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Abstract

The efficient Pd-catalyzed Heck reaction of diverse tertiary alkyl halides with alkenes has been 

developed. Unactivated tertiary alkyl halides efficiently react at room temperature under visible 

light irradiation with no exogenous photosensitizers required. For activated tertiary alkyl halides, 

the same catalytic system works well without light. These methods offer a general access to 

electronically diverse alkenes possessing quaternary and functionalized tertiary allylic carbon 

centers. The substituents at these centers include alkyl-, carbalkoxy-, tosyl-, phosphonyl-, and 

boronate groups. It was also shown that the end-game mechanism of this transformation may vary 

depending on the type of the substrates used.

Graphical Abstract

The Mizoroki–Heck reaction1 is a fundamental transformation in organic chemistry that is 

traditionally used for coupling of aryl and vinyl halides/pseudohalides with alkenes.2 

Originally, employment of alkyl halides in this reaction was not straightforward due to 

premature β-hydrogen elimination3 and slow oxidative addition rates.4 Although there were 

numerous reports on the Heck reaction of activated5 and perfluorinated6 alkyl halides, 

employment of unactivated alkyl halides became possible only after seminal works by Fu7 

and Alexanian.8 Due to the above-mentioned reasons, employment of tertiary alkyl halides 
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in Heck reactions is even more problematic. For activated tertiary alkyl halides, the solution 

was found by Lei,9 Thomas,10 and Nishikata11 employing Ni-, Fe-, and Cu catalysts, 

respectively (Scheme 1a). Still, these methods either require high temperatures or are limited 

in scope. All these transformations were proposed to occur via generation of alkyl radical 

species stabilized by adjacent electron-withdrawing groups. This may be a reason for the 

underutilization of unactivated tertiary alkyl halides in Heck-type reactions for a long time. 

In 2002, Oshima reported the Co-catalyzed Heck-type coupling of 1°, 2°, and 3° alkyl 

halides with styrenes promoted by Me3SiCH2MgCl (Scheme 1b). Obviously, the requisite 

Grignard reagent limits the scope of this method.12 Recently, Hashmi reported a single 

example of coupling between tert-butyl bromide and 1,1-diphenyl ethene under light-

induced, Au-catalyzed Heck-type reaction (Scheme 1c).13a A single report by deMeijere 

disclosed a moderately efficient Pd-catalyzed Heck reaction of unactivated tertiary halides 

(Scheme 1d).14 However, it is limited to employment of adamantyl bromide, a substrate not 

disposed to β-hydrogen elimination.

Evidently, the development of a method that would feature mild reaction conditions and 

broad substrate scope, including both activated and unactivated tertiary alkyl halides, is 

highly warranted. Very recently, our group introduced the first visible light-induced15 Pd-

catalyzed Heck reaction, which allows activated and unactivated primary and secondary 

alkyl electrophiles to react with vinylarenes in a highly efficient and stereoselective manner 

(Scheme 1e).16 Herein, we report general room temperature, visible light-induced,17 

exogenous photosensitizer-free18 Pd-catalyzed Heck reaction of a wide range of tertiary 

alkyl halides with alkenes to produce electronically neutral,19 electrophilic, and nucleophilic 

allylic systems possessing quaternary and functionalized tertiary carbon center (Scheme 1f).

Aiming at the elaboration of the Heck reaction with unactivated tertiary alkyl halides, we 

commenced our studies with tert-butyl iodide 1a. First, the reaction of 1a with styrene 2a 
was tested under the reported palladium-based thermal conditions;8b,20 however, only 

decomposition of the starting materials was observed (Table 1, entries 1 and 2). Switching to 
our previously found conditions for visible-light-induced Heck reaction of primary and 
secondary alkyl halides16 led to formation of 3aa in 87% yield (entry 3)! Other catalyst/

ligand combinations, such as Pd(PPh3)4, and Pd(OAc)2 with DPEphos, t-Bu-Xantphos, L, 
18b,c or DPPE were much less efficient (entries 4–7). Control experiments indicated that both 

light and the Pd catalyst are essential for this transformation (entries 8 and 9). Naturally, we 

were eager to verify if this method could also be used for reactions of activated tertiary alkyl 
halides. It was found that activated tertiary alkyl halides of different electronic nature, such 

as 1d and 1h, were incompatible with the standard thermal palladium-based conditions, 

reported for alkyl Heck reaction8b (entries 10 and 13). However, under the developed blue 

light conditions, satisfactory yields of the corresponding products were obtained (entries 11 

and 14). Further optimization under blue light led to significant improvement of the reaction 

efficiency for 1h (entry 13). Remarkably, the control experiments for both activated 

substrates (1d and 1h) indicated that these reactions proceed efficiently without light to 

produce 3da and 3ha at room temperature and at 40 °C, respectively (entries 12 and 16).

With the optimized conditions in hand, the generality of visible-light-induced reaction of 

unactivated tertiary alkyl halides was investigated first (Scheme 2). Reaction of tert-butyl 
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iodide 1a with both electron-rich and electron-deficient para-substituted styrenes21 

proceeded very efficiently, leading to alkene products in excellent yields (3aa–af). Reactions 

with meta-and ortho-substituted styrenes proceeded uneventfully, as well (3ag–aj). 
Importantly, sensitive functional groups such as primary alcohol (3ah) and aldehyde (3ai) 
were tolerated under these reaction conditions. Moreover, vinyl heteroarenes were found to 

be competent substrates in this reaction to produce heterocyclic derivatives 3ak–am in good 

to excellent yields. Other unactivated tertiary iodides reacted well with styrene and 

acrylonitrile to produce alkenes possessing quaternary allylic carbon centers (3ba, 3ca, 3cn).

Next, the scope of activated tertiary alkyl halides under the newly developed thermal Heck 

reaction conditions was examined (Scheme 3). It was found that a variety of electron-

deficient alkyl halides underwent smooth Heck reaction to produce electrophilic alkenes, 

possessing carbethoxydimethyl-(3da), phosphonyldimethyl- (3ea), tosyldimethyl- (3fa), and 

dicarbethoxymethyl- (3gb–gp) moieties in good to nearly quantitative yields. Motivated by 

the great synthetic usefulness of allylboronates,22,23 we attempted approaching this 

important motif via Heck reaction of pinacolboronyldimethyl methyl iodide (1h). 

Gratifyingly, it was found that a wide range of electronically different styrenes, as well as 

vinyl heteroarenes, underwent a smooth reaction with 1h, resulting in useful22 tertiary allylic 

boronates (3ha–hl) in excellent yields.

Upon investigating the scope of this transformation, it was found that the reaction of tertiary 

alkyl bromide 1g with phenyl vinyl ether (2s) did not produce the expected Heck product. 

However, in the presence of O-nucleophiles, the carboxyalkoxylation and alkoxyalkylation 

adducts, mixed acetals 4a and 4b, were selectively obtained (Scheme 4). It is apparent that 

in contrast to the previously reported reactions involving aryl-(18b) and alkyl Pd-radical 

hybrid species,16,18,19 this transformation proceeds through cationic intermediates (vide 

infra).

On the basis of the observations above (Scheme 4) and our initial mechanistic studies, 

including radical clock experiments, radical trapping, and Stern–Volmer quenching 

experiments,24 as well as literature precedents for Heck reactions of alkyl halides,8,16,19 the 

following hybrid-Pd radical mechanism is proposed for this transformation (Scheme 5). 

First, the in situ generated Pd(0) species undergoes visible-light excitation to produce the 

active Pd(0) complex A. Next, it undergoes an SET with alkyl halide 1 to produce the 

putative alkyl Pd–hybrid radical species B.25 Addition of the latter to alkene 2 produces a 

new alkyl radical intermediate C. A subsequent β-H-elimination delivers Heck product 3 
and closes the catalytic cycle (D → A). Alternatively, in the reaction with electron-rich aryl 

vinyl ether (2s, Scheme 4), the Pd(I) species oxidizes intermediate C26 into the stabilized 

cation E, which is then trapped by a nucleophile to give the double-addition product, acetal 

4.

In conclusion, we developed the first general, efficient, and mild Heck reaction of tertiary 

alkyl halides. This visible light-induced Pd-catalyzed method, which works well with 

unactivated tertiary alkyl halides, operates at room temperature and does not require 

employment of exogenous photosensitizers. For activated tertiary alkyl halides, the same 

catalytic system does not require light for a successful Heck coupling. Employment of an 
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array of alkyl halides allows synthesis of valuable electronically diverse allylic products, 

including neutral alkenes possessing quaternary carbon centers, electron-deficient alkenes 

having carbalkoxy- and tosyl groups, as well as nucleophilic allylboronates. Importantly, for 

the reactions of electronically different alkenes, a mechanistic dichotomy was discovered. 

Thus, in contrast to the reactions with electron-neutral and electron-deficient alkenes, 

operating via hybrid Pd-radical mechanism, the reactions with electron-rich alkenes proceed 

through a hybrid radical/cationic pathway leading to mixed acetals, the products of the 

double-addition process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Heck Reaction of Tertiary Alkyl Halides
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Scheme 2. Scope of Unactivated Tertiary Alkyl Iodides
aConditions I: 1a 1.0 mmol, 2 0.5 mmol, Pd(OAc)2 0.05 mmol, Xantphos 0.1 mmol, 

Cs2CO3 1 mmol, PhH 0.5 M, 34 W blue LED, rt, 12 h. bPd(OAc)2 (2 mol %) and Xantphos 

(4 mol %) was added to the reaction mixture after 12 h, and the reaction was stirred for an 

additional 6 h. cYield for a 1 mmol scale reaction. d1 (0.25 mmol) and 2 (0.5 mmol) were 

used.
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Scheme 3. Scope of Activated Tertiary Alkyl Halidesa,b

aConditions II: 1 (0.25 mmol), 2 (5 mmol), Pd(OAc)2 (0.025 mmol), Xantphos (0.05 mmol), 

Cs2CO3 (0.5 mmol), PhH (0.5 mL), rt, 12 h. bConditions III: 1a (0.375 mmol), 2 (0.25 

mmol), Xantphos Pd G3 (0.025 mmol), iPr2NEt (0.5 mmol), PhH (0.5 mL), 40 °C, 12 h. c1 

(0.25 mmol) and 2 (0.5 mmol) were used. d5 mol % of Xantphos Pd G3 was used. eAlkyl 

bromide was used. fReaction required 45 °C and 24 h for completion. gYield for a 1 mmol 

scale reaction.
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Scheme 4. 
Carboxyloxy- and Alkoxyalkylation of Aryl Vinyl Ether
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Scheme 5. 
Proposed Reaction Mechanism
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