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Abstract

Objective—Pregnancy is accompanied by dramatic physiologic changes in maternal plasma 

proteins. Characterization of the maternal plasma proteome in normal pregnancy is an essential 

step for understanding changes to predict pregnancy outcome. The objective of this study was to 

describe maternal plasma proteins that change in abundance with advancing gestational age, and 

determine biological processes that are perturbed in normal pregnancy.

Materials and methods—A longitudinal study included 43 normal pregnancies that had a term 

delivery of an infant who was appropriate for gestational age (AGA) without maternal or neonatal 

complications. For each pregnancy, 3 to 6 maternal plasma samples (median=5,) were profiled to 

measure the abundance of 1,125 proteins using multiplex assays. Linear mixed effects models with 

polynomial splines were used to model protein abundance as a function of gestational age, and 

significance of the association was inferred via likelihood ratio tests. Proteins considered to be 

significantly changed were defined as having: 1) more than 1.5 fold change between 8 and 40 

weeks of gestation; and 2) a false discovery rate (FDR) adjusted p-value <0.1. Gene ontology 
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enrichment analysis was employed to identify biological processes over-represented among the 

proteins that changed with advancing gestation.

Results—1) Ten percent (112/1,125) of the profiled proteins changed in abundance as a function 

of gestational age; 2) of the 1,125 proteins analyzed Glypican-3, sialic acid-binding 

immunoglobulin-type lectins (Siglec)-6, placental growth factor (PlGF), C-C motif (CCL)-28, 

carbonic anhydrase 6, Prolactin (PRL), interleukin-1 receptor 4 (IL-1 R4), dual specificity 

mitogen-activated protein kinase 4 (MP2K4) and pregnancy-associated plasma protein-A (PAPP-

A) had more than 5 fold change in abundance across gestation. These 9 proteins are known to be 

involved in a wide range of both physiologic and pathologic processes, such as growth regulation, 

embryogenesis, angiogenesis immunoregulation, inflammation etc.; and 3) biological processes 

associated with protein changes in normal pregnancy included defense response, defense response 

to bacteria, proteolysis and leukocyte migration (FDR=10%).

Conclusions—The plasma proteome of normal pregnancy demonstrates dramatic changes in 

both magnitude of changes and the fraction of the proteins involved. Such information is important 

to understand the physiology of pregnancy, development of biomarkers to differentiate normal vs. 

abnormal pregnancy, and determine the response to interventions.
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Introduction

Viviparity requires major adaptations in the mother to sustain the establishment, 

development, growth, and eventual separation of a fetal semi-allograft at the time of 

parturition. Pregnancy in placental mammals is a unique biological phenomenon, perhaps 

unmatched in the history of evolutionary biology. Reproductive success depends on an 

intensive and rich dialogue among mother, placenta, and fetus. The adaptations required for 

pregnancy appear to involve virtually all maternal organs/systems, including the metabolic/

endocrine (1–6), cardiovascular (7–12), respiratory (13), gastrointestinal (12, 14–21), 

hematologic (22, 23), and central nervous systems (24–26).

The study of the physiology of pregnancy has spanned decades, and has largely depended 

upon available technological capabilities to study parameters that change with gestational 

age. Such parameters have been studied with relatively simple methods, such as hormonal 

determinations (20, 21, 27), concentrations of nutrients/fuels (glucose(17–19), lipids(28–33), 

proteins(34–40), amino acids(41–43)), blood pressure (8, 44), cardiovascular function (9, 

11), spirometry (13, 16), immunological assays (14, 24, 45), and different tests of central 

nervous system function (25, 26). These studies have been essential to understand changes in 

body composition (4, 18), physiologic adaptation (10, 13), pathophysiology of selected 

pregnancy complications (17, 46–48). One of the domains of interest that has proven to be 

extraordinarily successful is the study of changes in plasma protein concentrations in 

maternal blood. For example, the detection of human chorionic gonadotrophin (hCG) in 
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human blood has allowed the early detection of pregnancy, even before the first signs of 

amenorrhea(56–58). Monitoring early pregnancy with serial determinations of hCG has also 

allowed identification of patients at risk for ectopic gestation(59–70), and other forms of 

pregnancy failure (60, 62, 63, 65, 67). In the case of ectopic pregnancy, this has allowed not 

only earlier diagnosis, but even the introduction of minimally invasive surgical techniques 

(e.g. laparoscopic resection and medical treatment) (71–79). The monitoring of gestational 

trophoblastic disease has also been dramatically changed with the use of serial hCG 

determinations in maternal serum/plasma (80, 81). However, these examples only represent 

the first of many diagnostic advances made possible by monitoring concentrations of a 

single protein during pregnancy.

The observation that a fetus with a neural tube defect had been born to a mother with an 

idiopathic elevation of maternal serum alpha fetoprotein eventually led to the discovery that 

such elevations could be used to screen for the presence of neural tube defects in the mid-

trimester of pregnancy(56, 82–86), and continue to be the basis – more than 20 years later – 

for the biochemical screening of these congenital anomalies(84, 87–93). Further advances 

occurred with the introduction of the triple (followed by the quadruple) biochemical 

screening, including three proteins (alpha fetoprotein, hCG, inhibin), which were 

subsequently combined with a steroid hormone, estriol, to assess the likelihood of trisomies 

18 and 21 at the end of the first trimester (88, 89, 93–100). Collectively, this evidence, which 

is now in routine clinical practice, provides compelling evidence that examination of the 

plasma/serum composition can provide important insight into the biology of pregnancy, fetal 

health and disease, and has changed the practice of obstetrics and medicine.

The most recent entry into the protein biomarker discovery panel is the determination of 

angiogenic/anti-angiogenic factors for the early prediction of preterm preeclampsia(47, 101–

110), fetal death(111, 112), late preeclampsia(47, 101–110), small-for-gestational-age 

(SGA) (113), and maternal floor infarction(114). This set of biomarkers can now be readily 

determined using commercially-available tests, and has the potential to identify patients at 

risk for pregnancy complications in the long subclinical phase of the “great obstetrical 

syndromes”, and open the door for prevention, which has been a challenge in obstetrics for 

decades(105, 115–124).

High-dimensional biology techniques allow characterization of the genome (54, 55, 125, 

126), transcriptome(55, 127–137), proteome(55, 125, 127, 138–148), lipidome(149–155), 

glucome(156, 157), metabolome(6, 55, 128, 158–163), and cytome(164–169). Major trust of 

the new biology and medicine has been to gather the information derived from these 

platforms to optimize diagnosis, prognosis, and treatment (170, 171). Although each of these 

techniques has a particular informational domain (DNA, RNA, proteins, metabolites, lipids, 

etc.), they can be used independently or in combination (172, 173). Proteins are considered 

to be important executors of biological functions, as they include enzymes (80), structural 

components of tissues/cells (174), the coagulation cascade (175, 176), and the inflammatory 

network (177).

There have been substantial attempts to characterize the human plasma proteome in non-

pregnant subjects, which have been made possible by the development of sophisticated 

Romero et al. Page 3

Am J Obstet Gynecol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mass-spectrometry techniques, using a top-down approach (81, 140, 178). These efforts have 

been extended to the maternal plasma proteome and amniotic fluid(138–140, 145, 147, 148, 

179–203); however, technological complexities continue to challenge the goal of developing 

a comprehensive map of the entire human plasma proteome. The total estimated number of 

proteins in the human body ranges from 20,000 to one million(78) – of these, plasma 

proteome studies have been able to detect and semi-quantify a number between 16,500–

20,000 (79, 204–206). Immunoassays and related methods continue to be the “gold 

standard” for the sensitive determination of proteins in peripheral plasma, guide diagnosis, 

monitoring of disease, and treatment; in addition, they are more sensitive than 2D gels or 

mass spectrometry, and can detect analytes in very small quantities (below nM range). In 

addition, technologies like enzyme-linked immunosorbent assay (ELISA) require two 

antibodies to the same protein to elicit a signal. Such immunoassays cannot be multiplexed 

above a few tens of simultaneous measurement, largely due to the cross-reactivity of the 

secondary antibodies to surface-immobilized proteins (207–210).

To enlarge the number of proteins that can be detected simultaneously with a high degree of 

sensitivity and dynamic range, a new technology has been developed which is not based on 

conventional antigen/antibody reaction. The aptamer-based method uses single-strand DNA 

or RNA molecules that bind, with high affinity and specificity, to proteins, peptides, or other 

pre-defined molecules. Recent publications have emphasized the extraordinary potential of 

aptamer technology in biomarker discovery for cardiovascular disease (211),and other 

important biomedical disorders (212–218).

The objective of this study was to use aptamer-based technology to characterize the maternal 

plasma proteome of normal pregnancy as a function of gestational age. This study is 

important for the description of the simultaneous changes in plasma protein composition, 

and will serve as the basis to detect departures of abnormalities, before and during the time 

of diagnosis of major obstetrical complications.

Methods

Study design

We conducted a prospective longitudinal study that enrolled normal pregnant women 

attending the Center for Advanced Obstetrical Care and Research of the Perinatology 

Research Branch, NICHD, and the Detroit Medical Center / Wayne State University. A 

retrospective cohort study was conducted to include 43 who delivered at term, and each one 

of them had 3 to 6 plasma samples obtained during pregnancy, before the spontaneous onset 

of labor (median number of samples=5),]. Plasma samples were collected at the time of a 

prenatal visit, scheduled at four-week intervals from the first or early second trimester until 

delivery. Each patient had at least three samples collected during the following gestational 

age intervals (8-<16 weeks, 16-<24 weeks, 24-<28 weeks, 28-<32 weeks, 32-<37 weeks and 

>37 weeks). All patients had the placenta collected at the time of delivery, transported to the 

laboratory, and sectioned for histological examination, following criteria of the Society for 

Perinatal Pathology. Lesions were diagnosed using previously established criteria(71–73). 

Only patients without acute inflammatory lesions of the placenta were included in this study 

because of the potential to confound the relative abundance of the maternal plasma 
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proteome. All patients provided written informed consent and the use of biological 

specimens, as well as clinical and ultrasound data for research purposes were approved by 

the Wayne State University and Institutional Review Boards of NICHD.

Proteomics technique

Maternal plasma protein abundance was determined using the SOMAmer (Slow Off-rate 

Modified Aptamers) platform and its reagents. This platform allows measurement of over 

1,125 proteins in maternal plasma samples (210, 219, 220). Proteomics profiling was 

performed by Somalogic, Inc. (Boulder, CO).

The serum samples were diluted and then incubated with the respective SOMAmer mixes 

pre-immobilized onto streptavidin-coated beads. The beads were washed in order to remove 

all non-specifically bound proteins and other matrix constituents. Proteins that remained 

specifically bound to their cognate SOMAmer reagents were tagged using an NHS-biotin 

reagent. After the labeling reaction, the beads were exposed to an anionic competitor 

solution that prevents non-specific interactions from reforming after disruption.

Using this approach, pure cognate-SOMAmer complexes and unbound (free) SOMAmer 

reagents are released from the streptavidin beads using ultraviolet light that cleaves the 

photo-cleavable linker used to quantitate protein. The photo-cleavage eluate, which contains 

all SOMAmer reagents (some bound to a biotin-labeled protein and some free), was 

separated from the beads and then incubated with a second streptavidin-coated bead that 

binds the biotin-labeled proteins and the biotin-labeled protein-SOMAmer complexes. The 

free SOMAmer reagents were then removed during subsequent washing steps. In the final 

elution step, protein-bound SOMAmer reagents were released from their cognate proteins 

using denaturing conditions. These SOMAmer reagents were then quantified by 

hybridization to custom DNA microarrays. The Cyanine-3 signal from the SOMAmer 

reagent was detected on microarrays (210, 219, 220).

Statistical analysis

Demographics data analysis—Clinical characteristics of the patient population were 

summarized as median and inter-quartile ranges (IQR) for continuous variables, or 

percentages for categorical variables, using SPSS software (version 19; IBM Corporation, 

Armonk, NY)

Differential abundance analysis—Protein abundance expressed as fluorescence units 

was log (base 2) transformed to improve normality. Linear mixed-effects models with cubic 

splines (number of knots = 3) were used to model protein abundance as a function of 

gestational age using lme4 package (221) under the R statistical language and environment 

(www.r-project.org). Inference about statistical significance of associations was calculated 

using likelihood ratio tests between a model that included the gestational age terms (fixed 

and corresponding random effects) and a simpler random intercept linear mixed-effects 

model without gestational age terms.

Protein abundance was considered to have changed significantly with gestational age if it 

met the following criteria: 1) the magnitude of abundance of change was >1.5 fold between 
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8 and 40 weeks of gestation; and 2) false discovery rate (FDR) (222) adjusted p-values (q-

values) <0.1. Similar or less stringent criteria have been extensively used in high-

dimensional biology and have shown good validation by alternative techniques and/or in 

independent sets of samples(223–226).

Fold change was defined as the ratio of protein abundance (in relative fluorescence units) 

between the highest and the lowest mean value across gestational age. The median (50th 

quantile) and 10th and 90th quantiles of the protein abundance were also determined using 

quantile regression modeling (227, 228). In these models, the relationship between protein 

abundance was assumed to be linear within a narrow moving window of gestational age, and 

this allowed obtaining a non-linear smooth estimate of the quantiles as previously described 

(107).

Clustering proteins by average profile—To identify groups of proteins based on their 

pattern of change across gestation, we have used unsupervised hierarchical clustering. The 

input in this analysis was the mean protein abundance across gestation (longitudinal 

patterns) computed from linear mixed-effects models for each gestational week from 8 to 40 

weeks. Average profiles were scaled between 0 and 1 prior to applying hierarchical 

clustering with Euclidean distance, so that proteins with similarity longitudinal patterns (e.g. 

monotonically increasing) are grouped together despite eventual differences in the 

magnitude of change (e.g. rate of increase) or overall protein abundance. With hierarchical 

clustering, each protein is considered a cluster by itself and iteratively, clusters are merged 

so that the distance between the farthest apart members of the clusters (complete linkage) is 

minimized. To determine the optimal number of clusters, we have used a goodness of 

clustering measure (the gap statistic) which compares the change in within-cluster dispersion 

(sum of squared distances between cluster members) with that expected under the null 

distribution (simulated by bootstrap)(229).

Gene ontology enrichment analysis—Having identified proteins which change in 

abundance as a function of gestational age, the next step was to gain an understanding of the 

potential functional roles of these proteins in human pregnancy. To accomplish this, we 

relied on the information deposited for the genes encoding for each protein, and which have 

been organized in publicly-available databases (i.e. gene ontology). We focused on the 

biological processes in which these proteins have been implicated. Each protein was mapped 

to an identifier in the Entrez gene database.(230) based on Somalogic, Inc. protein 

annotation system, and then to gene ontology (231). Biological processes over-represented 

among the proteins that changing in abundance with advancing gestational age. We used a 

Fisher’s exact test and odds ratios to estimate enrichment. Gene ontology terms with three or 

more hits and an adjusted p-value <0.1 were considered significantly enriched in gestational 

age modulated proteins.

Protein-protein interaction network analysis—To explore the potential impact of 

gestation on human plasma proteins not profiled in this study, we conducted an in-silico 

analysis for which we retrieved the known protein-protein map interactions from the 

publicly available Protein Reference Database (HPRD, release 9) (232) using the NCBI2R 
package. For each of the 1,125 proteins profiled, we determined the number of protein-
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protein interactions documented in the database. For visualization purposes, a graph was 

constructed linking proteins with known interactions with the 112 proteins changing with 

gestational age.

Results

Clinical characteristic of the study population

Forty-three women with normal pregnancies met the criteria for inclusion in this study. The 

median (interquartile range) maternal age was 25 (21–28) years old, and 88.4% of patients 

were of African-American origin by self-reporting. All patients delivered at term without 

any obstetrical complications and had neonates with an appropriate weight for gestational 

age(233). The median gestational age at delivery was 39.4 [interquatile range (IQR) 39.0–

40.1].

Maternal Plasma Proteome in Normal Pregnancy Characterized by SomaSCAN

Ten percent (112/1,125) of the proteins profiled changed in abundance as a function of 

gestational age (fold change >1.5 and q-value <0.1) (see Table 2). Figure 1 shows 

longitudinal protein abundance for two selected proteins together with the fitted mean (by 

linear-mixed effects models) and median (by quantile regression) as a function of gestation. 

Similar plots for all 112 significant proteins are displayed in supp. File 1

Thirty-six percent (41/112) of proteins decrease in abundance and 64% (71/112) increase 

with gestational age. Hierarchical cluster analysis of average protein profiles across 

gestation (see Figure 2) demonstrated among the increasing abundant proteins three patterns 

in the change of the relative fluorescence reading (increasing rate: n=21, constant rate: n=23, 

and decreasing rate: n=27). Similar patterns were observed among proteins with decreasing 

abundance during gestation (increasing rate: n=8, constant rate: n=16, and decreasing rate: 

n=17).

The most highly modulated proteins (highest fold change) among the significant ones were: 

1) placental growth factor (PlGF); 2) pregnancy-associated plasma protein A (PAPP-A) (>5 

fold change in abundance across gestation,; 3) sialic acid-binding immunoglobulin-type 

lectins (Siglec)-6; 4) glypican-3; 5) C-C motif (CCL)-28; 6) carbonic anhydrase 6; 7) 

prolactin (PRL); 8) interleukin-1 receptor 4 (IL-1 R4); and 9) dual specificity mitogen-

activated protein kinase kinase 4 (MP2K4)(see Figure 3).

Biological Processes Modulated During Gestation

Gene ontology analysis of the corresponding proteins that changed with gestational age 

revealed fourteen biological processes that are impacted with advancing gestation. These 

biological processes included: general defense response, defense response to bacteria, 

defense response to fungi, germ cell migration, proteolysis and leukocyte migration 

(FDR=10%) (see Table 3). Out of the fourteen processes, defense response to fungus, germ 

cell migration, and defense response to bacterium had all decreased abundance of the protein 

associated with these biological processes with advancing gestation. In contrast, only the 
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biological process of smooth muscle cell migration has an increase abundance of the 

proteins involved in it.

Protein-protein Interaction network

An analysis was performed to retrieve the known protein-protein interactions from the 

Human Protein Reference Database to assess the connections with proteins changing with 

gestational age of this study (see Figure 4). Proto-oncogene tyrosine-protein kinase Src 

(SRCN1) and Tyrosine-protein kinase Fyn (FYN) had the largest number of documented 

interactions (260 and 196, respectively) of all proteins changing during pregnancy 

suggesting that they have important roles in the interactome. Other well-known proteins 

such as MMP-9, VEGF and PlGF had 38, 26, and 5 documented interactions, respectively.

Discussion

Principal findings of the study

I) Ten percent (112/1,125) of the 1,125 proteins assessed in this study in maternal plasma 

change with advancing gestational age; II) the concentration of nine proteins [1) placental 

growth factor (PlGF); 2) pregnancy-associated plasma protein A (PAPP-A) 3) sialic acid-

binding immunoglobulin-type lectins (Siglec)-6; 4) glypican-3; 5) C-C motif (CCL)-28; 6) 

carbonic anhydrase 6; 7) prolactin (PRL); 8) interleukin-1 receptor 4 (IL-1 R4); and 9) dual 

specificity mitogen-activated protein kinase kinase 4 (MP2K4)] increased dramatically in 

abundance (fold change >5); III) proteins demonstrated either increased or decreased in 

abundance with advancing gestational age following at least 3 distinct patters of change 

(increasing rate, constant rate, and decreasing rate of change in abundance); and IV) 

functional analysis revealed that the proteins that were identified as changing with 

gestational age belonged to the following biological processes (as determined by gene 

ontology-derived analysis methods): a) general defense response, b) defense response to 

bacteria, c) defense response to fungi, d) germ cell migration, e) proteolysis, and f) 

leukocyte migration. This communication reports changes in a large number of proteins in 

the maternal plasma proteome in normal pregnancy using a state-of-the-art proteomic 

multiplex platform. The results in normal pregnancy reported herein can serve as the basis 

for the identification of biomarkers for the prediction, monitoring of disease, and diagnosis 

of obstetrical disorders.

Meaning of the Study

The reasons to characterize the maternal plasma proteome in normal pregnancy have been 

outlined in the introduction of this manuscript, and the information derived from measuring 

protein concentrations has had great clinical value for the care of pregnant women.

We found nine proteins which showed a dramatic increase in concentration, defined as more 

than five-fold. The magnitude of change of Placental growth factor (PlGF) was 14.5 fold, 

and this protein plays an important role in the control of angiogenesis, which is a key 

process in placental development. Low concentrations of PlGF have already been reported in 

patients who subsequently developed early onset preeclampsia(104–107, 234–237), fetal 

death of unknown origin(111, 112), small-for-gestational-age infants (with and without 
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Doppler abnormalities) (104–107), maternal floor infarction(109, 238, 239), mirror 

syndrome(114, 123, 240–244), and some forms of twin-to-twin transfusion syndrome(74). 

The identification of PlGF as a protein that undergoes dramatic changes in maternal plasma 

concentration in this study (and using current technologies) is reassuring, given its 

physiologic importance, as well as the prognostic value in measuring this concentration in 

maternal plasma to identify patients at risk for adverse pregnancy outcome.

The same applies to Pappalysin-1 (PAPP-A), one of the top nine proteins whose 

concentration increased more than five-fold in this study. PAPP-A is mainly produced by the 

placenta, and its concentration is low in the first trimester of pregnancies complicated by 

either chromosomal abnormalities (Trisomies 21, 18 and 13, and monosomy X) (93, 97–100, 

245–248) or a subset destined to develop placenta-mediated obstetrical syndromes such as 

SGA and preeclampsia (119, 249–261) and preterm birth (262). In this study, we also report 

the longitudinal changes in the plasma concentrations of PAPP-A as a function of gestational 

age. The concentration of PAPP-A increased steadily until about 20 weeks of gestation, 

when it plateaued and remained relatively stable until term. Our observations are consistent 

with those of a previous report, and provide further strength to the validity of our findings 

(263).

Maternal plasma Siglec-6 and Glypican-3 were also among the top-ranked proteins which 

increase in concentration with advancing gestational age 17 and 26 fold, respectively (Table 

2). Although these proteins were previously described in in vitro studies and non-pregnant 

subjects, there is no systematic study describing the changes in the concentrations of these 

proteins in maternal plasma in normal or abnormal pregnancy.

Sialic-acid-binding immunoglobulin-like lectins (Siglec)-6 is a CD33rSiglec that has been 

implicated in the regulation of two major biological functions: cell-to-cell interactions and 

regulation, through glycan recognition, of the innate and adaptive immune systems (264–

267). In addition, this molecule can also serve as a leptin receptor (OB-BP1), which has high 

specificity and affinity to this molecule. Importantly, Siglec-6 is expressed only in cyto- and 

syncytiotrophoblasts of the human placenta (268–270), and this may explain how it gains 

access to the maternal circulation and increases with gestational age as the volume of the 

villous tree increases (270). A recent report has documented an increase in Siglec-6 

expression in the placenta following spontaneous labor and delivery in comparison to those 

following elective cesarean section without labor; therefore, it has been proposed that this 

molecule may play a role in the process of parturition (270, 271). In addition, increased 

Siglec-6 trophoblast expression was reported in women with gestational trophoblastic 

disease and those with preterm preeclampsia (124, 269, 272–274). The findings in Siglec-6 

reported herein provide further support that an increase in abundance of this protein, 

detected with current technology in the maternal circulation, may have biological and 

clinical implications.

There is a paucity of information about Glypican-3 in pregnancy. This protein is a heparan-

sulfate proteoglycan which acts as a co-receptor for heparin-binding growth factors, such as 

insulin-like growth factor (275–281), which is expressed in the syncytiotrophoblast of term 

placentas, and has been reported to be downregulated in trophoblasts of patients with 
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preeclampsia (282, 283). One study reported a link between Glypican-3 and one of the 

major anticoagulation proteins of the trophoblast-placenta protein 5/tissue factor pathway 

inhibitor 2: this anticoagulation protein is specific to pregnancy and has been implicated in 

the maintenance of placenta hemostasis; the placental expression of the latter is reduced in 

preeclampsia(282). Glypican-3 has been proposed to serve as the anchoring protein of 

placenta protein 5/tissue factor pathway inhibitor 2; and that the decrease in Glypican-3 in 

preeclampsia leads to the release of placenta protein 5/tissue factor pathway inhibitor 2 into 

the maternal circulation, promoting a higher concentration in this obstetrical syndrome. Our 

study reports the first changes in the concentrations of Glypican-3 in the maternal 

circulation, and it is noteworthy that this protein increases 26-fold during pregnancy in a 

pattern of decreasing slope (Figure 3) with advancing gestational age.

Several of the findings reported herein are consistent with those described in maternal 

plasma/serum for other proteins: this lends reassurance to the validity of our findings derived 

with the use of a novel aptamer-based technology. Specific examples include plasminogen 

activator inhibitor type 1 (PAI-1) (284), insulin-like growth factor binding protein (IGFBP)-1 

(285–290), hepcidin (291) and thyroid stimulating hormone (292). The current study is the 

first to examine and analyze longitudinally the profile of the maternal plasma proteome of 

more than 1,000 proteins simultaneously using a high-dimensional biology platform.

Biological processes modulated during gestation

Gene ontology analysis revealed that the defense response, proteolysis and cellular response 

to hormone stimulus were the most enriched biological processes among proteins that 

changed with gestational age. The host defense response is a protective mechanism against 

pathogens and “danger signals” such as alarmins, and involves activation of both the innate 

and adaptive immune response (293–300). Tolerance of a semi-allograft (fetus and placenta) 

represents a major biological challenge imposed by viviparity. While the fundamental 

mechanisms responsible for this remain to be elucidated, a general proposal is that there is a 

down-regulation of the specific limb of the adaptive immune response aimed at paternal 

antigens, with an up-regulation of the innate immune response (116–118, 149–154, 301, 

302). Down-regulation of specific immune responses includes not only paternal/fetal 

antigens, but also microbial products; therefore, the physiologic modulation of the immune 

response to enhance tolerance of the semi-allograft could expose the mother to infection, and 

the infectious process may be more severe (165, 169). Evidence in support of this is that 

patients with pyelonephritis during pregnancy are more likely to develop acute respiratory 

distress syndrome and other complications,(155–157, 166–168) and those with viral diseases 

during pregnancy (e.g. influenza, varicella, H1N1, SARS) are more likely to develop serious 

complications, and even die during pregnancy ((179–186, 188, 189). The production of 

antimicrobial peptides (AMP) is a mechanism to enhance host immunoprotection, and 

indeed, the production of a broad range of antimicrobial peptides (antibacterial and antiviral) 

is enhanced during pregnancy (303–308). Such products have been detected in both the 

amniotic cavity and systemic circulation ((187, 190, 309, 310).

The amniotic fluid is known to have anti-microbial properties (310–316) and this could be 

due to the presence of naturally occurring AMPs, such as bactericidal/permeability-
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increasing protein (307, 309), lysozyme (141, 317–320) lactoferrin (320–322), calprotectin 

(MRP8/14) (309), LL37 (319) and neutrophil defensins (305, 309, 310, 319, 323, 324). 

Moreover, we reported that increased AMP concentrations are associated with pregnancy 

complications such as intra-amniotic infection, preterm labor and preterm prelabor rupture 

of membranes (309, 310). The nature of the host immune response to microorganisms 

during pregnancy may not be uniform, and may be context-dependent. For example, there is 

some evidence that the host defense against fungi is not as robust as that against bacteria, 

and this may explain the increased predisposition to vaginal candidiasis during pregnancy 

((191, 192, 325–327). In addition, patients who conceived with an intrauterine contraceptive 

device are particularly susceptible to infections with fungi in the amniotic cavity, and this 

may reflect unique features of the complex immune response to different microorganisms 

during pregnancy(193–202, 328).

One of the findings of this study is that proteins related to smooth muscle cell migration are 

increased in abundance in maternal plasma with advancing gestational age – this finding is 

entirely consistent with the fact that the uterus must grow during pregnancy to accommodate 

the increased size of the fetus, placenta, and amniotic fluid. Importantly, there has not been a 

good biomarker to monitor smooth muscle function in maternal plasma, and the findings in 

this study open the door for the identification of such proteins.

Protein-protein interaction network

Proteins function in concert as a part of larger protein complexes within a cell; therefore, an 

important aspect of proteomic analysis lies in the elucidation of interacting proteins and 

mapping the corresponding binding sites (329, 330). By identifying proteins interacting with 

those modulated during normal pregnancy, we can hypothesize on the importance of the 

change in protein abundance with gestation. These inferences rely on the basis of their 

degree (number of direct protein-protein interactions) in the interactome. Of note, the 

average number of interacting proteins in the Human Protein Reference Database is ~3.7 per 

protein (330). Proto-oncogene tyrosine-protein kinase Src (SRCN1) and Tyrosine-protein 

kinase Fyn (FYN) had 260 and 196 documented interactions in the Human Protein 

Reference Database; thus, these two proteins appear to play a central role in the interactome.

SRCN1 is part of the Src signaling system involved in cellular signaling of proteinase-

activated receptors (PAR) 2, that is, a G-protein coupled receptor that modulates activation 

induces vascular endothelial growth factor receptor (VEGFR)-1 promoter activity and 

sVEGFR-1 release from endothelial cells. Given the importance of VEGFR-1 in the 

regulation of endothelial function during pregnancy and its pathogenesis in preeclampsia, 

SGA, fetal death, maternal floor infarction, and some forms of spontaneous preterm labor, 

our findings strengthen the case for the importance of discovery techniques in the 

elucidation of fundamental mechanisms of disease in obstetrics.

Tyrosine-protein kinase Fyn (FYN) is also a member of the Src family. In contrast to 

SRCN1, FYN is involved in immune system activity, especially in T-cell signaling and 

animal models, suggesting that it is associated with decreased fetal maternal tolerance 

through the regulation of Th17. In addition, animal experimentation has demonstrated that 
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this protein is also involved in neuronal signaling, migration, and cortical development cell 

physiology (331, 332).

Strengths and Limitations

The major strength of this study is the characterization of the maternal plasma proteome in 

longitudinal samples of patients who had a normal pregnancy outcome defined by clinical, 

neonatal, and pathologic examination of the placenta. We have examined a large number of 

proteins simultaneously (over 1,000), using sensitive techniques which have been rigorously 

validated. This study represents the largest examination of the maternal plasma proteome 

during pregnancy. Another strength of this study is that we have identified proteins that have 

been found previously to be dramatically up-regulated during pregnancy, such as PlGF and 

PAPP-A, but also discovered novel proteins which were not known to be drastically changed 

in concentration. The identification of three broad patterns of protein changes with a large 

number of proteins is also important, as these observations were not known with specificity 

prior to this study.

One limitation of this study is that the concentrations are expressed in relative fluorescence 

units, rather than absolute concentrations, and hence batch effects do not allow a direct 

comparison of the normal pregnancy reference intervals estimated in this study with data 

obtained in future studies. However, departures of longitudinal patterns across gestation 

from the references intervals we have determined can enable discovery of biomarkers 

unhindered by possible experimental biases. Such discoveries can be followed by 

quantification by alternative protein measurement techniques such as immunoassays or 

mass-spectrometry-based assays. In addition, the large majority of the patients included in 

this study were of African American descent, and future studies will be required to 

determine whether the changes reported herein occur in populations of other ethnic groups.
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Summary

This is the first comprehensive study to characterize the longitudinal maternal plasma 

proteome in pregnancy with the use of novel technology. Since the proteomics technique 

used in this study provided protein abundance measurements expressed in relative 

fluorescence units, we could not derive references ranges of protein concentrations so 

that one can compare future data directly against these references. However, the patterns 

of change with gestation that we describe can still be useful in discovering disease 

markers in future studies provided that they deviate from the expected trajectory, 

regardless of the baseline concentration, which may be subject to experimental batch 

effects.
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Figure 1. 
Longitudinal profiles of placenta growth factor (left) and glypican-3 (right) in normal 

pregnancy. Protein abundance in (log, base 2, of) relative fluorescence units is shown for 

each of the 43 patients (grey lines). Mean protein abundance estimated by linear mixed-

effects models with cubic splines (thick blue line) as well as median level (thick black line) 

and 10th / 90th centiles computed by quantile regression are also shown. Fold change (FC) is 

computed as the ratio in abundance between the highest and lowest value of the mean 

abundance over gestation.
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Figure 2. 
Clustering of maternal plasma average protein profiles. The figure shows three clusters of 

proteins with increasing overall trends (increasing rate: n=21, constant rate: n=23, and 

decreasing rate: n=27) and three clusters with decreasing overall trends (increasing rate: 

n=8, constant rate: n=16, and increasing rate: n=17).
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Figure 3. 
Maternal plasma average protein abundance for nine highest modulated proteins. The figure 

shows protein abundance in log (base 2) relative fluorescence units computed from linear 

mixed-effects models with cubic splines. Average profiles were shifted so that minimum 

expression corresponds to 0 for all preteins. Most changing nine proteins were (decreasing 

fold change order): Glypican-3, Siglec-6: Sialic acid-binding immunoglobulin-type lectins 6, 

PlGF: placental growth factor, CCL28: C-C motif 28, Carbonic anhydrase 6, PRL: Prolactin, 

IL-1 R4: Interleukin-1 receptor 4, MP2K4: Dual specificity mitogen-activated protein kinase 

kinase 4, PAPP-A: pregnancy-associated plasma protein A.
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Figure 4. 
Protein-protein interaction network in normal pregnancy. Yellow circles represent proteins 

profiled that change with gestation while red circles represent proteins from the Human 

Protein Reference Database known to interact with these. The size of the circles is 

proportional with the number of interactions. Proto-oncogene tyrosine-protein kinase Src 

(SRCN1) and Tyrosine-protein kinase Fyn (FYN) had 260 and 196 interactions, respectively.
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Table 1
Clinical characteristics

Demographic characteristics of the study population. Data is presented as number (%percentage) for 

categorical variables or median/Inter quartile Range (IQR) for continuous variables.

Characteristics of the study population (n=43) Median (IQR) or % (n)

Age (years) 25 (21–28)

Prepregnant BMI (kg/m2) 25.2 (21.3–30.6)

Nulliparity (%) 27.9% (12)

Race (%)
• African American
• White
• Other

88.4% (38)
4.7% (2)
7.0% (3)

Gestational age at delivery (weeks) 39.4 (39.0–40.1)

Route of delivery
• Vaginal delivery
• Cesarean delivery

67.4% (29)
32.6% (14)

Birthweight (grams) 3330 (3120–3545)
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