft tissue contrast than CT, and enables 
the quantification of several physiological parameters in the 
vessel wall, as previously described in this review. The better 
anatomical definition of MRI can be used to apply partial 
volume and motion corrections to improve the localization 
of the PET signal [187, 188].

Last but not least, combining PET with MRI instead 
of CT reduces patient exposure to ionizing radiation—a 
highly desirable feature for longitudinal, repeated imaging 
in patients with chronic diseases (such as atherosclerosis). 
The fact that the two modalities are intrinsically co-regis-
tered allows for easier image interpretation, image analysis 
and experimental design [188, 189]. However, there are also 
specific challenges that may arise when combining these two 

Fig. 10   Comparison of post-contrast intracranial vessel wall imag-
ing using 3T and 7T MRI. 7T MRI largely resulted in enhanced ves-
sel wall delineation (due to enhanced CSF suppression) and more 
frequent detection of atherosclerotic lesions that were missed at 3T 
(rows 3 and 4). Depicted are the right proximal artery (row 1), left 
proximal vertebral artery (rows 2 and 3) and M1 segment of the mid-
dle cerebral artery (row 4). Adapted from Harteveld et al. [18]
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modalities, such as the effective conversion of MR images to 
accurate PET attenuation maps, which are still the subject of 
active investigation [189].
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