
Mast cells as sources of cytokines, chemokines and growth 
factors

Kaori Mukai, PhDa,b, Mindy Tsai, DMSca,b, Hirohisa Saito, MD, PhDc, and Stephen J. Galli, 
MDa,b,d

aDepartment of Pathology, Stanford University School of Medicine, Stanford, CA

bSean N. Parker Center for Allergy and Asthma Research, Stanford University School of 
Medicine, Stanford, CA

cDepartment of Allergy and Clinical Immunology, National Research Institute for Child Health & 
Development, Tokyo, Japan

dDepartment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 
CA

Summary

Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent 

potential sources of a wide variety of biologically active secreted products, including diverse 

cytokines and growth factors. There is strong evidence for important non-redundant roles of mast 

cells in many types of innate or adaptive immune responses, including making important 

contributions to immediate and chronic IgE-associated allergic disorders and enhancing host 

resistance to certain venoms and parasites. However, mast cells have been proposed to influence 

many other biological processes, including responses to bacteria and virus, angiogenesis, wound 

healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast 

cells in many of these settings is thought to reflect their ability to secrete, upon appropriate 

activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including 

many chemokines) and growth factors, with potential autocrine, paracrine, local and systemic 

effects. In this review, we summarize the evidence indicating which cytokines and growth factors 

can be produced by various populations of rodent and human mast cells in response to particular 

immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell 

products in health and disease.
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1 INTRODUCTION

Although mast cells (MCs) were described by Paul Ehrlich long ago 1, the appreciation that 

these cells represent a potential source of diverse cytokines, chemokines, and growth factors 

is a relatively recent development 2. Early work reported the ability of neoplastic MC lines 

to produce certain hematopoietic cytokines 3, and subsequent studies provided evidence that 

both in vitro-derived mouse MCs and purified mouse peritoneal MCs (PMCs) could produce 

and secrete TNF, both in response to LPS and after activation via the FcεRI 2, 4–6. While 

most of the TNF secreted by MCs appears to require induction of the corresponding mRNA 

upon MC activation, there is evidence that some TNF is physically associated with the 

secretory granules and is thereby ‘preformed’ and ready for more rapid release upon 

appropriate activation of the cells 2, 5, 6. Human MCs were identified as a potential source of 

TNF shortly after the finding was reported for mouse MCs 7, and evidence was presented 

that these cells also could contain preformed stores of the cytokine in their granules 7.

IL-4 was reported to be a potential product of mouse MC lines in 1987 8 and three groups 

subsequently reported the ability of various populations of in vitro-derived mouse mast cells 

or long term mouse MC lines to secrete IL-4 and several other cytokines in response to 

activation via the FcεRI 9–11 and the Burd et al. paper 11 also added a few chemokines to the 

growing list of cytokines which could be considered as potential products of mouse MCs.

As reviewed herein, the list of cytokines, chemokines, growth factors and mitogens which 

now have been identified as MC products is very long (Fig. 1, Tables 1 & 2). And while 

many of these were first identified, at the mRNA or protein level, in in vitro-derived mouse 

or human MCs, there is evidence that several of these can be considered to be at least 

potential products of native populations of mouse or human tissue MCs. However, while it 

can be relatively straightforward to generate evidence that MCs might represent a source of 

particular cytokines, chemokines, growth factors and mitogens, it is much more difficult to 

determine the biological importance of MCs as sources of such molecules, particularly in 

settings where multiple different immune cells and structural cells represent alternative 

potential sources of the same products.

In this review, we describe the evidence that MCs represent potential sources of cytokines 

(including chemokines), growth factors and mitogens, and mention the potential or proven 

roles of these products, e.g., as “pro-inflammatory” or “regulatory” cytokines; or influencing 

MC development, survival and/or proliferation; or functioning as mitogens or chemokines. 

As noted in Tables 1 & 2, much of the evidence that MCs can secrete such products is 

derived from studies of in vitro-derived mouse or human MCs, or MCs purified from mouse 

body fluids or mouse or human tissues. Importantly, we note that in many instances it has 

not yet been confirmed whether, and under which circumstances, MCs can secrete such 

products in vivo. Some of the many considerations to be kept in mind when evaluating the 

evidence that MCs represent potentially important sources of particular cytokines, 

chemokines, growth factors or mitogens are listed in Table 3.

Immunohistochemistry (IHC) has often been used to identify cytokines and growth factors 

in MCs in tissue sections, and the identification of such immunoreactivity is of interest (e.g., 
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it can be taken to represent one line of evidence that some of the products so identified can 

be stored in or associated with the MC’s cytoplasmic granules). However, this approach by 

itself can’t determine the importance of MCs as a source of these molecules, which typically 

also can be produced by many other cell types. Moreover, in many of these “non-MC” 

sources of these products, the cytokines or growth factors may be rapidly secreted and 

therefore provide little signal for detection of cell-associated product by IHC.

Accordingly, when it is available, we have commented on more direct lines of evidence that 

MC production of particular cytokines, chemokines, growth factors or mitogens has 

relevance for understanding the roles of MCs in vivo. We think that the reader will 

appreciate that while we are still far from understanding the importance of most of these 

products in contributing to critical roles of MCs in physiological or pathological processes, 

we now have many interesting possibilities to assess, as well as increasingly powerful tools 

to provide more definitive answers to these questions.

2 MAST CELL-DERIVED CYTOKINES, GROWTH FACTORS, AND MITOGENS

2.1 TNF (tumor necrosis factor)

History—TNF (tumor necrosis factor/cachectin) was first described by Carswell et al in 

1975 12 as a factor found in the serum of bacillus Calmette-Guerin (BCG)-infected mice that 

induces tumor necrosis. This and several other studies showed that TNF can be released 

from macrophages upon endotoxin stimulation 13–15. Later, evidence was reported that some 

MC lines (C57.1, 2D4, t1C9, AI, RBL-2H3, PT18) 4, 16, IL-3-maintained bone marrow-

derived cells (which were reported to be “natural cytotoxic cells”, but in retrospect almost 

certainly were MCs 17), IL-3-derived mouse bone marrow-derived MCs (BMCMCs) and 

purified rat or mouse PMCs 4, rat connective type MCs 18, and human bone marrow-derived 

“basophils/MCs” 19 also can have a bioactivity capable of lysing certain types of tumor cell 

lines, such as the sarcoma WEHI-164, and that one of the factors responsible for causing 

such cytotoxicity had properties similar to that of TNF.

Subsequently, Gordon and Galli 5 showed that freshly isolated mouse peritoneal MCs 

(PMCs) constitutively express preformed TNF that can be released rapidly and can mediate 

TNF bioactivity. Various MCs also can exhibit enhanced TNF gene expression upon IgE-

dependent activation 5, 16, 20–23, as shown by increased levels of TNF mRNA in Northern 

blots 5, 20, 22. Furthermore, TNF mRNA expression and TNF production have been detected 

in a mouse mastocytoma cell line, MMC-1, after FcγR activation 24 as well as in an IL-3-

dependent mouse mast cell line, CFTL12 25 and in human skin MCs 23 after stimulation 

with substance P.

2.1.2 Preformed TNF—The ability of some populations of MCs to contain preformed 

TNF, which can be released rapidly from the cells upon their appropriate activation, 

identifies MCs as one of the first potential sources of this cytokine during innate or adaptive 

immune responses. Early work provided evidence that the TNF released by MCs for the first 

~10 minutes after IgE-dependent stimulation was derived from a preformed pool and that at 

later time points TNF is secreted from a newly synthesized pool 6, 20; findings consistent 

with this conclusion also were reported for human skin MCs after their exposure to UVB 26 
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or anti-IgE, substance P, stem cell factor (SCF), A23187, or compound 48/80 27. De novo 
TNF synthesis in MCs takes several hours and appears to require mitochondrial 

translocation near the sites of exocytosis 28.

Evidence supporting the conclusion that MCs represent a source of “early TNF” in vivo was 

obtained in studies of immune complex peritonitis in genetically MC-deficient KitW/W-v 

mice and the corresponding control (Kit+/+) mice. In this model, rapid TNF secretion from 

MCs was thought to help to initiate inflammation by recruiting neutrophils into peritoneum 
29. Such rapidly released TNF can induce endothelial-leukocyte adhesion molecule 1 

(ELAM-1), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion protein 

1 (VCAM-1) on vascular endothelial cells in vitro 7, 26, 30, which represents one MC-TNF-

dependent mechanism for enhancing the adhesion and recruitment of neutrophils and other 

leukocytes to sites of MC activation. Indeed, helping to initiate local inflammation during 

innate and adaptive immune responses may be one of the most important functions of the 

TNF rapidly released from suitably stimulated MCs, and one of the major mechanisms by 

which MCs function as sentinels during such host responses.

The molecular mechanisms which affect the storage of TNF within MC cytoplasmic 

granules remain to be fully elucidated. However, there is evidence from work with rat 

basophil leukemia cells (RBL cells) and in vitro-derived mouse MCs that TNF travels from 

the endoplasmic reticulum (ER) to the cytoplasmic granules at least in part through N-linked 

glycosylation of TNF and via a mannose-6-phosphate receptor (MPR)-dependent pathway 

(RBL-2H3) 31. By contrast, human MCs (LAD2 MCs and the human MC leukemia cell line, 

HMC-1) appear to employ a different mechanism, which does not involve glycosylation of 

the TNF and therefore is carbohydrate independent, and that involves a pathway by which 

the newly formed TNF is transiently exposed to the extracellular space and then is followed 

by endocytosis 32.

2.1.3 Roles of MC-derived TNF—In principle, MC-derived TNF could contribute to any 

biological response that is influenced by that cytokine. However, attention has focused 

mainly on the role of MC-derived TNF in various inflammatory responses. An early idea 

was that the cytotoxicity mediated by MC-derived TNF might play a role in tumor 

regression. However, while it has long been known (since Ehrlich’s time 1) that numbers of 

MCs are increased in various types of tumors (reviewed in 33), the roles of MCs in such 

settings, let alone MC-derived TNF, are largely yet to be determined 33–35. MCs have the 

potential to secrete a wide spectrum of cytokines, growth factors and other mediators that 

can have positive or negative effects on tumors and their relationship to the 

microenvironment (e.g., see Table 1), and TNF is just one among many such products.

By contrast, several lines of evidence indicate that MC-derived TNF can contribute to 

leukocyte recruitment at sites of inflammation. Studies employing a neutralizing antibody to 

TNF indicated that this cytokine can promote leukocyte recruitment into sites of IgE- and 

MC-dependent passive cutaneous anaphylaxis in mice 36, 37. In certain delayed 

hypersensitivity responses elicited in the skin of mice, there is evidence that MC-derived 

TNF, as well as the MC-derived chemokine, macrophage inflammatory protein 2 (MIP-2), 

can contribute to neutrophil recruitment 38. In antigen-induced neutrophil infiltration into the 
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airways of ovalbumin (OVA)-specific TCR-expressing OTII mice, there was evidence that 

MC-derived TNF can contribute to neutrophil recruitment in a Th17-cell dependent manner 
39.

In mouse models of hapten-induced contact hypersensitivity, two groups provided evidence 

that MC-derived TNF can contribute to the migration of skin dendritic cells 40, 41 and airway 

dendritic cells 40 to the draining lymph nodes. Those findings, which indicated that MC-

derived TNF can modulate DC function and thus adaptive immunity, were generated using 

adoptive transfer approaches to compare the function of TNF+/+ vs. TNF−/− MCs in vivo 
after their engraftment into the tissues of Kit mutant MC-deficient mice. Recently, studies 

employing Mcpt5-CreTNFfl/fl mice, in which TNF is specifically deleted in MCs under the 

control of the Mcpt5 promoter, have confirmed the findings obtained using MC-engrafted 

Kit mutant mice and identified CD8+ DCs as the main target cells of MC-derived TNF in 

this setting 42.

Notably, Kunder et al. 43 identified a previously unknown mechanism by which MC-derived 

TNF can help to initiate adaptive immune responses. Specifically, Kunder et al. 43 reported 

evidence that the TNF associated with exteriorized MC cytoplasmic granule structures can 

be transported in such granules via lymphatics, thus traveling from sites of local cutaneous 

inflammation, in this case induced by the injection of E. coli bacteria into the mouse 

footpad, to the draining lymph nodes. This provided a mechanism to explain the group’s 

prior observation that such MC activation by E. coli results in hypertrophy of the draining 

lymph nodes and the promotion of an adaptive immune response to the bacteria 44. 

Subsequently, Gaudenzio et al. 45 reported evidence that IgE-dependent MC activation in the 

mouse footpad also can result in the transport of exteriorized MC cytoplasmic granules to 

the draining lymph nodes and the induction of their enlargement. Finally, there is also a 

report that, in vitro, TNF derived from MCs upon IgE and antigen stimulation can enhance T 

cell activation by increasing their expression of OX40 (also known as tumor necrosis factor 

receptor superfamily, member 4 [TNFRSF4] and CD134) 46. These studies highlight the 

potentially diverse and non-mutually exclusive mechanisms by which MC-derived TNF can 

influence adaptive immunity, and we think it likely that additional mechanisms remain to be 

discovered.

MC-derived TNF can also influence non-immune cells. In a mouse model of oxazolone-

induced contact hypersensitivity, there is evidence that MC-derived TNF can contribute to 

nerve elongation, perhaps via induction of nerve growth factor (NGF) production by 

keratinocytes 47. Close association between MCs and nerves is often observed in 

inflammatory skin lesions 48–50, and further studies are needed to elucidate the molecular 

mechanisms which underlie functional associations between MCs, MC-derived TNF (and 

other MC-derived mediators) and nerves in this and other settings.

In mice, there is evidence that, after MCs are activated with IgE and antigen in vivo or in 
vitro, MC-derived TNF and MC-derived TGF-β1 can increase type I collagen production in 

fibroblasts 51, 52. Fibrosis can occur as part of the tissue remodeling associated with allergic 

asthma and atopic dermatitis, and many other settings characterized by chronic 

inflammation. It will be of interest to determine in such settings the extent to which MCs 
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represent important sources of TNF, TGF-β1, and other products that may drive or regulate 

various aspects of these complex tissue responses.

Given how many factors may potentially influence MC phenotype and function, including 

the cells’ ability to produce cytokines (Table 1), and how many other immune and non-

immune cell types can participate in complex inflammatory or immune responses, through 

production of cytokines and many other mechanisms, it is not surprising that the importance 

of MCs as sources of particular cytokines may vary depending on the specific setting being 

analyzed. This is illustrated by the history of attempts to analyze the roles of MCs and MC-

derived TNF in a commonly used mouse model of sepsis: cecal ligation and puncture (CLP). 

In work employing MC-engrafted genetically MC-deficient KitW/W-v mice, Echtenacher et 

al. 53 reported that MCs can contribute to enhanced survival during CLP and that 

administration of a neutralizing antibody (Ab) to TNF could diminish this effect. In a study 

employing MC-engrafted genetically MC-deficient KitW/W-v mice that was published back-

to-back with the Echtenacher et al. 53 report, Malaviya et al. 54 provided additional evidence 

for a role for MC-derived TNF in enhancing survival in another model of bacterial infection 

in mice. Subsequent mechanistic work indicated that activation of MCs either by products of 

complement activation 55, 56 or via toll-like receptors (TLRs), particularly TLR4 57, can 

contribute to MC activation for TNF production during CLP and perhaps other forms of 

bacterial infection. The observation that IL-4-pretreated human cord blood MCs can produce 

TNF upon LPS or PGN (peptidoglycan) stimulation 58 highlighted the potential clinical 

relevance of the mouse studies.

Subsequent work employing MC-engrafted KitW/W-v mice confirmed that MCs can enhance 

survival during the model of CLP tested, and that repetitive administration of the Kit ligand 

and MC growth factor, stem cell factor (SCF) can also do so 59. However, SCF treatment 

also significantly enhanced survival after CLP in TNF-deficient mice, showing that this 

effect can occur independently of TNF, whether of MC or non-MC origin 59. Later work 

provided evidence that the role of MCs, and MC-derived TNF, can vary depending on both 

the severity of the CLP model being tested and mouse strain background 60.

Analysis of MC-engrafted KitW/W-v mice confirmed that engrafted MCs can enhance 

survival of KitW/W-v mice during a model of moderately severe CLP, but that was not true in 

mice subjected to a severe model of CLP 60. However, experiments employing MC-

engrafted genetically MC-deficient KitW-sh/W-sh mice indicated that the beneficial role of 

MCs in this setting can occur independently of MC-derived TNF 60. By contrast, work in 

MC-engrafted KitW-sh/W-sh mice indicated that MC-derived TNF can increase mortality 

during severe CLP and also can enhance bacterial growth and hasten death after 

intraperitoneal inoculation of Salmonella typhimurium 60. Finally, Piliponsky, et al. 61 

reported that MC-derived TNF can be degraded by mouse mast cell protease 4 (mMCP-4) in 
vitro and that the reduction of TNF levels by mMCP-4 in vivo can help to limit 

inflammation and promote survival in mice subjected to a moderately severe model of CLP.

Taken together, these findings support the hypothesis that, depending on the circumstances 

(including mouse strain background, the nature of the mutation resulting in the MC 

deficiency, and type and severity of the infection), MCs can have either no detectable effect 
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or even opposite effects on survival during bacterial infections. As discussed in detail 

elsewhere 62–64, a caveat about these findings is that much of the work reviewed above was 

performed using mice that were MC-deficient because of mutations affecting c-kit structure 

or expression, and such mice have multiple phenotypic abnormalities in addition to their 

profound MC deficiency.

In summary, current evidence indicates that MC-derived TNF can contribute to the initiation 

and amplification of inflammation, particularly in its early stages, during certain innate and 

adaptive immune responses, and that TNF (particularly that associated with exteriorized MC 

cytoplasmic granules) also may contribute to the development of certain adaptive immune 

responses. However, MC-derived TNF may be a two-edged sword, which in some settings 

contributes more substantially to pathology than to host defense.

2.2 IL-1β

IL-1β is an important pro-inflammatory cytokine that can be involved in various 

inflammatory diseases. The IL-1 family is a target for treating inflammatory and 

autoimmune diseases and multiple molecules/biologics are currently being clinically 

investigated, some of which have demonstrated efficacy (reviewed in 65).

In vitro studies indicate that MCs can produce IL-1β upon stimulation via the FcεRI 11, 66, 

FcγRs 66, calcium ionophore 66, LPS and ATP (Adenosine 5′-triphosphate), or R837 67, 68. 

Moreover, there is evidence that MC-derived IL-1β can contribute to the development of 

various models of arthritis 69, 70, and skin inflammation 67, 68 in mice in vivo.

2.3 IL-2

IL-2 can have effects on many immune cells, and is especially important for Treg cell 

development and homeostasis 71. The critical sources of IL-2 in the skin have been unclear, 

but recent work indicates that MCs represent one source, along with T cells. Mouse 

peritoneal- or bone marrow-derived cultured MCs produce IL-2 upon activation with IgE 

and antigen in vitro 72. In a model of oxazolone-induced contact hypersensitivity (CHS), 

MC expansion occurred both at the site of pathology in the skin and in the spleen, and 

spleen MCs exhibited increased production of IL-2 72. Moreover, engraftment of wild type 

(WT) but not IL-2-deficient MCs into the skin of genetically MC-deficient KitW-sh/W-sh mice 

suppressed inflammation at sites of oxazolone-induced CHS, and, in the absence of MC-

derived IL-2, the ratio of activated to Treg cells at the site of skin pathology was increased 
72. This work indicates that, in these models, MC-derived IL-2 can contribute to the immune 

suppression of oxazolone-induced CHS.

MC IL-2 production also has been reported to contribute to the expansion of Treg T cells 

which contribute to immune suppression in a mouse model of IL-33-induced airway 

inflammation 73. By contrast, Moretti et al 74 recently reported evidence for a positive 

feedback loop involving MC IL-2 production that can contribute to lung pathology in a 

mouse model of cystic fibrosis. Specifically, they reported that IL-9 can induce enhanced 

production of IL-2 by lung MCs, which is associated with expansion of CD25+ group 2 

innate lymphoid cells (ILC2s) and subsequent activation of Th9 T cells. It will be of interest 
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to extend these findings, as well as other work which has suggested potential roles of MC-

derived IL-2 in immune responses, using mice in which IL-2 is selectively ablated in MCs.

2.4 IL-3

IL-3 has been well characterized as a cytokine which supports MC and basophil 

differentiation, growth, survival, and expansion 75–79. IL-3 is dispensable in mice for MC 

and basophil production, in that IL-3-deficient mice have numbers of MCs and basophils 

similar to those in WT controls (at least when the mice have been maintained under standard 

conditions in specific pathogen-free colonies), but it is essential for normal expansion of 

numbers of blood basophils and intestinal and spleen MC populations during infections with 

certain parasites 78. At least certain MC populations can produce IL-3 upon IgE-mediated 

stimulation 9–11 and in some cases even when IgE is tested in the absence of specific antigen 
80. Such MC production of IL-3 thus might constitute an autocrine signal for promoting MC 

survival and growth in vivo, and MC-derived IL-3 (together with other MC-derived 

cytokines with similar or overlapping effects) also might promote the recruitment, 

development, and survival of additional myeloid cells.

2.5 IL-4

IL-4 is the paradigmatic cytokine involved in type-2 immune responses and plays a critical 

role in the development of Th2 cells and subsequent allergic reactions. Mouse MC lines 

were first identified as a source of IL-4 in 1987 (first described in Brown et al 8, reviewed in 
81, 82), and MCs can produce IL-4 upon IgE-mediated stimulation or in response to calcium 

ionophore 83, 84, IL-33 (in mouse MCs 85) or certain lectins (in human cord blood MCs 86). 

LPS or PGN didn’t induce IL-4 in certain human MCs in vitro 87 but LPS or PGN can 

induce the cytokine, at least at the mRNA level, in a strain-specific manner in mouse MCs 88 

and PGN can induce secretion of IL-4 protein from mouse bone marrow-derived MCs 57.

IL-4 immunoreactive MCs can be detected using IHC in biopsies of patients with allergic 

rhinitis, asthma, or atopic dermatitis 89–92. Furthermore, the number of such IL-4 

immunoreactive MCs can be increased in biopsies of allergic subjects compared to healthy 

controls 93. IL-4 immunoreactive MCs also were detected in human skin mast cells isolated 

from patients with atopic dermatitis 91 and after anti-IgE stimulation 23, but were not 

detected in the skin of healthy control subjects 27.

Later research provided several lines of evidence indicating that basophils can represent a 

more important source of IL-4 than MCs 94–96. Using IL-4 reporter mice, Gessner et al. 83 

showed that MCs, basophils, and eosinophils can express constitutive IL-4 transcript, but the 

secretion of IL-4 is stimulus-dependent, findings which are consistent with those of earlier 

studies 8, 9, 97, 98. It was shown recently that ILC2s can produce some IL-4 in humans, but 

not in mice 99, 100. In addition to being a cytokine of potential MC origin, IL-4 is also known 

to influence MC function and differentiation/growth 101–104.

2.6 IL-5

IL-5 is a well-known type-2 cytokine with important effects on eosinophils 105, 106. Both 

mouse and human MCs can produce IL-5 upon IgE-mediated stimulation 11, 107–109 or upon 
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their activation with IL-33 110, or with LPS or PGN 57, 58. MCs that are immunoreactive for 

IL-5 can be demonstrated in human duodenal 111, bronchial 93, and nasal biopsies 90. Like 

other type-2 cytokines, IL-5 can have priming effects on MCs 112. It has recently been 

recognized that ILC2 cells represent a potentially important source of IL-5, both in mice and 

humans 113–115. These interesting findings further complicate efforts to determine whether 

IL-5 derived from MCs has any important non-redundant functions in inflammation or 

immunity. Moreover, MCs potentially can influence immune responses involving ILCs 

because MCs can both be activated by IL-33 and can inactivate IL-33, a cytokine which also 

has important effects on ILC2 cells 113–116.

2.7 IL-6

IL-6 is a pleiotropic cytokine which is produced during a variety of inflammatory responses 

(reviewed in 117, 118), and which is considered a therapeutic target in certain autoimmune 

and inflammatory disorders 119–121. Many immune cells can produce IL-6, and MCs can 

produce IL-6 in response to IgE-dependent stimulation 9, 11, 122, LPS 122, substance P 123, 

IL-1 124, or IL-33 73, 125. Human airway MCs can exhibit IL-6 immunoreactivity by IHC, 

suggesting that MC-derived IL-6 might contribute to the pathogenesis of asthma or allergic 

rhinitis 90, 93. Although early studies in Kit mutant MC-deficient mice implicated MC–

derived IL-6 (and IFNγ) in the promotion of mouse models of atherogenesis 126 and in diet-

induced obesity and glucose intolerance 127, later work with a Kit-independent MC-deficient 

mouse strain (Cpa3Cre/+) detected no role for MCs in diet-induced or genetic (LepOb/Ob 

background) models of obesity 128. Such findings indicate that the interpretation of the 

results of the earlier studies may have been confounded by the use in these models of 

KitW-sh/W-sh mice, which have increased levels of neutrophils compared to the corresponding 

wild type mice, as well as other MC-independent phenotypic abnormalities 62, 63, 129. MCs 

not only represent a potentially important source of relatively large amounts of IL-6, but can 

in turn be influenced by this cytokine, e.g., IL-6 supports MC growth and is used in growth 

media to generate human MCs in vitro 130, 131.

2.8 IL-9

IL-9 is a pleiotropic cytokine, as reviewed in 132. IL-9 is produced by and can influence a 

variety of immune cells. In addition to the well-known IL-9 source, Th9 T cells 133, 134, 

MCs also can produce IL-9 upon stimulation with ionomycin or IgE/Ag, alone or 

combination with IL-1, IL-10 or SCF 135–137. It has recently been reported that a 

subpopulation of mucosal MCs (MMCs), perhaps representing immature stages in the MMC 

lineage, can produce large amounts of IL-9 that in turn may contribute to the pathology of 

IgE-mediated food allergy in a mouse model 138. Many reports indicate that IL-9 is involved 

in various examples of type 2 immunity, including host defenses against parasitic infections 

and the pathogenesis of allergic diseases. In such contexts, ILC2s also can represent critical 

producers of IL-9 139, 140.

MCs express the receptor for IL-9 141 and IL-9 stimulation can alter patterns of MC gene 

expression 142, 143, suggesting that IL-9 produced by MCs has the potential to exert 

autocrine effects on these cells. IL-9 can enhance the growth of mouse BMCMCs, either 
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alone or synergistically with IL-3 144, and IL-9 also can enhance the growth of human MC 

progenitors 141.

In vivo, IL-9 transgenic mice exhibit expansion of MMCs, including those in airway and 

intestinal sites 145, and can exhibit enhanced expulsion of the nematode Trichuris muris 
146, 147. IL-9 also promotes MC production of TGF-β1 and studies in transgenic mice 

indicate that IL-9 can increase numbers of MCs in models of allergic inflammation 148, 149. 

IL-9 overexpression in transgenic mice also can result in MC hyperplasia associated with 

airway inflammation and bronchial hyperresponsiveness 150 as well as intestinal 

mastocytosis which is thought to contribute to food allergy 151. By contrast, IL-9-deficient 

mice have impaired pulmonary mastocytosis and diminished goblet cell hyperplasia in a 

model of S. mansoni infection compared to wild type mice 152. It has been reported that IL-9 

from Tregs can contribute to recruitment and/or proliferation of MCs in the development of 

skin allograft tolerance 153 and in Treg-induced immune suppression in models of nephritis 
154.

2.9 IL-10

IL-10 is an anti-inflammatory and regulatory cytokine which can be secreted by many kinds 

of immune cells including Th1, Th2, Th17, Treg, and CD8+ T cells, B cells, dendritic cells, 

macrophages, NK cells, eosinophils, neutrophils, basophils and MCs, as well as non-

immune cells including keratinocytes (reviewed in 155, 156). MCs can secrete IL-10 upon 

LPS or lipid A stimulation and its production can be synergistically enhanced with IgE 

crosslinking 107. In vitro-derived mouse BMCMCs also can secrete IL-10 via activation of 

FcγRIII 157.

There is substantial evidence that many immune responses, including allergic reactions, can 

be regulated by IL-10 secreted from Tregs (reviewed in 155, 158). However, it now appears 

that MC IL-10 production also can contribute to immune regulation, at least in certain model 

systems. Based in part on studies of KitW/W-v or KitW-sh/W-sh mice (that can be called “Kit-
dependent MC-deficient mice”) which had been engrafted with MCs derived from WT or 

IL-10-deficient mice, Grimbaldeston et al. 157 reported that mast cell-derived IL-10 can limit 

the severity of severe cutaneous contact hypersensitivity (CHS) reactions. In this setting, in 
vivo and in vitro studies indicated that MC activation via IgG1 and FcγRIII may represent a 

more important mechanism for triggering MC IL-10 production than IgE crosslinking.

Later, Dudeck et al. 159, working with strains of MC-deficient mice that had normal c-kit, 
(i.e., “Kit-independent MC-deficient mice”) reported that, in their models of CHS, MCs 

promoted the intensity of the reactions rather than having a suppressive effect. The latter 

findings were in accord with prior work indicating that, in some settings, MCs 38, 159–162 

and IgE 160 can have effects that amplify the local expression of CHS responses, and it was 

suggested that the disparate results reported by Grimbaldeston et al. 157 may have reflected 

the effects of some of the MC-independent abnormalities which were present in the Kit-
dependent MC-deficient mice used in that study.

However, inspection of the figures in the two papers indicated that, in addition to using 

different strains of MC-deficient mice, the two groups were studying CHS responses of 
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different severity and duration. This is important, in that Gimenez-Rivera et al. 163 recently 

reported additional evidence, derived from studies using a different model of CHS tested in 

both “Kit-dependent” and “Kit-independent” MC-deficient mice, that MCs can limit the 

features of this model CHS. Indeed, many different CHS models have been examined with 

various types of MC-deficient mice, and the results obtained could be interpreted to indicate 

that, depending on the circumstances, MCs can enhance, suppress, or have no detectable 

effects on the features of the tested model 164.

In part to address the “controversy” regarding the different conclusions of the studies by 

Grimbaldeston et al 157 and Dudeck et al 159, Reber et al 165 developed a new a fluorescent 

imaging approach that enables selective in vivo labeling (with sulforhodamine 101-coupled 

avidin [Av.SRho]) and tracking of MC secretory granules by real-time intravital 2-photon 

microscopy in living mice, and permits the identification of such MCs as a potential source 

of cytokines in different disease models (Figure 2). Specifically, Reber et al. 165 injected 

Av.SRho i.d. into ear pinnae of IL-10-GFP mice expressing a GFP tracker under the control 

of the Il10 promoter 166, to monitor simultaneously both MC secretory granules and 

activation of Il10 gene transcription.

Before hapten (DNFB) challenge (day 0), no Av.SRho+ dermal MCs were positive for GFP, 

suggesting that, at least under those baseline conditions, the Il10 gene was not substantially 

activated (Figure 2, B and C). However, a clear GFP signal (i.e., emission of green 

fluorescence detectable above the green autofluorescence of the dermis) was detected in 

~40% of Av.SRho+ MCs as soon as 1 day after hapten (DNFB) challenge, a percentage that 

remained stable for the next 2 days (Figure 3, B and C). By quantifying the total number of 

IL-10-GFP+ cells at sites of CHS, and assessing how many of these cells were Av.SRho+ 

MCs, Reber et al 165 observed a progressive increase over time in the total number of IL-10-

GFP+ cells, with the highest numbers 2 days after DNFB challenge (Figure 3, B and D), a 

finding which is consistent with previous reports describing the kinetics of infiltration of 

Treg cells at sites of CHS 167. IL-10-GFP+ Av.SRho+ dermal MCs represented up to ~55% 

of all detected IL-10-GFP+ cells at day 1, but only ~10%–20% at days 2 and 3 after DNFB 

challenge (Figure 3, B, D, and E).

Taken together, these results indicate that dermal MCs are one of the first immune cells to 

produce IL-10 at sites of severe CHS, before the substantial infiltration of other IL-10–

producing immune cells. By contrast, Reber et al 165 reported that, in a mild model of CHS, 

in which studies in Cpa3-Cre+; Mcl-1fl/fl (Kit-independent) MC-deficient mice 168 indicated 

that MCs promoted the development of inflammation and epidermal hyperplasia (see 

Supplemental Figure 3 in Reber et al 2017 165), intravital microscopy detected only minimal, 

if any, changes from baseline levels of MC Il10 gene expression (see Supplemental Figure 4 

in Reber et al 2017 165).

Confirming the findings of Grimbaldeston et al. 157 in Kit-mutant mice, two types of Kit-
independent MC–deficient mice, Cpa3-Cre+; Mcl-1fl/fl 168 and Mcpt5-Cre+; DTA 159 mice, 

exhibited significantly enhanced ear swelling and epidermal hyperplasia compared with the 

values in their respective littermate controls 165. However, while KitW-sh/W-sh mice exhibited 

an ~200% increase in ear swelling on day 5 of the reaction as compared with their littermate 
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controls, this difference was less pronounced in Kit-independent MC-deficient mice at the 

same time point (~120% increase in Cpa3-Cre+; Mcl-1fl/fl mice and ~50% increase in 

Mcpt5-Cre+; DTA mice). Reber et al. 165 suggested that these findings are consistent with 

the conclusion that MCs can have effects that can substantially limit features of this model 

of severe CHS in each of the 3 examined mouse strains, but that additional phenotypic 

abnormalities in KitW-sh/W-sh mice beside their MC deficiency probably also contribute to 

the exacerbation of severe CHS responses in this strain.

To assess the potential role of MC-derived IL-10 in this model of severe CHS, Reber et al 
165 tested mice in which the Il10 gene was floxed out specifically in connective tissue–type 

MCs by generating Mcpt5-Cre+; Il10fl/fl mice (Figure 3A). Dermal MCs were present in 

similar numbers in the ear pinnae of Mcpt5-Cre+; Il10fl/fl mice, in which connective tissue–

type MCs are deficient for IL-10, and littermate control Mcpt5-Cre–; Il10fl/fl mice (Figure 3, 

C and D). However, Reber et al. 165 found that the Mcpt5-Cre+; Il10fl/fl mice exhibited 

significantly enhanced ear swelling and epidermal hyperplasia compared with the littermate 

control mice (Figure 3, B, C, and E). Notably, the enhancement of both the tissue swelling 

and the epidermal thickness associated with the reactions observed in Mcpt5-Cre+; Il10fl/fl 

mice was less pronounced than that observed in the Kit-independent MC-deficient mice, 

suggesting that MCs might help to limit these features of this acute model of severe CHS by 

both IL-10–dependent and IL-10–independent mechanisms 165.

In addition to having the potential to regulate the intensity of CHS, studies in mice in which 

IL-10 was specifically deleted in MCs indicate that MC-derived IL-10 can suppress the 

adaptive immune response and thereby result in enhanced persistence of bacteria in a mouse 

model of bladder infection of Escherichia coli 169. MC-derived IL-10 also can suppress 

germinal center formation by affecting T follicular helper (Tfh) cell function 170. Evidence 

derived from studies in Kit-dependent MC-deficient mice suggests that MC-derived IL-10 

also can limit the cutaneous pathology associated with chronic UVB irradiation 157 and can 

suppress graft versus host disease (GVHD) in a mouse model independently of Treg 171. 

However, to our knowledge, the latter two findings have not yet been assessed in tests of Kit-
independent MC-deficient mice.

The studies reviewed above indicate that MC-derived IL-10 indeed can contribute to the 

suppression of certain adaptive immune responses in mice, with beneficial consequences in 

the case of a model of severe CHS 165 but with detrimental effects in a model of bladder 

infection with E. coli 169. The findings of Reber et al 165 also support the conclusion that the 

same MC population, in this case mouse dermal MCs, can exhibit markedly different levels 

of Il10 gene expression, with upregulation of expression occurring rather rapidly in response 

to the induction of a severe CHS reaction. Clearly, further studies are needed to clarify the 

roles of MC-derived IL-10 in various immune responses.

2.10 IL-11

IL-11 is multifunctional cytokine that belongs to IL-6 cytokine family. Indeed, by structure, 

IL-11 is the cytokine that is most closely related to IL-6 and they share gp130 as a 

component of their receptors (reviewed in 172–174). Various functions are also shared among 

IL-6 cytokine family members, and IL-11, which can promote thrombopoiesis, is used to 
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prevent the development of chemotherapy-induced thrombocytopenia 172, 174, 175. IL-11 can 

be produced by many kinds of cells including leukocytes, epithelial cells, and fibroblasts, 

and is thought to be involved in the pathogenesis of asthma, airway hyperresponsiveness, 

and lung inflammation 176–178. One report indicated that human umbilical cord blood-

derived MCs can produce IL-11 in response to an IgE-mediated stimulus 179. However, the 

importance of MCs as a potential source of IL-11 remains to be determined.

2.11 IL-12

IL-12 is important for the induction of Th1 responses and for stimulating IFNγ production 

from Th1 cells and NK cells 180, 181. IL-12-deficient mice are severely susceptible to 

bacterial and viral infections, and IL-12 is important for mounting adequate cellular immune 

responses to intracellular pathogens. One of the causes of vulnerability to pathogens is 

impaired IL-12 production from various immune cells in response to pathogen-derived 

products such as LPS. Besides activating IL-12 production in dendritic cells and 

macrophages, LPS (but not IgE-mediated stimulation) can stimulate IL-12 production in 

MCs 87, 182. SCF-derived mouse BMCMCs express IL-12 mRNA but not IL-3-derived 

mouse BMCMC 183. Moreover, IL-12 can induce production of IFNγ in rat PMCs 184, 

raising the possibility that IL-12 might have autocrine effects on MCs.

2.12 IL-13

IL-13 is an important cytokine in type-2 immune responses, with functions that partially 

overlap with those of IL-4 185–187. Human and mouse MCs produce IL-13 upon stimulation 

with IgE and antigen 107, 137, 188, 189, PMA (phorbol 12-myristate 13-acetate) and ionomycin 
188, 190, LPS or PGN 57, 58, 107, or IL-33 73, 125, 191, 192. Human MCs produce IL-13 upon 

IL-1β stimulation 190 and mouse MC IL-13 production by IgE/Ag stimulation can be 

enhanced in the presence of IL-1β 135. SCF can induce IL-13 production in mouse MCs 193.

IL-13 is also produced by many other cell types including T cells, basophils, eosinophils, 

and epithelial cells. A series of studies now suggest that ILC2-derived IL-13 plays a critical 

role in host defense to infections with certain parasites and in the pathogenesis of type-2 

immune responses 185, 194, 195. Further research is needed to understand the importance of 

MC production of IL-13, especially in those in settings in which many other cell types also 

elaborate this product.

2.13 IL-16

IL-16 is a pro-inflammatory cytokine that can act as a chemoattractant for T cells, 

eosinophils, monocytes, dendritic cells, and MCs (reviewed in 196). In addition to 

functioning as a MC chemoattractant via its binding to CD9 197, IL-16 also can promote 

maturation and differentiation of human umbilical cord blood-derived MCs when 

administered together with SCF 198. Qi et al 198 also showed that IL-16-treated human cord 

blood-derived CD3−/CD4+/CD117+ cells, which contained cells the authors called “mast 

cells/basophils”, are less susceptible to HIV infection. It has been reported that IL-16 can be 

produced without any stimulation in human CBMCs 199 and that IL-16 mRNA can be 

detected constitutively in human intestinal MCs 200. IL-16 also has been detected by IHC in 
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tryptase+ MCs present in bronchial biopsies from normal subjects as well as from patients 

with asthma 201.

2.14 IL-33

IL-33 is recognized as an important alarmin secreted by damaged or necrotic cells, 

particularly vascular endothelial and epithelial cells 202–205. IL-33 has been implicated in the 

activation of ILC2s in the settings of infections and allergic diseases 205. MCs constitutively 

express the IL-33 receptor ST2, therefore they can respond to IL-33. MCs can produce a 

variety of cytokines and chemokines upon IL-33 stimulation, including TNF 191, 192, IL-2 73, 

IL-4 85, IL-5 191, IL-6 191, IL-10 191, IL-8 206, IL-13 125, 191, 206, granulocyte-macrophage 

colony-stimulating factor (GM-CSF) 191, CXCL8 191, CCL1 191, CCL2 191, CCL17 191, and 

CCL22 191 (also see the sections on each of these products). Moreover, in vitro studies 

indicate that IL-33 can act on CD34+ cells to facilitate MC maturation and differentiation 
191, both physiologically and in the setting of chronic myeloid leukemia 207. Recent 

evidence has identified mouse BMCMCs as a potential source of IL-33 110, 208, as well as a 

target of this cytokine. MCs also can be involved in the activation of IL-33 by converting 

full-length IL-33 into more active mature forms with either chymase or tryptase 209, 210. 

Finally, MC chymase (mMCP-4 or human chymase) can further degrade 17.5 kDa active 

IL-33 into a biologically inactive form 211, 212.

2.15 EGF (epidermal growth factor)

Epidermal growth factors stimulate proliferation and differentiation of various cells 

including fibroblasts, endothelial cells, and epithelial cells 213. Human MCs in the thyroid 

are EGF positive by IHC 214 and freshly isolated human dermal MCs are positive for 

heparin-binding EGF-like growth factor (HB-EGF) mRNA by RT-PCR 215.

2.16 FGF2 (fibroblast growth factor 2)/bFGF (basic fibroblast growth factor)

MC-derived FGF2 is considered to be a potential pro-angiogeneic factor 216. 

Immunoreactivity for FGF2 has been detected by IHC in MCs in human fibrotic lung tissue, 

rheumatoid synovia, and skin hemangiomas 217, in human thyroid MCs 214, and in rat PMCc 
34, and MCs containing FGF2 in a granule-associated form with heparan sulfate were 

detected in human skin using a binding assay with biotinylated FGF2 218. Secretion of FGF2 

has been reported for human dermal MCs and HMC-1 cells 215. There is a report that 

IL-17A can increase the secretion of FGF2 from human CD133+ progenitor derived cultured 

MCs 219. In addition to FGF2, other factors with mitogenic activity on fibroblasts, including 

FGF7 and FGF10 are also can be detected in human dermal MCs 215.

The importance of FGF2 production by MCs in vivo is not yet understood. However, 

Wroblewski et al. 220 have suggested that one reason VEGF-targeted therapy becomes less 

effective is that MCs re-activate angiogenesis in part by secreting FGF2.

2.17 GM-CSF

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine which 

facilitates the development of granulocytes and macrophage from precursors in bone marrow 
221. MCs can produce GM-CSF upon IgE-mediated stimulation 10, 11, 109, 222, or after 
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exposure to LPS 222, PGN 222, zymosan 222, or Pam3Cys 222. Mucosal mast cells in the 

airways of asthmatic patients can exhibit GM-CSF immunoreactivity 111, indicating that 

MC-derived GM-CSF might participate in the pathogenesis of allergic diseases, for example 

by promoting eosinophil survival. There is evidence that MC-derived GM-CSF can 

contribute, together with TNF, to the migration of graft-derived dendritic cells to lymph 

nodes by enhancing their survival and thereby contributing to the development of peripheral 

tolerance 41.

2.18 IFN-γ

IFN-γ is considered a paradigmatic Th1 cytokine 223. mRNA for IFN-γ can be upregulated 

upon IgE-mediated or ionophore stimulation of rat PMCs and certain mouse MC lines 
9, 11, 108. Gupta et al. 184 later detected IFN-γ protein in rat PMCs after IL-12 stimulation, 

but not after IgE-mediated activation. We discuss above, in the section on IL-6, recent work 
128 that has called into question the interpretation of prior work indicating that MC–derived 

IL-6 and IFN-γ may be important in the promotion of atherogenesis 126 or diet-induced 

obesity and glucose intolerance 127.

IFN-γ can influence MCs directly, since MCs can express the receptor for IFNγ 189, 224. 

Varied effects of IFN-γ on MCs have been reported, including both positive and negative 

effects. For example, IFN-γ can inhibit the growth and/or induce apoptosis in mouse 

BMCMCs 224, 225 and in human bone marrow-derived MCs 226. IFN-γ can inhibit serotonin 

release from mouse PMCs 227 and also can inhibit IL-4 mediated enhancement of serotonin/

arachidonate release upon IgE and antigen stimulation 228. IFN-γ can inhibit MC-associated 

cytotoxicity by inhibiting TNF release from rat PMCs 229.

By contrast, other studies showed that IFNγ can promote the survival of, and histamine 

release from, human umbilical cord blood-derived MCs 230, or have no effect on the 

degranulation of human peripheral blood-derived MCs 231 or human MCs derived in vitro 
from intestinal MCs 232. Human (peripheral blood progenitor-derived) cultured mast cells 

can express functional Toll-like receptor 4 only when they have been preincubated with 

IFNγ. The profile of cytokines which these MCs can express in response to LPS is unique 

compared to other stimuli. For example, they can produce far more TNFγ 233. Studies using 

BMCMCs derived from wild type (WT) mice or IFNγR-deficient mice showed that IFN-γ 
can significantly increase the release of histamine, IL-6, and IL-13 by IgE+antigen-

stimulated WT BMCMCs, whereas treatment of the cells with IFN-γ alone was without 

effect 189. The ability of IFN-γ to enhance dose-dependently the IgE+antigen-induced mast 

cell production of IL-13 is of particular interest, since IL-13 is thought to contribute to the 

development of asthma through such effects as promoting subepithelial fibrosis (in part by 

upregulating synthesis of arginase-1), increasing mucus secretion, and eliciting airway 

hyperresponsiveness (AHR) 234.

The varied results obtained in studies of effects of IFN-γ on MCs might reflect, at least in 

part, differences in the effects of IFN-γ on different populations of MCs. For example, IFNγ 
inhibited histamine and TNF release from rat PMCs, but had no detectable effect on rat 

intestinal MCs 235. Exposure of human MCs to IL-4, IL-5, and IFNγ during growth and 

differentiation generally downregulated MC numbers and function, but when these cytokines 
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were administered to mature human peripheral blood-derived MCs, IFN-γ and IL-5 had no 

effects on degranulation and cell division, but IL-4 induced division and potentiated FcεRI-

mediated degranulation 104. Furthermore, IFN-γ decreased proliferation, without affecting 

apoptosis, in human intestinal MCs cultured in the presence of optimal concentrations of 

SCF or SCF and IL-4 232. However, in the absence of growth factors or at suboptimal 

concentrations of SCF, IFN-γ promoted survival through inhibition of MC apoptosis 232.

Both mouse and human studies suggest that effects of IFN-γ on MCs may importantly 

influence multiple aspects of the pathology of certain forms of asthma, particularly those 

associated with high levels of neutrophil infiltration of the airways and certain forms of 

severe asthma 189, 236–238. However, in such settings, MCs are more likely to represent 

important targets of IFN-γ rather than critical sources of this cytokine.

2.19 NGF

NGF is a neurotropic polypeptide with effects which regulate the development, growth, 

survival, and function of central and peripheral neurons (reviewed in 239, 240). As mentioned 

in the section on TNF, close anatomical associations between MCs and nerves have long 

been recognized 48–50. NGF is one of the key factors to link these two cell types, and was 

the first mitogen to be identified as able to directly or indirectly promote MC development in 
vivo, in this case in neonatal but not adult rats 241. NGF can support rat PMC survival 242, 

the development by mouse BMCMCs of features of “connective tissue type MCs” 243, and 

the growth of rat PMCs 241, 244. Furthermore, NGF can induce degranulation of rat skin 

MCs 245 and PMCs 246–249 and can induce chemotaxis in rat PMCs 250. Moreover, 

correlations have been reported for numbers of MCs and levels of NGF mRNA levels in 

bronchial biopsies from patients with asthma 251, vernal keratoconjunctivitis 252, or systemic 

sclerosis 253.

However, there are reports indicating that NGF has few if any direct effects on some 

populations of human MCs 254, 255, but can influence human basophils 255, 256. On the other 

hand, it has been reported that the HMC-1 leukemic MC line and human CBMCs can 

express functional receptors for NGF 257, 258 and that NGF can support the development and 

differentiation of some types of human MCs (HMC-1 and CBMCs) 259, 260. Tam et al. 258 

identified mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC 
neurotrophin receptor genes in HMC-1 cells and, by flow cytometry, HMC-1 cells exhibited 

expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase 

domains. Highly purified populations of human lung MCs expressed mRNAs for trkA, trkB 
and trkC, whereas preparations of human umbilical cord blood-derived MCs expressed 

mRNAs for trkA and trkC, but not trkB. Populations of the latter cells also exhibited 

significantly higher numbers of chymase-positive MCs after the addition of NGF to their 

culture medium for 3 weeks 258. HMC-1 cells expressed mRNAs for NGF, brain-derived 

neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, 

TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical 

cord blood MCs 258.

Taken together, the findings of Nilsson et al. 257 and Tam et al. 258, and subsequent work 
259, 261, indicate that at least some populations of human MCs can express functional TrkA 
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receptors and suggest that NGF may be able to promote certain aspects of MC development 

and/or maturation in humans. These studies, and reports that rodent rat PMCs can contain 

and secrete NGF 262, indicate that MCs may represent a potential source of neurotrophins.

2.20 PDGF (platelet-derived growth factor)

PDGF is an important mitogen that can contribute to angiogenesis by facilitating the growth 

of blood vessels 263–265. By IHC, PDGF positive MCs are increased in the areas of thyroid 

tissue regeneration in patients with subacute thyroiditis 214, suggesting a role in tissue repair, 

as well as in Graves’ ophthalmopathy, an autoimmune inflammatory disease of the 

periorbital and orbital tissues 266. Mouse MCs also can produce PDGF after co-culture with 

cardiac myocytes or fibroblasts, and it has been suggested that such MC-derived PDGF can 

contribute to the pathogenesis of atrial fibrillation 267.

2.21 SCF (stem cell factor)

The KIT ligand, SCF is essential for normal MC differentiation, growth, and survival 
268–271. Non-hematopoietic cells such as endothelial cells or fibroblasts are considered to be 

more important sources of SCF than are hematopoietic cells 272–274. However, human MCs 

have been reported to exhibit SCF immunoreactivity in their granules 275–279. SCF mRNA 

and/or protein has been reported in human skin and lung mast cells and human PBMCs and 

CBMCs 275, 277, 278. SCF production by MCs may have autocrine effects on MCs, and/or 

paracrine effects on other cell types, under physiological conditions or in settings of 

pathology, such as during some forms of mastocytosis 278, 280.

2.22 TGF-β1

Transforming growth factor type-β (TGF-β) has many biological activities, and is thought to 

be a particularly important contributor to fibrosis, angiogenesis, and tissue repair. In 

addition, TGF-β can influence T cells, including Th17 and Treg cells (reviewed in 281–285), 

as well as B cells, dendritic cells, NK cells, neutrophils, eosinophils, and MCs (reviewed in 
192, 284–287).

MCs can be a source of TGF-β1 51, 288, and can secrete TGF-β1 upon IgE and antigen 

stimulation 51. In vitro evidence obtained from mice suggests that, along with MC-derived 

TNF, MC-derived TGF-β1 can enhance the production of type-I collagen by fibroblasts 51. 

Evidence from IL-9 blockade in mouse cystic fibrosis model suggests that TGF-β1 derived 

from MCs (and other cells) stimulated with IL-9 can contribute to the pathogenesis of cystic 

fibrosis 74.

Similar to TNF, TGF-β1 has been shown to be secreted rapidly by MCs 288, 289 and to be 

stored in MC cytoplasmic secretory granules together with chymase 1 289. Human cord 

blood-derived MCs constitutively express TGF-β1, but its expression is not upregulated after 

calcium ionophore stimulation 290.

Many reports indicate that TGF-β1 can suppress the functions of diverse immune cells, 

including MCs 192, 286, 291, and it has been proposed that MC-derived TGF-β1 can suppress 

MC functions in an autocrine 292 or paracrine manner. TGF-β1 can inhibit the release of 
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multiple mediators upon IgE-mediated stimulation of MCs, including release of histamine 

and TNF in rat PMCs 292, IL-6 and TNF in mouse BMCMCs 192, 286, IL-6 in human skin-

derived MCs 286, and β-hexosaminidase, TNF, GM-CSF, IL-13, and IL-6 in SCF cultured 

MCs derived from human skin 293. Co-exposure to TGF-β1 can also inhibit the IL-33-

induced release of multiple mediators from mouse BMCMCs including TNF, MCP-1, IL-6, 

IL-13, and MIP-1α 192. There is evidence that TGF-β1 can have autocrine effects which 

inhibit the proliferation of mouse BMCMCs 294 and cultured mouse PMCs 294, 295. One 

mechanism by which TGF-β1 may suppress the IgE-dependent activation of some MC 

populations is its ability to reduce levels of expression of FcεRI on the MC surface 296.

In vivo administration of TGF-β1 can inhibit immediate and delayed type hypersensitivity 

reactions, although this might reflect indirect effects rather than actions specifically on MCs 
297. On the other hand, there are reports that TGF-β1 either can enhance mediator 

production in certain types of MCs in vitro 298, 299 and in vivo 300 or have no effect in 

BMCMCs in vitro 294. For example, Ganeshan and Bryce 298 found that membrane-bound 

TGF-β1 on Tregs can promote IL-6 production from mouse BMCMCs, whereas, by 

contrast, Tregs can inhibit MC degranulation through OX40/OX40L 301.

Finally, the cytoplasmic granule-stored MC protease, chymase (from human skin 302 or 

stomach 303 or rat PMCs 289) can generate active TGF-β1 from its inactive latent form. In 
vivo studies with chymase inhibitors (in hamsters 303, rats 304 and in mice 305, 306), as well 

as work in mMCP4-deficient mice (which genetically lack the mouse chymase most like the 

human enzyme)307, have suggested possible direct or indirect effects of chymase in the 

pathogenesis of fibrotic diseases. However, the extent to which any such effects of chymase 

reflect its ability to activate latent TGF-β1 (derived from MCs or other sources) remains to 

be determined. Also, it seems likely that TGF-β1’s bioactivity, e.g., as an enhancer or 

suppressor of various MC functions, may depending on the particular types of MCs in that 

microenvironment, as well as other local factors that can influence the cytokine’s bioactivity 

or biodistribution.

2.23 VEGF (vascular endothelial growth factor)/VPF (vascular permeability factor)

Angiogenesis is critically important in normal development and tissue homeostasis and 

repair, and can contribute to diverse forms of pathology, e.g., tumor development and 

metastasis, psoriasis, rheumatoid arthritis, and wet macular degeneration 308, 309. 

Observational studies have implicated MCs in angiogenesis in various settings and one of 

the most important MC products which may contribute to such roles is thought to be VEGF 
216.

The molecule now called VEGF was initially discovered as a component of a guinea pig 

tumor ascites that can markedly enhance cutaneous vascular permeability in vivo, the 

bioactivity which was the basis of its initial name, vascular permeability factor (VPF) 
310–313. VPF later was found to be identical to VEGF, which was cloned and characterized 

in 1989 314. The initially described VPF/VEGF, now called VEGF-A, is one of five 

members of the VEGF family in mammals, that also includes placental growth factor (PGF), 

VEGF-B, VEGF-C and VEGF-D 315, 316. VEGF-A is a pro-angiogenetic factor which can 

enhance the angiogenesis process by promoting endothelial cell proliferation and migration, 
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and, as its alternative name (VPF) indicates, VEGF-A also can potently enhance vascular 

permeability, with a molar potency roughly 1000 times that of histamine 311–313.

Many normal and neoplastic cell types can secrete VEGF, and two groups provided evidence 

that MCs should be added to that list 317, 318. Moreover, there is evidence that MCs can 

constitutively contain VEGF as a preformed, heparin-binding factor 34, 317, 318 and can 

secrete this protein after stimulation by diverse triggers, including IgE and antigen (this was 

the first evidence that secretion of VEGF could be induced in an antigen-specific way in any 

cell type), PMA, A23187, or SCF 317, substance P or IL-1 (with enhanced release when 

either agent was tested together with IL-33 319), corticotropin-releasing hormone 320, 

IL-17A 219, or live Staphylococcus aureus bacteria 321. It also has been shown that human 

CBMCs and purified lung MCs can constitutively express VEGF-A isoforms (VEGF-A121 

and VEGF-A165 in CBMCs; VEGF-A121, VEGF-A165 and VEGF-A189 in purified human 

lung MCs), VEGF-B, VEGF-C and VEGF-D, and their receptors (VEGFR1 and VEGFR2) 
322, 323, indicating the potential involvement of such MC-derived products in angiogenesis 

and lymphangiogenesis 324. VEGF can act as a chemoattractant for certain MCs in vitro 325 

and in vivo 326, suggesting a mechanism by which VEGF can have autocrine or paracrine 

effects on this lineage.

Given the large number of other cell types that also can produce VEGF, it may be difficult to 

identify settings in which MCs represent important or non-redundant sources of this 

cytokine. IgE-associated disorders represent one potential setting of this kind, in that 

relatively few cells other than MCs express the FcεRI, and it has been reported that VEGF 

immunoreactive MCs are increased in the airways of asthmatic patients compared to 

controls 327–329.

There are also several reports that MCs can be immunoreactive for VEGF in certain tumors 

including laryngeal squamous cell carcinoma 330, malignant melanoma 331, and non-

Hodgkin lymphoma 332, suggesting their possible involvement of MC-derived VEGF in 

tumor-associated angiogenesis. Evidence has been reported based on tests of several tumor 

models, using both Kit-dependent and Kit-independent MC-deficient mice, that MCs can 

contribute to tumor-related angiogenesis and other features of tumor progression 333–335. 

MCs are increased in the areas of thyroid tissue regeneration in patients with subacute 

thyroiditis, and such MCs can exhibit immunoreactivity for VEGF, bFGF, PDGF, TGF-β1 

and EGF 214. In mice, several lines of evidence indicate that low-dose irradiation can 

promote tissue revascularization at least in part through MC production of VEGF 336. 

However, this point needs to be investigated further, ideally by employing mice in which 

VEGF production can be selectively ablated in MCs.

3 MAST CELL-DERIVED CHEMOKINES

Chemokines are cytokines which have chemotactic activities on various immune cells 
337–339. Chemokines play important roles in the development and homeostasis of the 

immune system and in the pathogenesis of inflammatory responses, including those 

associated with diverse disorders including allergic and autoimmune diseases, infections, 

and cancer 338, 340–342. Beyond inducing chemotaxis, chemokines can also activate immune 
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cells, including MCs, and play a critical role during HIV infection 343. Therefore 

chemokines are considered potential therapeutic targets in many diseases 344–346.

The first identification of MCs (in this case in vitro-derived mouse MCs and mouse MC 

lines) as a potential source of certain chemokines, specifically CCL1, CCL2, CCL3, and 

CCL4 mRNA, was in 1989 11. Since then, various populations of mouse or human MCs, 

most often representing in vitro-derived MCs 347, have been identified as potential sources 

of a now very long list of these molecules (Table 2). Given: 1) the vast number of biological 

responses in which chemokines are involved, 2) the large number of chemokines which MCs 

have at least the potential to produce, 3) the long list of stimuli (including IgE in the absence 

of known specific antigen 348) which can elicit chemokine production by MCs (Table 2), in 

some cases without inducing substantial MC degranulation, and 4) the large number of other 

cell types which also represent a potential source of these mediators, it will be challenging to 

attempt to identify situations in which MCs represent important non-redundant sources of 

these molecules.

In fact, there is relatively little work attempting to identify MCs as sources of chemokines in 
vivo and we are not aware of any published work reporting results of experiments in mice in 

which individual chemokines have been deleted selectively in MCs. Until experiments of 

that type are performed, MCs may be best regarded as potentially important sources of 

certain chemokines in health and disease, especially in those settings in which relatively 

selective MC activation occurs (e.g., by IgE and specific antigen); but in many settings in 

which chemokines have been implicated, MCs may not represent critical non-redundant 

producers of these mediators.

CONCLUSION

The long and growing list of cytokines, chemokines and growth factors which have been 

identified in analyses of various populations of rodent and human MCs offers great scope for 

the imagination concerning the potential roles of MCs as important sources of these products 

in health and disease. However, to date, all of the cytokines, chemokines and growth factors 

identified in MCs also can be produced by other (and often many other) cell types.

Moreover, as described herein, many of these potentially MC-derived products have been 

identified in analyses of in vitro-derived MCs, and it remains to be shown whether and to 

what extent, and it which settings, native populations of MCs in vivo represent important or 

even non-redundant sources of these molecules. Finally, as we have discussed, there appears 

to be substantial variation in the types of products which MCs can produce and in the signals 

that can elicit production of these molecules, based on animal species, type and anatomical 

location of MCs, stage of MC development, and current (and perhaps past) exposure of MCs 

to inflammatory or immune responses. Different MC populations also will vary in the extent 

to which they can produce and release mediators, such as their granule-stored proteases, 

which have the capacity to biochemically activate and/or degrade, or otherwise regulate 

levels of, cytokines, chemokines or growth factors of MC or non-MC origin.
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In light of these considerations, defining the actual roles of MC-derived cytokines, 

chemokines and growth factors in health and disease will require the application of more 

definitive tools than those used in the past to identify MCs as potential sources of these 

products. The good news is that a large number of new approaches for analyzing the 

importance of MCs as sources of such products already have been described (Table 4). We 

anticipate that the thoughtful application of such new methods will enable us to identify 

many settings in which the production of particular cytokines and growth factors, by 

particular MC populations, makes a real difference in the initiation, amplification or 

regulation of biological responses that contribute importantly to the maintenance of health or 

to features of disease. Such work also may help to identify new therapeutic targets in at least 

some of the disorders in which MCs play an important role.
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Figure 1. Highly simplified overview of the diverse stimuli and potential consequences of mast 
cell activation and secretion of cytokines, chemokines and growth factors
Mast cells (MCs) can be activated through various receptors when they are exposed to the 

corresponding ligands (e.g., in pink ovals). This can induce MC activation (red arrows), 

inhibition (blue dotted lines), or migration (purple open arrows), influence MC development/

proliferation/survival (green patterned arrows), and/or induce MCs to secrete many 

cytokines, chemokines and growth factors (black arrows and related boxes). Grey arrows 

depict secretion of products from cells other than MCs. Depending on the type of stimulus/

stimuli, as well as the type/phenotype of the MCs, such activated MCs also may secrete 

many other stored and/or newly synthesized mediators (not shown). In adaptive immune 

responses (e.g., elicited by parasites, animal venoms or allergens), MCs can be activated 

when IgE bound to surface FcεRI receptors is crosslinked by bi- or multivalent antigens, or 

when immune complexes (IgG-ICs) bind to FcγRs. In some settings, for example in mouse 

BMCMCs, co-ligation of FcεRI with inhibitory FcγRIIb receptors can down-regulate MC 

activation 349, 350. FcγRI is a high affinity receptor induced in human MCs by IFNγ 
stimulation in vitro 231 or in the IFNγ enriched environment of skin MCs in the setting of 

psoriasis 351. However, this FcγRI expression is observed in humans not in mice. Upon 
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antibody/antigen-mediated stimulation, MCs can synthesize and secrete a panel of factors as 

indicated in the black boxes. In turn, those factors can influence other immune and non-

immune (structural) cells and contribute to pathogenesis of various types of allergic 

reactions and perhaps autoimmune disorders, such as some forms of arthritis, as well as to 

host defense against venoms or parasites. Many of the immune and structural cells depicted 

are comprised of functionally distinct subtypes (e.g., T cells, DCs, macrophages, fibroblasts, 

nerves) and the effects of particular MC products on such cells may vary importantly 

depending on the target cell subtype (not shown). In some settings, such MC-derived 

products also may contribute to tissue repair and remodeling, both through effects on 

structural cells and by regulating aspects of the inflammatory/immune response. Antibody/

antigen-mediated stimulation also can induce MCs to secrete preformed mediators such as 

histamine, serotonin (in rodents, primarily), proteoglycans, and proteases (not shown), as 

well as certain cytokines and growth factors which can be granule-associated (black boxes 

and the purple granules underneath), as well as many lipid mediators including cysteinyl 

leukotrienes and certain prostaglandins (not shown). IL-33, which is produced by 

endothelial/epithelial cells in sites of tissue damage, can stimulate MCs to secrete many 

factors (indicated in the black boxes) with diverse potential effects on other immune and 

non-immune cells that can contribute to the pathogenesis of allergies and to host defense. 

Products of pathogens such as LPS (lipopolysaccharide) and PGN (peptidoglycan), poly 

(I:C), and certain viruses can directly activate MCs through TLRs (toll-like receptors), 

resulting in the secretion of a variety of factors (as indicated in black boxes); depending on 

the setting, this could contribute to host defense and/or disease (e.g., there is a well-

established clinical association between certain viral infections and exacerbations of 

asthma). During Th2 cell-associated immune responses, IL-4 or IL-9 from T cells or from 

immature cells in the MC lineage can activate MCs and promote their development/

proliferation. IFNγ can deliver positive or negative signals to MCs, probably depending on 

species of animal, MC subpopulation, and setting (such as a disease or a particular beneficial 

host response). MCs can migrate in response to certain chemokines, but MCs also can be 

activated by chemokines. IL-3 and SCF (stem cell factor) are representatives of factors 

which support MC development, proliferation and/or survival (others include, depending on 

the MCs, IL-4, IL-6, IL-9, and NGF). IL-3 can have similar effects on basophils. NGF 

(nerve growth factor), VEGF (vascular endothelial growth factor), FGFs (fibroblast growth 

factors), and TGF-β1 (transforming growth factor type-β) can contribute to the development 

of fibrosis or angiogenesis, and there is some evidence indicating that these factors, like 

TNF (tumor necrosis factor), can be constitutively stored in the granules of some MCs. 

These factors also can influence MCs (as indicated with arrows). Substance P is a product of 

certain neurons that can potently activate some types of MCs, which in turn can secrete 

preformed mediators that may include granule-associated cytokines (as indicated in the 

black boxes). Bidirectional interactions between certain nerve cells and MCs have been 

studied extensively, and there is considerable interest in the potential importance of such 

nerve-MC interactions in health and disease. Finally, it should be kept in mind that proteases 

released from activated MCs can degrade TNF 61, IL-1β 352, IL-18 353, IL-33 209, 211, SCF 
354, CCL5 and CCL11 355, CCL26 356, and likely other factors shown in the figure, and this 

may represent an important mechanism by which MCs can control the intensity and duration 

of the biological effects of such factors. Please see Tables 1 and 2 for additional information 

Mukai et al. Page 42

Immunol Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



about how variation in MC subtype may influence the extent to which these cells can 

produce and/or respond to the factors shown in the figure.
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Figure 2. Longitudinal imaging of mast cell (MC) degranulation and Il10 gene activation in a 
model of severe cutaneous contact hypersensitivity (CHS)
Sulforhodamine 101–coupled avidin (Av.SRho; 5 μg) was injected intradermally (i.d.) into 

the ear pinna of mice. One week later, the mice were treated as described in 165 to induce a 

severe 1-fluoro-2,4-dinitrobenzene–induced (DNFB-induced) contact hypersensitivity 

(CHS) reaction. (A) Longitudinal monitoring of the release of Av.SRho+ granules by dermal 

MCs at the site of CHS using intravital 2-photon microscopy. Representative 3D 

photographs of the ear pinna before DNFB challenge or at day 1, 2, or 3 after DNFB 

challenge. Upper panel: merged fluorescence of Av.SRho (red) and Mcpt5-EYFP (green). 
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Lower panel: Av.SRho fluorescence (pseudocolor scale). Dashed white circles identify hair 

follicles. (B) Longitudinal monitoring of both the release of dermal MC Av.SRho+ granules 

and activation of Il10 gene transcription (IL-10-GFP, as detected by emission of GFP 

fluorescent signal) at the site of CHS using intravital 2-photon microscopy. Representative 

3D photographs of the ear pinna before DNFB challenge or at day 1, 2, or 3 after DNFB 

challenge. Upper panel: merged fluorescence of Av.SRho (red) and IL-10-GFP (green). 

Middle panel: Av.SRho (red) fluorescence. Lower panel: IL-10-GFP (green) fluorescence. 

White lines identify the magnified areas and dashed white circles identify hair follicles. 

Scale bars: 20 μm. (C) Percentage of Mcpt5-EYFP+ cells with exteriorized Av.SRho+ 

structures (i.e., degranulated dermal MCs, red circles) and of Av.SRho+ IL-10-GFP+ cells 

(i.e., representing MCs expressing the Il10 gene, green circles) per field of view (FOV) in 

ear pinnae. (D) Total number of Av.SRho+ IL-10-GFP+ cells (MCs expressing the Il10 gene, 

green circles) per FOV in ear pinnae and total number of IL-10-GFP+ cells in ear pinnae 

(black circles). (E) Percentage of Av.SRho+ IL-10-GFP+ cells (i.e., representing MCs 

expressing the Il10 gene, green) and of Av.SRho–IL-10-GFP+ cells (i.e., representing other 

cell types expressing the Il10 gene, gray) among total IL-10-GFP+ cells in ear pinnae per 

FOV. Mean ± SEM; data (n = 3 per group) are pooled from the 3 independent experiments 

performed (each done with 1 mouse per group), each of which gave similar results. (This is 

Figure 3 from 165.)
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Figure 3. Mast cell (MC) production of IL-10 limits inflammation and epidermal hyperplasia in 
a model of severe cutaneous contact hypersensitivity (CHS)
Mice were treated as described in 165 to elicit a 1-fluoro-2,4-dinitrobenzene–induced 

(DNFB-induced) severe CHS reaction. (A) Breeding strategy to obtain Mcpt5-Cre+; Il10fl/fl 

(MC IL-10 deficient) mice. (B) Changes (Δ) in ear thickness over time after challenge with 

vehicle (squares) or DNFB (circles) in Mcpt5-Cre+; Il10fl/fl (MC IL-10 deficient, yellow) or 

Mcpt5-Cre–; Il10fl/fl (MC IL-10 sufficient, black) mice. (C) Photomicrographs of 

representative H&E (upper panel) and toluidine blue (lower panel) stained sections of ear 

pinnae of mice sacrificed 5 days after challenge. Asterisks indicate areas shown at higher 

magnification (×60) in insets, arrowheads indicate MCs, and dashed white lines in insets 

depict epidermis. (D) Number of MCs/mm2 dermis and (E) epidermal thickness 5 days after 

vehicle (squares) or DNFB (circles) challenge in Mcpt5-Cre+; Il10fl/fl (MC IL-10 deficient, 

yellow) or Mcpt5-Cre–; Il10fl/fl (MC IL-10 sufficient, black) mice. Scale bars: 200 μm. 

Mean ± SEM; *P < 0.05; **P < 0.01; ***P < 0.001; (B) 2-way ANOVA; (D and E) 2-tailed, 

unpaired t test. Data (n = 6–12 mice per group) are pooled from the 3 independent 

experiments performed (each done with n = 2–4 mice per group), each of which gave similar 

results. (This is Figure 5 from 165.)
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Table 1

Mast cell-derived Cytokines, Growth Factors & Mitogens

Factor Stimulus Product (if not the 
protein)

Mast cell type(s) References

TNF Anti-IgE, IgE/Ag Mouse BMCMCs, PMCs, cell lines 2, 5, 6, 51

Constitutive Human skin 7

Morphine sulfate Human skin 7

Anti-IgE Human skin 21

Anti-IgE Human lung 22

Substance P Human skin 23

Anti-IgE Human skin 27

SCF Human skin 27

A23187 Human skin 27

Compound 48/80 Human skin 27

Substance P Human skin 27

UVB Human skin 26

LPS Mouse BMCMCs, rat PMCs 357, 358

PGN Mouse BMCMCs 57, 222

LPS Mouse BMCMCs 57, 222

LPS or PGN IL-4 pretreated human CBMCs 58

IL-1β IgE/Ag Mouse BMCMCs, cell lines 11

IgG receptor crosslinking: anti-
FcγRII/III (2.4G2)+anti-rat F(ab’)2

Mouse BMCMCs 66

IgE/Ag Mouse BMCMCs 66

Ionophore Mouse BMCMCs 66

Constitutive Mouse in vivo 70

Constitutive Mouse in vivo 69

LPS+ATP or R837 Mouse BMCMCs 67, 68

LPS, PGN, Zymosan, PamCys Human CBMCs 222

LPS, PGN Mouse BMCMCs 57

IL-2 IgE/Ag or PMA+ ionomycin Mouse BMCMCs, PDMCs 72

IL-33 Mouse BMCMCs 73

IL-9 Mouse lung MCs 74

IL-3 IgE/Ag Mouse BMCMCs 10

IgE/anti-IgE mRNA Human BM-derived 109

Constitutive Human gastroduodenal 111

IL-4 Constitutive mRNA, bioactivity Mouse cell lines 8

IgE/Ag Mouse BMCMCs 84
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Factor Stimulus Product (if not the 
protein)

Mast cell type(s) References

Ionophore mRNA is constitutive; 
protein is detected after 
stimulation

Mouse BMCMCs 83

IgE/Ag or ionophore Mouse cell lines 9

PGN Mouse BMCMCs 57

LPS mRNA Mouse BMCMCs 88

Constitutive Human nasal, bronchial, skin 89–92

Anti-IgE Human skin 23

IL-33 Mouse PMCs 85

IL-5 IgE/Ag or ionophore mRNA Mouse cell lines 9

IgE/Ag or ionophore mRNA Mouse BMCMCs, cell lines (Cl.MC/9, 
Cl.MC/C57.1)

11

Anti-IgE mRNA Rat PMCs 108

IgE/anti-IgE Human bone marrow-derived 109

IgE/Ag or LPS Mouse BMCMCs 107

IL-33 mRNA Mouse BMCMCs 110

IL-33 Human PBMCs, CBMCs 191

LPS or PGN Human CBMCs 58

PGN Mouse BMCMCs 57

Constitutive Human airway 90, 92

Constitutive Human gastroduodenal 111

IL-6 IgE/Ag or ionophore Mouse BMCMCs, cell lines 11

IgE/Ag or ionophore Mouse cell lines 9

Anti-IgE or LPS Rat PMCs 122

Constitutive Mouse BMCMCs 359

Constitutive Human bronchial, nasal 90, 93

Constitutive Mouse in vivo 126

Constitutive Mouse in vivo 127

IL-33 Human PBMCs, CBMCs 191

IL-9 IgE/Ag Mouse BMCMCs 135

IgE/Ag or ionophore Mouse BMCMCs 137

IL-1β Mouse BMCMCs 136

IL-10 LPS, lipid A +/− IgE/Ag Mouse BMCMCs 107

IL-33 Human PBMCs, CBMCs 191

IL-11 Anti-IgE Human CBMCs 179

IL-12 LPS+IFNγ Mouse BMCMCs 182

LPS+SCF Human PBMCs 87

Constitutive mRNA SCF derived-BMCMCs 183
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Factor Stimulus Product (if not the 
protein)

Mast cell type(s) References

IL-13 IgE/Ag or ionomycin or PMA mRNA and bioactivity Mouse BMCMCs, C1.MC/C57.1 cell line 188

LPS or PGN Human CBMCs 58

LPS or PGN Mouse BMCMCs 57

LPS or Lipid A Mouse BMCMCs 107

IL-33 Mouse BMCMCs 73, 125, 192

IL-33 Human PBMCs, CBMCs 191

SCF Mouse BMCMCs 193

IgG receptor crosslinking Mouse BMCMCs 360

IL-1β Human CBMCs 190

TSLP Human CBMCs 361

IL-16 Constitutive Human BM-derived & lung 199

IL-33 IgE/Ag Mouse BMCMCs 110

PMA+ ionomycin mRNA Mouse BMCMCs 208

EGF Human thyroid 214

bFGF/FGF-2 Constitutive Human dermal 215

Constitutive Human cutaneous 362

Constitutive Human lung and skin 217

Constitutive Human thyroid 214

Constitutive Rat PMCs 34

IL-17A Human PBMCs 219

Constitutive Mouse BMCMCs 220

Constitutive Human skin 218

GM-CSF IL-33 Human PBMCs, CBMCs 191

LPS, PGN, Zymosan, PamCys Human CBMCs 222

IgE or IL-33 Mouse BMCMCs 41

IgE/Ag Mouse BMCMCs 10

IgE/Ag mRNA Mouse cell lines 11

IgE/anti-IgE Human BM-derived 109

Constitutive Human gastroduodenal 111

P. aeruginosa Human CBMCs 363

IFNγ IL-12 Rat PMCs 184

Anti-IgE mRNA Rat PMCs 108

IgE/Ag mRNA Mouse cell lines 11

Ionophore mRNA Mouse cell lines 9

Anti-IgE mRNA Rat PMCs 108

Constitutive Mouse in vivo 126

Constitutive Mouse in vivo 127
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Factor Stimulus Product (if not the 
protein)

Mast cell type(s) References

NGF Constitutive Rat PMCs 262

Constitutive mRNA Human CBMCs 257

PDGF Human thyroid 214

Coculture with cardiac myocytes or 
fibroblasts

Mouse BMCMCs 267

SCF Constitutive Human lung and skin 275

Constitutive, IgE/anti-IgE, ionophore Human skin, CBMCs, PBMCs 277

Anti-IgE Human lung and skin 278

Constitutive Human cardiac 276

Constitutive Human mastocytosis in bone marrow 279

TGF-β1 IgE/Ag Mouse BMCMCs, cell lines, mouse PMCs 51

Constitutive, phorbol ester Dog mastocytoma 288

Compound 48/80 Rat PMCs 289

N/A Human CBMCs 290

IL-33 Mouse BMCMCs 73

IL-9 Mouse lung MCs 74

VEGF/VPF Constitutive Human skin 318

Constitutive Rat small intestine 364

IgE/Ag, PMA, A23187, SCF BMCMCs 317

PMA Mouse PMCs 317

Anti-IgE Human CBMCs 317

Substance P, IL-1, Substance P+ 
IL-33, IL-1+ L-33

Human CBMCs 319

Corticotropin-releasing hormone Human CBMCs 320

Constitutive Mouse in vivo 336

Constitutive Human thyroid 214

Constitutive Rat PMCs 34

Constitutive Human, in laryngeal squamous cell 
carcinoma

330

Constitutive Human, in malignant melanoma 331

Constitutive mRNA Human, in non-Hodgkin lymphoma 332

IL-17A Human PBMCs 219

Live S. aureus Mouse PMCs 321

BMCMCs: Mouse bone marrow-derived cultured mast cells (these are reported by many groups as “BMMCs” – referring to “bone marrow-derived 
mast cells”, but we prefer BMCMCs to refer to such cells as this is more specific and emphasizes that the cells have been derived in vitro.

CBMCs: Human umbilical cord blood-derived mast cells

PBMCs: Human peripheral blood-derived mast cells

PMCs: Peritoneal mast cells (from mice or rats, as noted)

PDMCs: Peritoneal-derived cultured mast cells.
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Constitutive: There is evidence, such as from IHC or detection of mRNA, that the analyzed mast cells can constitutively express that factor under 
“baseline” conditions.

In the Product column: Detected product was the protein unless “mRNA” is listed, which indicates that the mRNA for that product was identified, 
but not yet the protein.

In the References column: Papers listed include first reports and/or those with key data.
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Table 2

Mast cell-derived Chemokines

Factor Stimulus Product (if 
not the 
protein)

Mast cell type(s) References

CCL1 IgE/Ag mRNA Mouse cell lines 11

IL-33 Human PBMCs or CBMCs 191

IgE/Ag or IL-33 mRNA Mouse BMCMCs 365, 366

IgE/Ag Mouse liver-derived 367

IgE/Ag Human skin 365

CCL2 IgE/Ag mRNA Mouse cell lines 11

IgE/Ag or IL-33 Mouse BMCMCs, Human skin 192

PMA/ionophore, IgE/anti-IgE, IL-1β Human CBMCs 190

IL-33 Human PBMC or CBMCs 191

Poly(I:C) Human CBMCs 368

CCL3 IgE/Ag mRNA Mouse cell lines 11

IgE/Ag Mouse liver-derived 367

IL-33 Mouse BMCMCs 192

IgG receptor crosslinking Mouse BMCMCs 360

Anti-IgE Human CBMCs 369

CCL4 IgE/Ag mRNA Mouse cell lines 11

In vivo Mouse skin 370

Poly(I:C) Human CBMCs 368

Dengue virus + Anti-dengue Ab Human CBMCs 371

RSV Human CBMCs 372

CCL5 Human skin 373

Dengue virus + Anti-dengue Ab Human CBMCs 371

RSV Human CBMCs 372

CCL7 IgE/Ag Mouse BMCMCs 374

Anti-FcεRIα Ab mRNA Human PBMCs 375

CCL8 LPS mRNA Human PBMCs 233

IgE/Ag or PMA/ionophore mRNA Mouse cell lines 376

CCL9 IgE/Ag Mouse liver-derived 367

CCL11 Human skin 373

CCL17 IL-33 Human PBMCs or CBMCs 191

Anti-FcεRIα Ab mRNA Human PBMCs 375

mRNA Human skin 377

CCL20 Anti-FcεRIα Ab mRNA Human PBMCs 375

P. aeruginosa Human CBMCs 363
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Factor Stimulus Product (if 
not the 
protein)

Mast cell type(s) References

CCL22 IL-33 Human PBMCs or CBMCs 191

Anti-FcεRIα Ab mRNA Human PBMCs 375

mRNA Human skin 377

human CXCL2 Anti-IgE Human skin 378

IgG immune complexes Human synovium-derived 379

Anti-IgE, SCF, Substance P, Compound 48/80 or 
A23187

Human skin 27

LPS+SCF Human PBMCs 87

mouse CXCL8 Anti-IgE mRNA Rat PMCs 108

IL-33 Human PBMC or CBMC 191

Poly(I:C) Human CBMCs 368

Substance P or ionomycin Human CBMCs 380

CXCL10 Poly(I:C) Human CBMCs 368

RSV Human CBMCs 372

BMCMCs: Mouse bone marrow-derived cultured mast cells (these are reported by many groups as “BMMCs” – referring to “bone marrow-derived 
mast cells”, but we prefer BMCMCs to refer to such cells as this is more specific and emphasizes that the cells have been derived in vitro.

CBMCs: Human umbilical cord blood-derived mast cells.

PBMCs: Human peripheral blood-derived mast cells.

PMCs: Peritoneal mast cells (from mice or rats, as noted).

In the Product column: Detected product was the protein unless “mRNA” is listed, which indicates that the mRNA for that product was identified, 
but not yet the protein.

In the References column: Papers listed include first reports and/or those with key data.
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Table 3

Principles of MC biology to keep in mind when assessing the importance of MCs as sources of cytokines, 

chemokines and growth factors*.

• In vivo, MCs can be heterogeneous in multiple aspects of phenotype and function, depending on animal species, anatomical 
location, stage of development or maturity, and influence of genetic and microenvironmental factors (reviewed in 381–383).

• Many other factors also may influence MC phenotype and function in vivo, including effects of age, sex, circadian rhythms, 
various forms of stress and concurrent metabolic, inflammatory or immune responses, and disease processes.

• MCs are potentially long-lived and are responsive to diverse systemic or local signals which can influence their phenotype and 
function, including those related to having undergone prior activation events.

• Some biological responses are associated with substantial expansion and/or contraction of MC populations, and this may result in 
tissues containing MCs in various stages of development or maturation and such cells may vary in phenotype and function.

• MC populations which are generated in vitro may differ in important features from native MC populations in vivo.

• Processes of purifying MCs from bodily fluids and, especially, tissues may alter aspects of MC phenotype and function, including 
their ability to make or respond to cytokines, chemokines and growth factors.

*
All of these factors may influence the MC’s ability to produce cytokines, chemokines and growth factors, and/or to produce and secrete proteases 

and other factors that can influence the structure and bioactivity of these molecules.
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Table 4

New approaches for analyzing MC production of cytokines, chemokines and growth factors.

• Constitutive or inducible genetic ablation or reduction, in all MCs or in particular subpopulations of MCs, of individual or 
multiple cytokines, chemokines, or growth factors (or of receptors for such products, or of other MC products, such as proteases, 
which may regulate levels and activity of cytokines, chemokines, or growth factors) 42, 159, 165, 384.

• Real time simultaneous imaging of MC activation and gene expression in normal or diseased tissues in vivo 165.

• Single cell analysis of MC mRNA, products, and metabolites (either ex vivo or in situ).

• Advances in approaches to generate and analyze mice of diverse genetic backgrounds, which can be used to assess the extent to 
which genetic background can influence the importance of MC production of particular products in specific settings 385–387.

• Advances in the ability to use more definitive experimental approaches to analyze the effects of microbiomes and their 
metabolites, as well as exposure to UV light, environmental toxins and other environmental factors, on the capacity of MCs to 
produce, regulate or respond to cytokines, chemokines and growth factors.
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