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Purpose: To determine the linearity, bias, and precision of hepatic 
proton density fat fraction (PDFF) measurements by us-
ing magnetic resonance (MR) imaging across different 
field strengths, imager manufacturers, and reconstruction 
methods.

Materials and 
Methods:

This meta-analysis was performed in accordance with 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses guidelines. A systematic literature search 
identified studies that evaluated the linearity and/or bias 
of hepatic PDFF measurements by using MR imaging 
(hereafter, MR imaging–PDFF) against PDFF measure-
ments by using colocalized MR spectroscopy (hereafter, 
MR spectroscopy-PDFF) or the precision of MR imaging–
PDFF. The quality of each study was evaluated by using 
the Quality Assessment of Studies of Diagnostic Accuracy 
2 tool. De-identified original data sets from the selected 
studies were pooled. Linearity was evaluated by using lin-
ear regression between MR imaging–PDFF and MR spec-
troscopy-PDFF measurements. Bias, defined as the mean 
difference between MR imaging–PDFF and MR spectros-
copy-PDFF measurements, was evaluated by using Bland-
Altman analysis. Precision, defined as the agreement be-
tween repeated MR imaging–PDFF measurements, was 
evaluated by using a linear mixed-effects model, with field 
strength, imager manufacturer, reconstruction method, 
and region of interest as random effects.

Results: Twenty-three studies (1679 participants) were selected 
for linearity and bias analyses and 11 studies (425 partici-
pants) were selected for precision analyses. MR imaging–
PDFF was linear with MR spectroscopy-PDFF (R2 = 0.96). 
Regression slope (0.97; P , .001) and mean Bland-Altman 
bias (20.13%; 95% limits of agreement: 23.95%, 3.40%) 
indicated minimal underestimation by using MR imaging–
PDFF. MR imaging–PDFF was precise at the region-of-
interest level, with repeatability and reproducibility coef-
ficients of 2.99% and 4.12%, respectively. Field strength, 
imager manufacturer, and reconstruction method each 
had minimal effects on reproducibility.

Conclusion: MR imaging–PDFF has excellent linearity, bias, and pre-
cision across different field strengths, imager manufac-
turers, and reconstruction methods.

q RSNA, 2017

Online supplemental material is available for this article.
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assessment. To address these technical 
challenges, advanced chemical shift–en-
coded MR imaging methods have been 
developed to automatically “map” hepatic 
PDFF values pixel by pixel throughout the 
entire liver. These specialized imaging 
methods are now commercially available 
with many 1.5-T and 3.0-T MR imaging 
systems, and the opportunity for wide-
spread use of hepatic PDFF measure-
ments as a QIB has become a reality.

According to the Radiological So-
ciety of North America Quantitative 
Imaging Biomarkers Alliance (QIBA), 
three key technical performance met-
rics of QIBs are linearity, bias, and pre-
cision (35). Linearity and bias together 
assess the degree to which a QIB (eg, 
PDFF measurements by using MR im-
aging [hereafter, MR imaging–PDFF]) 
provides an estimate of the true value 
(eg, a phantom with known triglyceride 
concentration) or of an accepted in vivo 
reference value (eg, PDFF measure-
ments by using MR spectroscopy [here-
after, MR spectroscopy-PDFF]) over 
the entire range of expected values (eg, 

and death (11). In addition, inherently 
small tissue volume of biopsy (approx-
imately 1/50 000th of the entire liver) 
is a concern for sampling variability 
and misclassification of disease sever-
ity (12,13). Because of the limitations 
of biopsy, especially for longitudinal 
disease monitoring (14,15), interest in 
noninvasive methods to diagnose and 
grade hepatic steatosis has increased.

Recently, proton density fat fraction 
(PDFF) has emerged as the leading non-
invasive quantitative imaging biomarker 
(QIB) of hepatic steatosis (16,17). PDFF 
is a fundamental tissue property and an 
objective magnetic resonance (MR) imag-
ing–based measure of tissue triglyceride 
concentration, calculated as the ratio of 
MR imaging–visible triglyceride protons 
to the sum of triglyceride and water pro-
tons. Spatially localized MR spectroscopy 
has been the accepted noninvasive refer-
ence standard for quantifying hepatic ste-
atosis, used in epidemiologic studies and 
randomized controlled clinical trials to 
derive the highest level of evidence (18–
34). Acquired and analyzed by using a 
standardized approach, MR spectroscopy 
can measure proton densities of triglyc-
eride and water in a small volume of liver 
tissue in vivo, from which PDFF is calcu-
lated. However, PDFF measurements by 
using MR spectroscopy can be technically 
challenging for several reasons, including 
potential biases because of the selection 
of sampling volume in livers with nonuni-
form distribution of fat, difficulty in co-
localizing measurement volumes across 
longitudinal time points, and a need for 
offline spectral analysis and data quality 
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Advances in Knowledge

 n Hepatic proton density fat fraction 
(PDFF) measured by using MR 
imaging (hereafter, MR imaging–
PDFF) has excellent pooled line-
arity against the reference values 
measured by using MR spectros-
copy (hereafter, MR spectroscopy-
PDFF), with a linear model coeffi-
cient of determination of 0.96.

 n The pooled linear regression 
analysis of data from MR imaging–
PDFF and MR spectroscopy-PDFF 
demonstrated intercept of 20.07% 
and slope of 0.97, indicating min-
imal underestimation by using MR 
imaging–PDFF.

 n The pooled bias, or the mean 
difference between MR imaging–
PDFF and MR spectroscopy-
PDFF, was 20.13%.

 n Hepatic MR imaging–PDFF is 
highly precise at the region-of-
interest level, with repeatability 
and reproducibility coefficients of 
2.99% and 4.12%, respectively.

Implications for Patient Care

 n As measured in published 
studies, hepatic MR imaging–
PDFF has excellent technical per-
formance as a quantitative im-
aging biomarker for widespread 
use in clinical trials and patient 
care.

 n Hepatic MR imaging–PDFF can 
be measured with excellent line-
arity, negligible bias, and high 
precision by using different field 
strengths, imager manufacturers, 
and reconstruction methods.

Hepatic steatosis, or intracellular 
accumulation of triglycerides in 
hepatocytes, is a common his-

tologic manifestation of many liver 
diseases. In particular, obesity-related 
steatosis, or nonalcoholic fatty liver 
disease, has become one of the lead-
ing causes of liver disease worldwide 
(1) paralleling the obesity pandemic. 
Nonalcoholic fatty liver disease can 
progress to cirrhosis and liver cancer, 
and it is the most rapidly growing in-
dication for liver transplantation in 
the United States (2). Moreover, even 
in those patients with nonprogressive 
disease, nonalcoholic fatty liver disease 
is a risk factor for future development 
of diabetes, cardiovascular death, and 
other cancers (3–9). Control of nonal-
coholic fatty liver disease and its com-
plications has thus become a major 
public health priority.

Percutaneous liver biopsy has been 
the clinical reference standard for diag-
nosis and grading of hepatic steatosis 
(10). However, biopsy is costly, painful, 
and invasive with rare but serious com-
plication risks including hemorrhage 
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listed in Tables E2 and E3 (online) as 
follows: (a) linearity and bias analysis: 
liver “fat fraction” (imaging AND spec-
troscopy) “magnetic resonance” NOT 
review [publication type]; (b) precision 
analysis: liver “fat fraction” imaging (re-
peatability OR reproducibility OR pre-
cision OR agreement) “magnetic reso-
nance” NOT review [publication type].

Only in vivo studies on humans that 
were either published in or translated 
to English were included.

Study Selection
Titles and abstracts, followed by the 
full text of these eligible studies, were 
screened by the same author perform-
ing the systematic search (A.P.) and 
then independently verified by another 
author (T.Y., with 10 years of experi-
ence in MR imaging fat quantification 
methods) using the following exclusion 
criteria: (a) For either analysis: sec-
ondary analysis of previously published 
data, unable to verify or did not meet 
the above criteria for PDFF; (b) line-
arity and bias analysis: PDFF measure-
ments were not performed by using 
both MR imaging and MR spectroscopy; 
(c) precision analysis: multiple PDFF 
measurements were not performed per 
participant.

Data Collection and Quality Assessment
After all articles satisfying the selection 
criteria were identified, the correspond-
ing authors of these articles were invited 
to submit anonymized individual partic-
ipant data from MR imaging–PDFF and 
MR spectroscopy-PDFF for a meta-analy-
sis. The local investigational review board 
of each participating institution either 
approved or waived formal review for the 
transfer and central analysis of anony-
mized study data. For each participant’s 
MR imaging–PDFF and MR spectrosco-
py-PDFF measurements, data listed in 
Table 1 were recorded in a pooled data-
base. Data quality of included studies (ie, 
the bias and applicability of each study) 
was assessed by one author (S.D.S.) us-
ing the Quality Assessment of Studies of 
Diagnostic Accuracy 2 tool (76,77). The 
possibility of publication bias across stud-
ies was assessed by using funnel plots 
and Egger test (78).

Definition and Criteria of PDFF
 PDFF is defined as follows:

 ,

where PD is MR imaging–visible pro-
ton density, or equivalently the spectral 
peak area, of the water molecules hav-
ing a single resonance frequency of 4.7 
ppm, or the triglyceride molecules hav-
ing multiple frequencies as described 
elsewhere; FP is fat peak; and WP is 
water peak (64). Various MR imaging–
based methods of PDFF measurement 
have been proposed, including chemical 
shift two- and three-dimensional spoiled 
gradient-recalled echo sequences at 1.5 
T and 3.0 T by using different recon-
struction methods (45,49,58,65), as 
detailed in Appendix E1 (online ).

The QIBA PDFF Biomarker Com-
mittee currently adopts the following 
protocol design criteria for MR im-
aging– and MR spectroscopy–based 
methods to measure PDFF (detailed 
in Table E1 [online]). Briefly, three 
major confounders of PDFF must be 
either minimized or corrected (66,67): 
the T1 relaxation effect, the T2 or T2* 
relaxation effects, and multiple proton 
resonance frequencies of triglycerides 
(so-called spectral complexity). Various 
pulse sequence–specific confounders 
(eg, phase errors [68–72] and J cou-
pling [73]) also need to be addressed 
either at acquisition or during recon-
struction steps.

Literature Search
This study was conducted according 
to Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses 
guidelines (74,75). Separate litera-
ture searches were performed for two 
pooled analyses for performance of MR 
imaging–PDFF: (a) linearity and bias 
and (b) precision. A systematic search 
of PubMed/MEDLINE, the Cochrane 
Library, and the Web of Science data-
bases was performed on February 22, 
2017, by a senior radiology resident 
(A.P.) to identify primary research 
studies satisfying inclusion criteria (or 
equivalent, depending on the syntax re-
quirement of the specific search engine, 

PDFF measurements of approximately 
0%–55%, or the range from normal 
lean liver to the most severe steato-
sis observed in patients). Precision 
assesses the agreement between re-
peated measurements of a QIB (eg, MR 
imaging–PDFF) and can be reported 
in two different ways: repeatability, or 
the agreement between repeated QIB 
measurements under identical or near-
identical conditions (eg, scan-rescan 
repeatability of MR imaging–PDFF af-
ter interscan recalibration), and repro-
ducibility, or the agreement between 
repeated measurements under differ-
ent conditions (eg, MR imaging–PDFF 
by using equipment with different field 
strengths, imager manufacturers, and/
or reconstruction methods).

Multiple previous studies, almost 
all single center, have shown MR imag-
ing–PDFF to have high agreement with 
MR spectroscopy-PDFF in terms of the 
in vivo reference value (36–58), scan-
rescan repeatability (53,56,59–61), 
cross-imager reproducibility (55,62,63), 
and cross-field strength reproducibility 
(48,55,62,63). Despite the excellent per-
formance reported in these studies, there 
are limited comprehensive data available 
on the performance of MR imaging–
PDFF in multicenter research or clinical 
settings in which participants may un-
dergo MR imaging–PDFF by using equip-
ment that varies in field strength, imager 
manufacturer, and/or reconstruction 
method. An understanding of the techni-
cal performance of MR imaging–PDFF in 
such settings is needed to inform, qualify, 
and support its use as a QIB for clinical 
trials and patient care.

Therefore, the purpose of this me-
ta-analysis was to determine the linear-
ity, bias, and precision of hepatic MR 
imaging–PDFF across different field 
strengths, imager manufacturers, and 
reconstruction methods.

Materials and Methods

No industry funding was used to sup-
port this meta-analysis. None of the 
authors were industry employees. The 
lead author (T.Y.) had full control of the 
data and the information submitted for 
publication.
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Heterogeneity of bias or precision 
across sites was not explicitly evaluated 
because differences in sites are modeled 
by (and expected to be strongly corre-
lated with) the differences in the MR 
imaging equipment (ie, field strength, 
imager manufacturer) or reconstruction 
method. The 95% confidence intervals 
(CIs) and/or P values were computed 
for each statistic when appropriate. P 
values , .05 were considered to indi-
cate statistical significance.

Results

Study Selection and Subjects
A flow diagram summarizing study se-
lection for inclusion and exclusion cri-
teria according to Preferred Reporting 
Items for Systematic Reviews and Meta-
Analyses guidelines is shown in Figure 1.  
Twenty-eight studies fulfilled the se-
lection criteria. Anonymized data sets 
from all 28 selected studies were sub-
mitted for quantitative synthesis.

The pooled data included 16 624 
MR imaging–PDFF measurements in 
1960 unique participants. For three 
studies (36,38,63) data were unavail-
able on the age and/or sex of 48, 50, 
and 10 participants, respectively. Mean 
participant age was 43 years (range, 
8–89 years), with a man-to-woman ra-
tio of 52%:48%. Mean MR imaging–
PDFF value was 9.6% (range, 22.8% 
to 55.4%). A total of 1679 participants 
from 23 different studies were included 
in the linearity and bias analysis (36–
58), 425 participants from 11 studies 
were included in the precision analysis 
(36,41,48,53,55,56,59–63), and 195 
participants from six studies were in-
cluded in both analyses.

Table 2 summarizes the characteris-
tics of the included studies.

Quality Assessment and Publication Bias
Figure 2 summarizes quality assessment 
of the included studies by using the Qual-
ity Assessment of Studies of Diagnostic 
Accuracy 2 tool. No study met criteria 
for high risk of bias or applicability con-
cern. Categories 2, 3, and 4 had greater 
than 90% compliance, suggesting that 
the studies were adequately blinded to 

of agreement were calculated. To deter-
mine the contributing factors to bias, 
a linear mixed-effects model was used 
with field strength, imager manufac-
turer, and reconstruction method as 
fixed effects and with participant, ROI 
(nested within participant), examina-
tion, and acquisition as random effects.

Precision, defined as the closeness 
of agreement between repeated MR im-
aging–PDFF measurements (35), was 
evaluated by using a linear mixed-effects 
model, with field strength, manufacturer, 
reconstruction, participant, ROI (nested 
within participant), examination, and 
acquisition as random effects. Precision 
was measured as the standard deviation 
of PDFF measurement associated with 
each random effect. Repeatability was 
assessed as the precision of using iden-
tical equipment (same field strength, 
imager manufacturer, and reconstruc-
tion method), such as in a scan-rescan 
setting. Reproducibility was assessed as 
precision under varying circumstances 
(ie, different field strength, imager manu-
facturer, and/or reconstruction method), 
such as would be encountered in a multi-
center setting. Both participant-level and 
ROI-level repeatability and reproducibil-
ity were assessed, because differences in 
ROI placement within the liver may con-
tribute to PDFF variability due to biologic 
factors (rather than technical factors), 
especially in participants with nonuni-
form distribution of hepatic fat.

Statistical Analysis
The pooled data were analyzed by us-
ing R version 3.1.3 (R Foundation for 
Statistical Computing, Vienna, Austria)  
by one author (T.Y., with .10 years 
of experience in statistical computing) 
under supervision of an expert bio-
statistician (N.A.B., with .20 years of 
experience).

Linearity was initially evaluated by 
using a second-degree polynomial re-
gression model of MR imaging–PDFF 
against MR spectroscopy-PDFF. A 
quadratic (second-order) term was 
first evaluated in the model; if the qua-
dratic term did not reach statistical 
significance at the a level of .05 or if 
its relative effect size was two orders 
of magnitude smaller than the linear 
(first-order) term, then the model was 
reduced to linear regression and the 
first- and zeroth-order terms (ie, slope 
and intercept) were estimated. A linear 
mixed-effects model was used for lin-
ear regression to account for clustered 
measurements within the same partici-
pants. The coefficient of determination 
(R2) was calculated as the strength met-
ric of linearity (35).

Bias, defined as the average dif-
ference between MR imaging–PDFF 
and MR spectroscopy-PDFF measure-
ments per participant (by using MR 
spectroscopy as the reference tech-
nique) was evaluated by using Bland-
Altman analysis (79). The 95% limits 

Table 1

Data Collected from Included Studies

Parameter Details

Field strength 1.5 T or 3.0 T
Manufacturer GE, Siemens, or Philips
Reconstruction method Magnitude, complex, or hybrid
No. of examinations Repeated image acquisitions (if any) in two or more examinations  

by using independent instrument setup and/or calibration per 
examination

No. of acquisitions Repeated image acquisitions (if any) during a single examination  
by using identical instrument setup and/or calibration

ROI Repeated ROI placement in different locations in the liver per  
methods described in each study

MR imaging–PDFF (%) Average PDFF within an ROI
MR spectroscopy-PDFF (%) PDFF measurement colocalized to MR imaging ROI, if available

Note.—ROI = region of interest.
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imaging–PDFF and MR spectros-
copy-PDFF measurements. In the 
second-degree polynomial model, 
the quadratic term was smaller than 
two orders of magnitude than was 
the linear term (ratio of quadratic 
to linear terms, 0.002), so it was re-
moved and the model was reduced 
to a first-degree linear model. Lin-
earity was strong (R2 = 0.96). The 

for this technical validation study, no spe-
cific subanalyses were performed. Funnel 
plots and Egger test P values are shown 
in Figure E2 (online). No statistically sig-
nificant asymmetry was found to indicate 
publication bias (all P values . .5).

Assessment of Linearity
Figure 3a illustrates the relation-
ship between the 3191 paired MR 

the reference standard and variations in 
reference standard were minimal. Cate-
gories 1 and 5 had approximately 60% 
compliance because some studies used 
case-control selection based on age, 
sex, and/or status of the following risk 
factors: healthy, obesity, diabetes, and/
or nonalcoholic steatohepatitis. Because 
these risk factors were not considered 
to be high risk for bias or applicability 

Figure 1

Figure 1: Flow diagrams show study selection according to Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines for (a) linearity and bias analysis and (b) precision analysis. ∗ = Based on RSNA-QIBA PDFF Biomarker 
Committee for PDFF criteria as described in Materials and Methods section and Table E1 (online).
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repeated acquisitions (standard devi-
ation, 1.07%). Other technical factors 
(field strength, imager manufacturer, 
and reconstruction method) invariably 
had smaller standard deviations of less 
than 0.8% in absolute PDFF value.

Discussion

Our meta-analysis included nearly 2000 
participants in 28 independent pri-
mary research studies from geograph-
ically diverse sites that varied in field 
strength, imager manufacturer, and 
reconstruction method. These studies 
were generally considered satisfactory 
in quality per Quality Assessment of 
Studies of Diagnostic Accuracy 2 crite-
ria with minimal bias in index test (MR 
imaging–PDFF) and reference standard 
(MR spectroscopy-PDFF for linearity 
and bias analyses and repeated MR 
imaging–PDFF for precision analyses). 
Although patient selection criteria in 
some studies were not uniform because 
of emphasis in different subpopulations 
of various age range, sex, and steato-
sis risk factors (eg, obesity, diabetes), 
the potential impact of the variability is 
thought to be small in this meta-analy-
sis of technical validation.

Results of our meta-analysis dem-
onstrated that MR imaging–PDFF has 
excellent linearity and negligible bias 
with respect to the reference stan-
dard of MR spectroscopy-PDFF mea-
surements over the entire range of 
observed steatosis severity. A slight 
deviation of the MR imaging versus 
MR spectroscopy regression from per-
fect agreement was statistically sig-
nificant, but the effect size was small 
(up to 1.5% absolute PDFF value in 
very high PDFF range) and is unlikely 
to be meaningful either clinically or 
in research studies. In addition, our 
results demonstrated that the largest 
contributors to the variability in MR 
imaging–PDFF measurements (repeat-
ability and reproducibility) were inher-
ent heterogeneity of steatosis across 
the liver (ie, because of different ROI 
locations; standard deviation, 1.3% in 
PDFF) and the random measurement 
error (1%), with smaller contributions 
(,0.8%) from technical factors such 

Assessment of Precision
Figure 4 illustrates the precision pro-
files, represented as the difference  
between the repeated measurements as 
a function of the per-participant (Fig 4a)  
and per-ROI (Fig 4b) mean MR imag-
ing–PDFF values based on 9103 mea-
surements in 425 participants.

Under repeatability conditions 
(same field strength, imager manu-
facturer, and reconstruction method), 
within-participant standard deviation 
was 1.69% and within-ROI standard 
deviation was 1.08% in absolute PDFF 
value. Under reproducibility conditions 
(different field strength, imager man-
ufacturer, or reconstruction method), 
within-participant standard deviation 
was 1.97% and within-ROI standard 
deviation was 1.48% in absolute PDFF 
value.

The estimated variance compo-
nents from linear mixed-effects models 
(Fig 4) indicated that the main contrib-
utors to MR imaging–PDFF measure-
ment variability were ROI locations 
(standard deviation, 1.30%) and ran-
dom measurement error because of 

estimated intercept of 20.07 was not 
significantly different from zero (P = 
.70; 95% CI: 20.50, 0.32). The es-
timated slope of the regression line 
was significantly below unity at 0.97 
(P , .001; 95% CI: 0.96, 0.98), in-
dicating underestimation by using MR 
imaging–PDFF compared with MR 
spectroscopy-PDFF (corresponds to 
about 1.5% underestimation at 50% 
MR spectroscopy-PDFF).

Assessment of Bias
Figure 3b illustrates the MR imaging–
PDFF measurement bias. The mean 
bias was small (20.13%; 95% limits 
of agreement: 23.95%, 3.70%). In the 
analysis of individual bias components 
(Table 3), all effects except manufac-
turer (between GE and Siemens) had 
statistically significant effects on bias, 
but most bias components had effects 
smaller than 1.5% in absolute PDFF. 
Bias because of manufacturer for the 
Philips system was the exception, with 
approximately 2% higher PDFF values 
compared with those obtained with ei-
ther GE or Siemens systems.

Figure 2

Figure 2: Bar chart shows estimates of percentage com-
pliance by using Quality Assessment of Studies of Diagnostic 
Accuracy 2 tool. All 28 studies had moderate to high scores 
and low risk of bias in all seven categories; all fulfilled five or 
more of the seven quality categories. Summary of scores for 
each category were as follows: Category 1, Risk of bias–Patient 
selection, 57% (16 of 28); Category 2, Risk of bias–Index test, 
100% (28 of 28); Category 3, Risk of bias–Reference standard, 
100% (28 of 28); Category 4, Risk of bias–Flow and timing, 
93% (26 of 28); Category 5, Applicability concerns–Patient 
selection, 61% (17 of 28); Category 6, Applicability con-
cerns–Index test, 93% (26 of 28); and Category 7, Applicability 
concerns–Reference standard, 96% (27 of 28).
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population-based cohort trials (includ-
ing studies with more than 1000 par-
ticipants) (85–87). U.S. Food and Drug 

therapeutic response biomarker for 
clinical practice (42,81–84). In addi-
tion, PDFF methods are used in large 

as field strength, imager manufacturer, 
and reconstruction method. Based on 
these observations, we conclude that 
MR imaging–PDFF has excellent tech-
nical performance characteristics as a 
QIB for widespread use in clinical tri-
als and patient care.

Our meta-analysis findings are 
consistent with previous single-center 
studies demonstrating high technical 
accuracy and precision of MR imag-
ing–PDFF as a QIB of hepatic steato-
sis. These earlier data suggested that 
PDFF should be well suited for multi-
center trials and longitudinal assess-
ment of hepatic steatosis. Our meta-
analysis provides higher-level evidence 
supporting this claim. Several obser-
vational studies and therapeutic tri-
als of nonalcoholic fatty liver disease 
demonstrated the feasibility of using 
PDFF as a study end point (44,46,80), 
as well as a patient-level diagnostic and 

Figure 3

Figure 3: Scatterplots show linearity and bias of MR imaging–PDFF. (a) Linearity of MR imaging–PDFF against MR spectroscopy-PDFF, both measured in colocal-
ized ROIs in the liver. Red line represents linear regression fit (after correcting for within-participant correlations between replicated measurements, if any) with 
coefficient of determination indicating very strong linear fit (R 2 = 0.96). Estimated intercept (20.07%) was not significantly different from zero; estimated slope was 
close to but less than unity (0.97), indicating very slight underestimation of MR imaging–PDFF values at larger MR spectroscopy-PDFF values. (b) Bland-Altman plot 
of MR imaging–PDFF relative to MR spectroscopy-PDFF as reference technique demonstrates very small mean bias (20.13%) and limits of agreement within 6 4%. 
Estimated size of various bias components are presented in Table 3.

Table 3

Bias Components of MR Imaging–PDFF

Bias Components Estimated Change PDFF (%) P Value

Intercept 0.42 (0.21, 0.63) ,.0001
Manufacturer
 GE Reference …
 Siemens 20.01 (20.19, 0.17) .933
 Philips 2.24 (1.51, 2.96) ,.0001
Reconstruction method
 Magnitude Reference …
 Complex 21.36 (22.22, 20.50) .002
 Hybrid 0.92 (0.80, 1.05) ,.0001
Field strength
 1.5 T Reference …
 3.0 T 21.20 (21.40, 21.00) ,.0001

Note.—Data in parentheses are 95% CIs.
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studies conducted by independent re-
search groups, and variability in hard-
ware and software as expected in real-
world applications. An important and 
unique strength of this work was the 
close collaboration among the authors 
of the selected articles that enabled 
statistically powerful pooled analyses 
directly on the collective MR imaging–
PDFF and MR spectroscopy-PDFF indi-
vidual participant data, rather than the 
summary statistics extracted from the 
published articles as is done in a tradi-
tional meta-analysis. The main limita-
tion of this study was that we used MR 
spectroscopy as the reference standard 
for linearity and bias analyses, rather 
than a tissue-based reference stan-
dard. However, MR spectroscopy has 
been widely accepted as the reference 
standard for hepatic fat quantification 

imager and third-party device manufac-
turers, pharmaceutical companies, di-
agnostic agent manufacturers, medical 
imaging sites, imaging contract research 
organizations, physicians, technologists, 
researchers, professional organizations, 
educational institutions, and various ac-
creditation and regulatory authorities. 
To this purpose, it is important for the 
linearity, bias, and precision claimed in 
the profile to be realistic and reasonably 
achievable across imaging centers and 
readers spanning a relevant range of 
technical variations. Our meta-analysis 
aims to provide generalizable technical 
performance standards to inform future 
QIBA profile statements.

This study had several strengths 
and limitations. Major strengths of 
this meta-analysis included a large and 
geographically diverse cohort, multiple 

Administration–approved MR imaging 
pulse sequences for hepatic PDFF mea-
surement are now available from major 
imager manufacturers worldwide in-
cluding GE, Siemens, and Philips.

Our work was motivated by the 
activities of QIBA, whose mission is to 
improve the practical value of QIBs by 
promoting standardization to reduc-
ing variability between hardware and 
software, thereby facilitating the use of 
QIBs in clinical trials and patient care. 
These goals are achieved by preparing a 
QIBA profile document that is intended 
to span various commonly encountered 
potential confounders, such as field 
strength, imager manufacturer, and re-
construction methods, so that expected 
variability is included to the maximum 
extent possible. This profile document is 
intended for a broad audience, including 

Figure 4

Figure 4: (a, b) Scatterplots illustrate participant-level and ROI-level precision of MR imaging–PDFF measurements, respectively, because of differences in field 
strength, imager manufacturer, reconstruction method, equipment setup, and random noise (effect sizes are detailed in Table 4). Repeatability refers to precision 
under an identical experimental condition (ie, scan-rescan repeatability by using fixed hardware and software). Reproducibility refers to precision under variable 
experimental condition (ie, by using different hardware or software). At ROI level (b), MR imaging–PDFF is highly precise with repeatability coefficients (RCs) and 
reproducibility coefficients (RDCs) indicating the 95th percentile of precision to be approximately 6 3% and 6 4%, respectively. At participant level (a), repeatability 
and reproducibility are approximately 6 5% and 6 5.5%. Subject-level precision is lower than ROI-level precision because of differences in ROI placement, that 
is, heterogeneity of underlying steatosis. In both cases, RCs and RDCs are similar to each other, indicating small impact of technical factors (field strength, imager 
manufacturer, reconstruction method) on the precision of the measurement.
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studies demonstrated excellent linear-
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strengths, imager manufacturers, and re-
construction methods. We conclude that 
MR imaging–PDFF has excellent techni-
cal performance characteristics for wide-
spread use in clinical trials and patient 
care.
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Table 4

Within-Subject Variance Components of MR Imaging–PDFF

Component
Variable ROI and Variable  
Technique (%)

Variable ROI and Fixed  
Technique (%)

Fixed ROI and Variable  
Technique (%)

Fixed ROI and Fixed  
Technique (%)

Nonuniform steatosis  
(different ROI location)

1.30 1.30 … …

Manufacturer (GE, Siemens, or Philips) 0.81 … 0.81 …
Field strength (1.5 T or 3.0 T) 0.51 … 0.51 …
Reconstruction method  

(magnitude, complex, or hybrid)
0.35 … 0.35 …

Interexamination (equipment setup) 0.16 0.16 0.16 0.16
Interacqusition (random error) 1.07 1.07 1.07 1.07
Sum of components 1.98 1.69 1.49 1.08

Note.—Data are standard deviations. Data are from 11 precision studies including 425 participants, with two or three examinations per participant. See Figure 4 for repeatability and reproducibility 
coefficients.
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