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Abstract

Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal 

muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on 

the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-

contraction (E–C) coupling. This article explores the role of RyR1 in the skeletal muscle 

physiology and pathophysiology.
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Introduction

Ryanodine receptors (RyRs) are intracellular calcium (Ca2+) release channels located on the 

endo/sarcoplasmic reticulum (ER/SR) (Flucher et al. 1993), a heterogeneous intracellular 

compartment consisting of a network of tubules (Chen et al. 2013; Brochet et al. 2005) 

representing the major Ca2+ reservoir within the cell. There are three subtypes of RyRs in 

mammalian tissues: RyR1 and RyR2 are required for skeletal muscle and cardiac excitation-

contraction coupling (E–C coupling), respectively (Marks et al. 1989; Otsu et al. 1990), and 

are also expressed in non-muscle tissues (Awad et al. 1997); RyR3, originally identified in 

the brain (Nakashima et al. 1997), is also widely expressed (Zhang et al. 2011).

RyR1 facilitates the rapid and coordinated release of Ca2+ from SR stores to activate skeletal 

muscle contraction. EC coupling is the process that converts electrical signals and rising 

Ca2+ levels into mechanical output (muscle contraction). RyRs are highly regulated for 

precise control and Ca2+ plays the key signaling role in activating the channel and 

amplifying the signal (Endo et al. 1970). In this process, depolarization of the plasma 

membrane activates L-type voltage-gated calcium channels (Cav), which signal RyRs 

located on the SR to gate open and release Ca2+ to activate muscle contraction (Rios and 
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Brum 1987; Gordon et al. 2000; Tobacman 1996; des Georges et al. 2016). RyR is a 2.2 

mega Dalton homotetramer, composed of four ~5000 residue protomers (Marks et al. 1989; 

Santulli and Marks 2015), making it the largest kfown ion channel (des Georges et al. 2016; 

Santulli and Marks 2015; Zalk et al. 2015). The narrow transmembrane core and larger 

cytoplasmic shell result in a mushroom shaped structure (des Georges et al. 2016; Zalk et al. 

2015; Hwang et al. 2012). The large shell interacts with other receptors and forms much of 

the regulatory mechanism for the channel, allowing a range of stimuli to exert precise 

control over opening (Marks et al. 1989; des Georges et al. 2016; Santulli and Marks 2015; 

Zalk et al. 2015; Brillantes et al. 1994; Marx et al. 1998, 2000; Lehnart et al. 2005; Huang et 

al. 2006; Bellinger et al. 2009; Kushnir et al. 2010; Shan et al. 2010; Andersson et al. 2011; 

Lanner et al. 2010). The core of RyR houses the approximately 90 Å long pore responsible 

for passage of Ca2+ from the ER/SR to the cytoplasm (des Georges et al. 2016; Yan et al. 

2015). This cation channel is actually poorly selective for Ca2+ (~7-fold selective for Ca2+ 

vs K+) and displays an exceptionally large single channel conductance (Santulli and Marks 

2015).

We recently solved the high-resolution structure of RyR1 using cryogenic electron 

microscopy (cryo-EM) (des Georges et al. 2016; Zalk et al. 2015), confirming that it adopts 

a fourfold symmetric mushroom-like superstructure, with the large ‘cap’ (about 80% of the 

mass) located in the cytosol and the ‘stalk’ embedded in the ER/SR membrane, with six 

transmembrane helices (S1–S6) per protomer surrounding the central pore (des Georges et 

al. 2016). Each protomer is built around an extended scaffold of alpha-solenoid repeats 

which include an aminoterminal, a bridging, and a core solenoid (des Georges et al. 2016; 

Zalk et al. 2015). At the extreme outer corners of the tetramer there are three SPRY domains 

and two pairs of RyR repeats, RY12 and RY34, the latter containing a regulatory protein 

kinase A (PKA) phosphorylation site (Marx et al. 2000). The RyR1 pore domain most 

closely resembles that of the voltage-gated sodium channel (NavAB) and presents a single 

cytosolic constriction in the ion conduction pathway, at the S6 bundle crossing (Zalk et al. 

2015). Glycine residues in the pore-lining helices may operate as “hinges” to facilitate the 

orientation of the cytoplasmatic extension of S6 in order to modulate the aperture of the 

channel. In particular, Gly4934 is conserved in all RyR isoforms and in the IP3R.

RyR macromolecular complex

The ER/SR of most cell types contains two types of intracellular Ca2+ release channels: the 

ryanodine receptors (RyRs) and the inositol 1,4,5-trisphosphate receptors (IP3Rs) (Santulli 

and Marks 2015; Go et al. 1995; Yuan et al. 2016; Santulli 2017). There is ~40% homology 

between the RyR and lP3R in the putative transmembrane regions (Marks et al. 1989, 1990; 

Santulli 2017), a sequence similarity sufficient to indicate that these two channels evolved 

from a common ancestral cation release channel in unicellular species. The structural 

homology between RyR1 and IP3R1 is depicted in Fig. 1.

RyR was named based on its purification using the high affinity plant alkaloid ryanodine 

(Rogers et al. 1948), an agent known to profoundly alter intracellular Ca2+ handling 

(Fairhurst and Hasselbach 1970). Indeed, when bound to RyR at low concentrations 

ryanodine locks the channel in a half open state, thereby resulting in depletion of Ca2+ from 
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the SR and subsequent interruption of E–C coupling. This explains the historical use of 

extracts from the Ryania plant family by natives of South and Central America as poison for 

blow darts: the release of SR Ca2+ via the locked open RyRs causes tetany, and at high 

concentrations ryanodine blocks the channel (Rogers et al. 1948). RyR is normally closed at 

low cytosolic [Ca2+] (~ 100–200 nM); at submicromolar cytosolic [Ca2+] Ca2+ binds to 

high-affinity binding sites on RyR increasing the open probability (Po) of the channel 

(Bezprozvanny et al. 1993). Channel activity is maximal at cytosolic [Ca2+] ~10 μM while 

elevating cytosolic [Ca2+] beyond this point leads to a reduction in Po (Bezprozvanny et al. 

1993; Copello et al. 1997; Laver et al. 1995).

The large and complex structure of RyR contains function-modifying phosphorylation sites 

and protein-binding domains, providing an attractive target for disease intervention (des 

Georges et al. 2016; Santulli and Marks 2015; Zalk et al. 2015; Brillantes et al. 1994; Marx 

et al. 1998, 2000, 2001; Lehnart et al. 2005; Kushnir et al. 2010; Marks et al. 2002). RyRs 

are macromolecular signaling complexes, in which multiple proteins bind to a domain of the 

channel modulating its function (Marks et al. 1989, 2002). The Ca2+ stabilizing proteins 

calstabin1 (Calcium channel stabilizing binding protein, previously known as FKBP12) and 

calstabin2 (FKBP12.6) are peptidyl-propyl-cis–trans isomerases that associate via 

amphiphilic β-sheet structures with RyR1 and RyR2, respectively, such that one calstabin 

protein is bound to each RyR monomer (des Georges et al. 2016; Zalk et al. 2015; 

Jayaraman et al. 1992; Timerman et al. 1993; Xin et al. 1995; Yuan et al. 2014), in order to 

modulate the channel gating through protein-protein interactions (Brillantes et al. 1994) and 

prevent pathological intracellular Ca2+ leak that cause diseases (Huang et al. 2006). 

Calstabin1 and calstabin2 differ at only 18 positions out of 108 residues. We identified the 

calstabin-binding loop as part of the aminoterminal subdomain of the bridging solenoid 

(Zalk et al. 2015). Calstabin binding may rigidify the interface between such a subdomain 

with SPRY1–2, thereby stabilizing the connection with the cytosolic regulatory domains and 

eventually altering the relative orientation of these domains (Zalk et al. 2015). Highly 

conserved leucine-isoleucine zipper motifs in RyR2 form binding sites for adaptor proteins 

that mediate binding of other proteins (Marx et al. 2001; Marks et al. 2002), including 

kinases (e.g. PKA) (Shan et al. 2010) CaMKIIdelta (Kushnir et al. 2010) and phosphatases 

(e.g. PP1 and PP2A). Specifically, the adaptor protein mAKAP mediates the binding of PKA 

and phosphodiesterase PDE43, whereas PP1 and PP2A are targeted to RyR2 via spinophilin 

and PR130, respectively (Marx et al. 2000; Lehnart et al. 2005). All of the above mentioned 

proteins regulate the phosphorylation-dephosphorylation of RyR2 in Ser2808 (Shan et al. 

2010) in response to stress (Andersson et al. 2011; Shan et al. 2010; Liu et al. 2012; Tester et 

al. 2007). Other channels are also regulated by stress signals including the voltage-gated 

Ca2+ channels (Maki et al. 1996). RyRs are also regulated by oxidation and nitrosylation 

(Shan et al. 2010; Andersson et al. 2011; Santulli 2017; Fauconnier et al. 2010). Other 

modulatory proteins complex directly and indirectly with RyR, including sorcin (Farrell et 

al. 2004), calmodulin (Meissner and Henderson 1987), homer (Feng et al. 2002), histidine-

rich Ca2+ binding protein (Lee et al. 2001), triadin (Rossi et al. 2014), junctin (Zhang et al. 

1997), and calsequestrin (Ohkura et al. 1998).
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Intracellular Ca2+ leak

Ca2+ finely regulates innumerable events as muscle contraction, secretion, and gene 

transcription (Santulli and Marks 2015; Santulli 2017; Ringer 1883; Zetterstrom and 

Arnhold 1958; Jayaraman and Marks 2000). Cytosolic Ca2+ signals are produced by rapidly 

increasing the concentration of free Ca2+ ions (Blaustein 1993) by opening channels 

permeable to Ca2+ either in the surface cell membrane or in the membranes of intracellular 

organelles containing high Ca2+ concentrations. Amplification of external stimuli by 

triggering the release of intracellular Ca2+ stores represents a common signaling mechanism 

in the cell. The key role of RyRs in the rapid and voluminous release of Ca2+ from the SR 

during E–C coupling is well known. Importantly, RyRs are also crucially involved in 

maintaining Ca2+ homeostasis in the cell under resting conditions. Stress-induced 

remodeling of RyRs results in leaky channels and the inappropriate release of Ca2+ from the 

intracellular stores into the cytosol, contributing to the pathophysiology of diverse disorders 

including heart failure, cardiac arrhythmias, muscular dystrophy, diabetes, and cognitive 

dysfunction (Brillantes et al. 1994; Marx et al. 1998, 2000, 2001; Lehnart et al. 2005; Huang 

et al. 2006; Bellinger et al. 2008, 2009; Kushnir et al. 2010; Shan et al. 2010; Andersson et 

al. 2011, 2012; Marks et al. 2002; Liu et al. 2012; Tester et al. 2007; Fauconnier et al. 2010; 

Ward et al. 2003; Umanskaya et al. 2014; Matecki et al. 2016; Santulli et al. 2015a, b, 2017; 

Xie et al. 2013, 2015).

Skeletal muscle

E–C coupling is similar in skeletal and cardiac muscle but there are important differences 

(Santulli 2017). Briefly, whereas in the heart a depolarizing Na+ current activates Ca2+ 

influx via the L-type Ca2+ channel (LCC, Cav1.2), which in turn activates the RyR2 isoform 

via Ca2+-induced Ca2+ release (Fabiato and Fabiato 1975), the depolarization of skeletal 

myocytes involves a protein-protein interaction (Rios and Brum 1987) across the junctional 

cleft between the dihydropyridine receptor (Cav1.1) on specialized invaginations of the 

sarcolemma (transverse tubules) and RyR1 on the SR membrane (terminal cisternae), 

leading to Ca2+ release (Nelson et al. 2013). Both morphologic and electrophysiological data 

are consistent with the concept that four Cav1.1s interact with a single RyR1 tetramer (one 

Cav1.1 binding to each RyR1 subunit). However, Franzini-Armstrong and Kish determined 

that a cluster of four Cav1.1 overlie only every other RyR1 tetramer (Franzini-Armstrong 

and Kish 1995). Reconciling those findings, we have demonstrated coupled gating of RyR1 

(Marx et al. 1998), which provides a mechanism by which RyR1 channels that are not 

associated with Cav1.1 can be regulated. RyRs were initially observed in skeletal muscle, 

visualized in electron micrographs as large electron-dense masses located along the face of 

the SR terminal cisternae, which is closely apposed to transverse tubule membranes to form 

a structure named triad junction (Santulli 2017; Block et al. 1988). Therefore, the RyRs were 

initially termed triad junctional foot proteins (Wagenknecht et al. 1989; Brandt et al. 1990). 

Noda and colleagues provided the in vivo evidence for a functional role of RyR1 in E–C 

coupling, engineering a mouse lacking exon 2 of RyR1 and demonstrating that such a mouse 

exhibits severe skeletal muscle abnormalities and dies perinatally due to respiratory failure 

(Takeshima et al. 1994). Subsequent ultrastructural studies of hind limb and diaphragm 

Santulli et al. Page 4

J Muscle Res Cell Motil. Author manuscript; available in PMC 2018 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



muscles demonstrated the absence of RyR1-Cav1.1 complexes (Takekura et al. 1995), which 

are essential for a proper E–C coupling in the skeletal muscle (Nakai et al. 1996).

RyR1 dysfunction has been described in both inherited and acquired muscle disorders 

(Bellinger et al. 2008; Andersson et al. 2012). Central core disease (CCD) and malignant 

hyperthermia (MH) represent the best examples of RyR1 channelopathies in the skeletal 

muscle.

Central core disease (CCD)

CCD is a congenital myopathy first described in 1956 (Magee and Shy 1956), characterized 

by the presence of tissue cores with reduced oxidative activity in type I myofibers, which 

results in progressive muscle weakness (Sewry et al. 2002). Common symptoms include 

hypotonia, delayed motor milestones, and skeletal abnormalities including congenital hip 

dislocation and scoliosis. Over 60 different RyR1 mutations have been linked to CCD, 

which presents during infancy as delayed motor development and hypotonia. CCD occurs in 

1:100,000 live births, and comprises 16% of total congenital myopathies (Jungbluth 2007).

We now know that RyR1 mutations cause the disorder which should be reclassified as RyR1 

myopathies. There are no established therapeutics for RyR1 myopathies (Witherspoon and 

Meilleur 2016). The phenotypic presentation is quite variable ranging from near normal to 

neonatal death.

The histopathological appearance of CCD is most closely linked to dominant RyR1 

mutations (often missense) clustered (Fig. 2) in disease causing “hot spots” in RyR1 (Quane 

et al. 1993; Zhang et al. 1993; Lynch et al. 1999; Monnier et al. 2000; Scacheri et al. 2000), 

whereas RyR1 mutations (often truncating) causing recessive RyR1-related myopathies, 

including multi-minicore disease, centronuclear myopathies, and congenital fiber-type 

disproportion, are evenly distributed throughout the entire RYR1 coding sequence 

(Amburgey et al. 2013; Klein et al. 2012).

Malignant hyperthermia (MH)

MH is a pharmacogenetic disorder, inherited in an autosomal dominant fashion and causes 

inhaled anesthetic-induced deaths in otherwise healthy individuals (Censier et al. 1998). MH 

episodes are typically rapid and severe, reaching core body temperatures of 43 °C, leading to 

organ failure and death if not rapidly treated. Susceptibility can be determined in vitro by 

measuring the contractile response to caffeine or halothane in biopsied muscle fibers. Over 

100 RyR1 mutations have been associated with MH, involving inappropriate activation of 

RyR1, which causes uncontrolled release of SR Ca2+ and muscle contractions. MH occurs at 

a rate of 1:50,000–100,000 adults and 1:15,000 children undergoing anesthesia; some 

studies have suggested a much more frequent rate of 1:5000 adults with MH susceptible 

mutations occurring at 1:3000 (Rosenberg et al. 2007; Monnier et al. 2002). The exact 

prevalence of MH susceptibility is difficult to determine since the syndrome only becomes 

apparent after exposure to triggering agents including volatile anesthetic agents such as 

halothane, isoflurane, sevoflurane, desflurane, enflurane and the neuromuscular blocking 

agent succinylcholine (Larach 2007). A related syndrome referred to as porcine stress 
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syndrome is found in certain lines of domestic swine where stressed pigs undergo stress-

induced hyperthermia (Nelson and Bee 1979). Alterations in 3H-ryanodine binding 

properties in porcine MH samples provided evidence linking RyR1 dysfunction to the 

disease (Mickelson et al. 1988), which was later confirmed by biophysical experiments (Fill 

et al. 1990).

Although dantrolene is an established therapeutic that quickly resolves MH episodes, 

mortality from this event remains at approximately 7% and a validated mechanism of action 

for dantrolene has yet to be reported (Paul-Pletzer et al. 2002; Zhao et al. 2001). This 

remains a concern for otherwise healthy individuals harboring these mutations (Fill et al. 

1990). Mutations causing MH are autosomal dominant and typically seen (Fig. 2) in the 

central and N-terminal clusters. Another MH mutation hotspot is at the inter-protomer 

contacts between the N-terminal domains A and B, which are disrupted in channel opening 

(Kimlicka et al. 2013).

Notably, there is no clear division between MH and RyR1 myopathies and some RyR1 
mutations have been linked to a combined MH and RyR1 myopathy phenotype (Zhou et al. 

2007). Importantly, the mutated codons giving rise to MH and RyR1 myopathies tend to 

cluster in three specific regions of the RyR1 gene (Fig. 2) corresponding to the following 

domains in the amino acid sequence: regions 1 (C35–R614) and 2 (D2129–R2458) reside in 

the myoplasmic foot domain of the protein, whereas region 3 (I3916–G4942) is located in 

the transmembrane/luminal region of the highly conserved carboxy-terminal domain, 

important for allowing Ca2+ flux through the channel (Zalk et al. 2015). Mutations in RyR1 
are also associated with other rare RyR1 related congenital myopathies including 

centronuclear myopathy, multi-minicore disease, Samaritan myopathy, heat/exercise induced 

exertional rhabdomyolysis, congenital fiber-type disproportion, late-onset axial myopathy, 

and atypical periodic paralyses (Bharucha-Goebel et al. 2013; Zvaritch et al. 2009; Ferreiro 

et al. 2002; Capacchione et al. 2010; Zhou et al. 2010; Inui et al. 1987; Takeshima et al. 

1989; Loseth et al. 2013).

Intracellular Ca2+ leak and muscular dystrophy

We recently demonstrated that intracellular Ca2+ leak via RyR1 represents an essential 

feature of different forms of muscular dystrophy (MD), including Duchenne muscular 

dystrophy (Bellinger et al. 2009) and limb-girdle (or Erb’s) MD (Andersson et al. 2012). 

Specifically, RyR1 from a Duchenne muscular dystrophy murine model (mdx mouse) was 

excessively cysteine nitrosylated and the RyR1 complex was depleted of calstabin1, leading 

to increased spontaneous RyR1 openings and reduced specific muscle force (Bellinger et al. 

2009). Similar findings were obtained when evaluating RyR1 in β-sarcoglycan-deficient 

mice, an established model of limb-girdle muscular dystrophy (Andersson et al. 2012). 

Thus, we demonstrated common mechanisms of stress-induced remodeling of RyR1, 

including post-translational modifications of the channel and dissociation of the stabilizing 

subunit calstabin1, in two major disorders that weaken the muscular system hampering 

locomotion and that remain without effective pharmacological treatment. We demonstrated 

in both cases that stabilizing the RyR1-calstabin1 association using a novel small molecule 

Rycal called S107 improved muscle function (Bellinger et al. 2009; Andersson et al. 2012), 
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thereby providing an innovative therapeutic target and potential options for the treatment of 

muscular dystrophy.

In conditions of strenuous muscular stress or in a disease such as heart failure, both of which 

are characterized by chronic activation of the sympathetic nervous system and increased 

production of reactive oxygen and nitrogen species (Santulli 2014; Dalla Libera et al. 2005; 

Santulli and Iaccarino 2016), skeletal muscle function is impaired, possibly due to 

remodeling of RyR1 and impaired E–C coupling. We have shown in both an animal model 

as well as in exercising humans that chronic βAR stimulation and depletion of calstabin1 

from RyR1 plays a role in contractile failure and muscle fatigue, defined as a decline in 

ability of a muscle to generate force during sustained exercise (Bellinger et al. 2008). 

Consistent with these observations, we have demonstrated that the remodeling of RyR1 

plays a role in sarcopenia or age-dependent loss of muscle function (Andersson et al. 2011) 

and we were able to reduce RyR1 dysfunction and improve skeletal muscle function in aged 

mice (2 years old) by genetically enhancing mitochondrial antioxidant activity (Umanskaya 

et al. 2014).

Since skeletal muscle dysfunction, as observed in HF or muscular disorders, remains without 

effective treatment, drugs that restore RyR Ca2+ release function represent promising 

candidates. In this sense, Rycal treatment could be ideal in conditions that impair both 

cardiac and skeletal muscle function. Indeed, as well as muscular RyR1 undergoes post-

translational modifications in HF (Ward et al. 2003), remodeling of the cardiac RyR2 has 

been also reported in murine models of Duchenne muscular dystrophy, triggering ventricular 

arrhythmias (Fauconnier et al. 2010).

RyR1 mutations: clinical significance and structural effects

Over 300 mutations have been mapped to RyRs that are implicated in human diseases and 

200 more that do not result in modified channel function. The disease causing mutations are 

most often found in hotspots, including the N-terminal (~1–600), the central (~2000–2600) 

and the C-terminal (~4000–5000) regions. High-resolution cryo-EM reconstructions have 

recently become available making it possible to see how these hotspots are localized, some 

in the channel pore and others in the inter-protomer and interdomain interfaces (Tung et al. 

2010). The phosphorylation domain is another hotspot for disease causing mutations (Yuchi 

et al. 2012).

Proper post-translational modifications and interaction with other proteins are also critical 

for RyR function. Several human disorders are linked to improper phosphorylation or 

oxidation of RyRs including ventilator-induced diaphragmatic dysfunction (VIDD) and 

Duchenne muscular dystrophy (DMD). VIDD involves diaphragm muscle weakness after 

extended mechanical ventilation and has been linked to oxidation of RyR (Matecki et al. 

2016). RyR1 cysteine-nitrosylation has been shown to have a role in DMD (Bellinger et al. 

2009). An age-dependent increase in cysteine-nitrosylation occurs with dystrophic changes 

in the muscle, depleting the RyR1 macromolecular complex of calstabin1 resulting in Ca2+ 

leak. This finding links muscle inflammation and Ca2+ leak in the pathogenesis of DMD 

(Tidball and Villalta 2009). Indeed, in inflamed tissues there is an increased expression of 
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inducible nitric oxide synthase (iNOS), which binds to RyR1 leading to Ca2+ leak and 

eventually to the activation of Ca2+-dependent proteases (calpains) that promote muscle 

damage and wasting.

These alterations affect the function of RyRs, but the direct impact on the tetrameric 

assembly has yet to be shown in structural studies. Due to the critical requirement of the 

channel for proper muscle function, mutations that severely destabilize or significantly alter 

the channel structure most likely lead to non-viable embryos. These mutations most often 

lead to changes in the open probability of the channel, leading to Ca2+ leak. This 

hypersensitive activation can come from mutations on either the luminal or the cytosolic side 

of the receptor (Tong et al. 1997; Jiang et al. 2004). One potential explanation is that defects 

at the interface between the central and N-terminal regions would weaken the interactions 

stabilizing the receptor in the closed state, leading to increased susceptibility to stimuli 

(Tateishi et al. 2009; Suetomi et al. 2011). Albeit many disease-associated RyR1 mutations 

do increase the open probability of the channel, this is far from certain for all RyR1 

mutations, in particular with regards to recessive RyR1-related myopathies associated with 

reduction of the RyR1 protein. Therefore, compounds enhancing the closed probability of 

the channel would have limited application in conditions where the RyR1 mutations result in 

reduced rather than enhanced Ca2+ conductance, or where the precise functional 

consequences of the specific RyR1 mutations are not known.

Adjacent RyRs are known to signal cooperatively as paracrystalline arrays in checkerboard 

patterns, allowing for simultaneous opening of multiple channels (coupled gating) in 

response to a stimulus (Marx et al. 1998; Cabra et al. 2016). This provides a mechanism by 

which RyR channels can effect the rapid and coordinated SR Ca2+ release (via mechanically 

triggering neighboring channels) that is required for EC coupling. Thus, RyRs act as both 

signal amplifiers and integrators by triggering neighboring channels both physically and 

chemically with Ca2+ (Endo et al. 1970; Fabiato 1983).
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Fig. 1. 
Structural homology between the intracellular Ca2+ release channels IP3R1 (top) and RyR1 

(bottom). In a, c channels are viewed from the ER/SR lumen; in c, arrowheads indicate 

Calstabin
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Fig. 2. 
RyR1 with localization of the reported mutations for CCD (a–c) and MH (d–f). a and d are 

the full tetramer viewed top down from the cytosol, while b and e are rotated 90° to show 

the narrow transmembrane core and the larger cytoplasmic shell (an additional 45° rotation 

along the vertical axis was also performed). In c, f one protomer is depicted (following a 60° 

rotation), demonstrating the high proportion of interprotomer mutation sites (in pink). 

Interestingly, CCD mutations typically occur in the pore forming C-terminal domain, while 

MH mutations occur in central and N-terminal clusters
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