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Abstract

An intriguing question in evolution is what would happen if one could “replay” life’s tape.

Here, we explore the following hypothesis: when replaying the tape, the details (“decora-

tions”) of the outcomes would vary but certain “invariants” might emerge across different

life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico

model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to

test this hypothesis. GARD models the temporal evolution of molecular assemblies, gov-

erned by a rates matrix (i.e. network) that biases different molecules’ likelihood of joining or

leaving a dynamically growing and splitting assembly. Previous studies have shown the

emergence of so called compotypes, i.e., species capable of replication and selection

response. Here, we apply networks’ science to ascertain the degree to which invariants

emerge across different life-tapes under GARD dynamics and whether one can predict

these invariant from the chemistry specification alone (i.e. GARD’s rates network represent-

ing initial conditions). We analysed the (complex) rates’ network communities and asked

whether communities are related (and how) to the emerging species under GARD’s

dynamic, and found that the communities correspond to the species emerging from the sim-

ulations. Importantly, we show how to use the set of communities detected to predict spe-

cies emergence without performing any simulations. The analysis developed here may

impact complex systems simulations in general.

Introduction

The Origins of Life (OOL) field attempts to understand the transition from a mixture of life-

less molecules to life-full entities, with protocells [1–4] as intermediate (potentially viable)

milestones along the non-living to living spectrum [5]. A widely accepted definition of mini-

mal life is: a self-sustaining system capable of undergoing Darwinian evolution [6], while other

definitions are often similar (e.g. [7]). A minimally living entity needs not be a cell as we know

it but could be a much simpler protocell [2, 8–15], i.e. container with some necessary molecu-

lar content. Two major schools tackle the problem of transition from non-life to life: the
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genetic, or replicator-first approach, and the metabolism-first approach. The replicator-first

approach focuses on a single self-perpetuating informational biopolymer, e.g., RNA, as the

first step, and it is thus often referred to as the “RNA world” [16–20]. In contrast, the metabo-

lism-first approach [2, 9, 11, 21–23] focuses on a network of chemical reactions among simpler

chemical components that became endowed with some reproductive characteristics [2, 8, 9,

11–13].

The RNA world, a widely accepted replicator-first scenario, assumes that a molecule similar

or analogous to present day RNA played the role of the self-perpetuating biopolymer [17–19,

24]. The mixture of such molecules is assumed to have later evolved both a metabolic network

and an encompassing container. The RNA-world draws from RNA’s capability to store

(sequential) information and certain catalytic activities typical of metabolism [25–28].

The metabolism-first scenario, on the other hand, suggests that the very first life precursors

are likely to have been relatively elaborate molecular networks of much simpler organic mole-

cules, thus trading the complexity of the building blocks (e.g. RNA) for the complexity at the

ensemble level. One of the first suggested possible chemical pathway for the emergence of life

was made by Oparin, who proposed that it could be manifested by the molecular reactions of

relatively simple organic molecules in the primordial soup, interacting with each other to

spontaneously form colloidal molecular assemblies (coacervates) [8, 29, 30].

The lipid world scenario for OOL is a variant of the metabolism first scenario, which con-

siders a complex chemical system consisting of mixture of mutually interacting simple mole-

cule types which spontaneously form noncovalent assemblies [22, 31]. Importantly, these

assemblies store information in the form of non-random molecular compositions–composi-

tional information (i.e. the specific ratio of different molecule types that make up the assem-

bly)–and pass it to progeny via homeostatic growth accompanied by fission. This information

transmission is a function similar to what can be done with sequence-based biopolymers such

as RNA/DNA/PNA, except that in this case it is compositional information that is preserved

and propagated rather than sequential information. Specifically, compositional replication is

the transfer (at least partially) of compositional information from parent to progeny, where the

process of information transfer is itself a function of the compositional information in the par-

ent entity [32]. The composition encoded in several chemical systems has been shown to affect

their physical properties (i.e. phenotypes), supporting the realism of the lipid world. For exam-

ple, vesicles’ lipid-composition has been shown to affect dye encapsulation efficiency [33] or

vesicle’s structure [34], and genetic programming (“evolutionary algorithms”) has been

applied to evolve vesicles’ formulation [35, 36]. More recently it has been suggested that vesi-

cles can “osmotically” couple otherwise decoupled chemical reactions [37].

The GARD kinetic model is a physio-chemical simulator within the lipid world scenario

[31, 38–40]. The model is based on a matrix (named β) that determines the interactions

between different molecular types while the system is kept away from thermodynamic equilib-

rium by assembly fission (Fig 1). GARD dynamics exhibit quasi-stationary states, which appear

in the simulation as faithfully replicating molecular assemblies, termed composomes (for com-

positional genomes) [38]. Clusters of compositionally-similar composomes are called compo-

types (for composome types) [41]. These compotypes have been shown to respond to selection

[40], exhibit ecology-like population dynamics [42] and exhibit quasispecies behavior including

error-catastrophe-like transition [32] and hence have been interpreted as (emergent) species.

The next paragraph presents a more elaborate discussion of selection in GARD, which can

be summarised as the following: GARD simulations show compotypes (but note that not every

composition is a compotype), these compotypes can respond to external selection (but not

always) by changing their frequencies within a population. Under very small alphabet size and

very small assembly size this change in frequency seems negligible.

Predicting species emergence
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As typical GARD simulations take a constant number of alphabet molecule types and a pre-

defined assembly size, the total number of possible compositions is fixed [32] and the system is

not permitted to show true open-ended evolution [43]. In 2010, perhaps the first rigor attempt

at studying evolution in GARD was reported, in the sense of population responding to an

external selection pressure [44]. Unfortunately, the study was based on a single instantiation of

a random lognormal matrix, which hinders on the ability to draw conclusions from it. More-

over, the study employed parameters values very different than those typical used in GARD

(i.e. small alphabet size and small assembly size), and the study did not designate compotype

species as targets for selection. A later study considered a similar methodology for selection as

the 2010 paper, and explored a large number of matrix instances and focused on compotypes

as selection targets [40], asking whether compotypes change their frequency within a popula-

tion as an outcome of external selection. The later study found that GARD systems can

respond to selection (but not always), and that this selection response is more favourable when

the matrix instance is highly mutualistic (i.e. when off-diagonal values are higher than diagonal

values). A recent attempt to extend the 2010 paper by attempting to map GARD into the qua-

sispecies formalism [45] presents an argument on GARD’s putative limited evolvability. The

paper failed however to designate compotypes as selection targets, even thought it was previ-

ously shown that only compotypes can be mapped into quasispecies [32], and used atypical

GARD parameters.

Regardless of selection behaviour, the present paper asks whether the biological diversity

that surrounds us would be different if the tape of life was to run again from the start [46–49]

under similar initial conditions, and whether adaptations that lead to similar phenotypes fol-

low a quantifiably repeatable route [50]. Some evidence for the convergent nature of evolution

can be seen when two separated populations of E. coli evolved separately for many generations

in identical environments achieved similar fitness [51], or when different populations of liz-

ards from different nearby islands developed into similar ecomorphs independently [52].

Computer models have also been used to study this question [53–58].

In this paper we postulate that if evolutionary diversity is dominated by “invariants” rather

than “decorations” then it should be possible to predict the outcome of the evolutionary pro-

cess without actually waiting for it to happen. That is, it should be possible to predict which

Fig 1. Schematics of GARD’s dynamics. Different molecules types (represented by different colored circles) aggregate to form assemblies. Aggregation is biased by a

matrix of chemical rates (β, Eq 1)). Once an assembly reaches a size-threshold (Nmax) it splits, and the progeny then continues the growth-split cycles (generations). A

composome is an assembly that has high average compositional similarity (see section: The GARD model) to its parent and to one of its children.

https://doi.org/10.1371/journal.pone.0192871.g001
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species will emerge. In the present paper, this translated to investigating the degree to which

the emergence of GARD species, i.e. compotypes, can be analysed in terms of β’s inner organi-

zation only (i.e. independent of the dynamics in GARD) (Fig 2). In order to do this, we ana-

lysed the community structure of β. Typically in a network representation, nodes symbolize

entities (molecules, web pages, people, etc‘) and edges are relations between the entities (cataly-

sis, hyperlinks, friendship, etc‘). Communities are organizational features in many networks,

and are generally defined as sets of nodes more densely interconnected between themselves

than to other nodes in the network [59–61]. Communities detection algorithms allow reveal-

ing of essential internal network organization and typically detection algorithms try to opti-

mise the ratio between the number of internal community to cross-communities edges across

all communities simultaneously.

Network science is often fruitfully applied to decipher and understand complex systems,

including food-webs [62], metabolic networks [63], genes networks [64], protein networks

[65] and different social networks [66, 67]. Such applications of network science, together with

previous linear algebra analysis of β [39] and of other networks [68, 69], motivate us to apply

such analyses to our system, focusing on how the inner organization of a β affects the nature of

observed compotypes species. Even though differences exist between replicating polymers and

replicating catalytic networks [32], in both cases the model can be represented as a network

[13] and encourages understanding how network’s inner organisation affects the nature of

observed species. We showed in [70] that one can predict the best simulation algorithms for

systems and synthetic biology models by analysing their network structure. Further, different

β’s result in different GARD simulations giving rise to different compotype species provides

additional motivation for our current study.

In this paper we use large scale simulations and data analysis of GARD simulations to dem-

onstrate that communities’ analysis allows us to “shortcut” expensive dynamical simulations of

a (proto) evolutionary process and predict its invariants, namely, the set of species that can be

expected to emerge from such a dynamical system.

Fig 2. Overview of the algorithm developed in the present work. (A) A network (β) is employed in GARD simulations and the emerging

compotype species are collected. (B) In parallel, the communities of β are analysed and collected. Finally, (A) and (B) are compared by

using the ensemble of detected communities to predict compotypes.

https://doi.org/10.1371/journal.pone.0192871.g002
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Methods

The GARD model

GARD describes the growth and fission of a molecular assembly, typically assumed to consist of a

large repertoire of amphiphilic molecules drawn from a repertoire of NG molecular types [38, 40]

(Fig 1). Molecules from the environment join an assembly and molecules within the assembly it

can leave. Once the number of molecules in an assembly reaches a pre-defined size threshold

(Nmax), a random fission event takes place and produces two daughter assemblies of the same size

(Nmax/2) which can then repeat the growth-fission cycle (Fig 2 show a scheme of the model,

adapted from [32]). This dynamic is described by a set of ordinary differential equations:

dni

dt
¼ ðkf riN � kbniÞ 1þ

XNG

j¼1

bij

nj

N

 !

Eq 1

Where ni is the current count of molecule type i in an assembly (i = 1..NG), kf and kb are the basal

forward and backward rate constants (assembly joining and leaving, respectively). ρi is the buff-

ered environmental concentration and N is current assembly size (N = ∑ni). βij is the rate-

enhancement exerted by an assembly molecule of type j on incoming or outgoing molecule of

type i.

β can be represented as an NG×NG adjacency matrix for a weighted-directed-asymmetric-

network with NG nodes and NG
2 edges. Typically, βij values are drawn from a lognormal distri-

bution [39, 71] (that is, the values ln(βij) are normally distributed with mean = -4 and standard

deviation = 4) where different β instances represent different potential environmental prebi-

otic chemistries [40]. Introducing negative βij values, i.e. inhibition, is expected to result in

catalysis aswell via inhibition of inhibitor [40].

As mentioned previously, composomes are faithfully replicating assemblies, that is a com-

posome is an assembly with high similarity to its predecessor and successor (typically com-

pared when both assemblies are at size Nmax). It is important to distinguish composome

assemblies from non composomes (i.e. drifting assemblies), because the latter may appear

spontaneously yet are incapable of transmitting compositional information (i.e. the specific

ratio of different molecule types): that is, once a non composome assembly reaches the critical

size triggering the fission event (Nmax), its compositional information is not preserved in the

daughter assemblies and hence is lost. Composomes are grouped into compotypes using k-

means clustering algorithm based on compositional similarity as a distance measure (see sec-

tion: Compotype-community assignment) by picking the k which give the highest silhouette

[41]. A compotype is thus represented by a vector constituting the center of mass of all its

member assemblies and is interpreted as a GARD species.

GARD simulations

The GARD model was run using a stochastic kinetic Monte Carlo simulation based on Gilles-

pie’s algorithm [72] using parameter values identical to those employed in previous studies

[32, 40, 42]: kf = 10−2, kb = 10−4,ρi = 10−2, Nmax = 102 and NG = 102, for 5,000 growth-split

cycles (generations). Calculations were executed using MATLAB version R2015a. A large set

of 10,000 GARD simulations was generated, all with the above parameters, and each with a dif-

ferent β, created by MATLAB’s pseudorandom number generator with seeds 1–10,000. Each

of these β‘s represents different chemistries that might lead to the emergence of one or more

compotypes.

In the basic form employed for this paper, GARD was run in a single-lineage mode, where

at each split event only one progeny (picked at random) is followed and the other one is
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discarded (Fig 1). For each simulation under a given β, composomes where identified and clus-

tered into compotypes.

Simulations give rise to the emergence of various compotype species as a result of the differ-

ent chemistries represented by different β‘s. The number of compotypes observed in each sim-

ulation typically ranged from 1–6, with a total of 20,235 compotypes observed in 10,000

simulations performed (3 simulations out of those failed and were therefore discarded).

We provide the MATLAB code and datasets used in this work (see S1 File (Supporting

Information) and reference [73]).

Community detection algorithms

A community detection algorithm was run on each β, and the list of nodes (molecule types)

belonging to each community was recorded per each β. The three different algorithms used

are: Louvain (MATLAB version) [74], Infomap (version 0.18.2) [75] and OSLOM (Order Sta-

tistics Local Optimization Method) (version 2.5) [76], with their default parameters.

Louvain is a heuristic method to find communities [74]. This method starts by assigning

each node to its own community. Then, a node m is added to the community of node n only if

this results in increased modularity value. m and n pairs are picked to give the highest increase.

This is continued until no increase in modularity is gained by joining nodes. Next, a new net-

work is created, whose nodes correspond to the previously found communities and whose

edges are the respective sum of the previous edges between communities. This entire process is

repeated until no further increase in modularity is possible.

Infomap is based on flow and encoding [75]. This method first simulates a random walk

along the network, biased by the edges’ weights. These random walks are then encoded into

binary string in a way that would reflect how frequency adjacent nodes are visited, rather than

create a maximally compressible binary string. This is done in a two-level description whereby

a community of nodes where the walker has spent long periods of time receives unique code,

but the nodes within a community receive non-unique codes that can be repeated in other

communities’ nodes. In other words, the random walk is efficiently encoded in a way in which

important structures (communities) indeed retain unique codes.

OSLOM is finding clusters which are statistically significant with respect to a random net-

work with similar characteristics as the actual network [76]. This method begins by randomly

picking a node as the first community and additional nodes are added to this community if

they are considered significance in the statistical sense. This is then repeated with other nodes

until all communities are found.

Results and discussion

GARD tapes

In order to understand if convergent evolution is occurring under GARD dynamics, simula-

tion-runs were repeated 10 times under a given β, with different random seeds (and hence

initial assembly) each time. Each repeated run is regarded as a GARD “tape” (analogue to

replaying the tape of life under the same chemistry (i.e. β)). The history of each tape was

recorded (i.e. the content of each assembly) and compotypes were identified for each tape (i.e.

k-means clustering). Fig 3 (panels A1-C1) show individual examples of GARD tapes (more

examples are available at http://ico2s.org/data/extras/gard/). These panels show the content of

assemblies from the different tapes, where different assemblies are plotted along the X axis and

the NG molecule types are of each assembly are given along the Y axis, with color representing

the count of a molecule type in an assembly. While the detailed histories of various tapes

under a given β are different, they generally show similar trends (invariants) represented by
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the horizontal lines. Further, different tapes from the same β exhibit the same number of com-

potypes (in 85% of cases studied for this part, see Fig A in S1 File), and, importantly, those

compotypes are extremely similar between different tapes (Fig B in S1 File), signifying that

GARD dynamics display convergent evolution. In other words, even if different GARD tapes

portray different histories (decorations) under the same β, they give rise to very similar compo-

type species (invariants) and thus it becomes relevant to ascertain to what degree it is possible

to predict the emergence of these species from the underlying chemistry alone, i.e., ignoring

the dynamical process that generates the species. Because GARD exhibits convergent evolu-

tion, in the next sections only a single tape will be simulated per each β, but in return a large

number of different β’s will be employed.

Fig 3. Examples of GARD simulations under different β’s. (A1-C1) Histories of different tapes; For each tape, assemblies from different generations are plotted along

the X axis, and color represents the counts of each of the NG molecule types in each assembly (recorded at assembly size Nmax (Fig 1). Tapes are separated by a vertical

black line. For each tape, the first 1,000 assemblies are shown. Red color represents counts� 50, and for brevity counts< 5 are colored white. (A2-C2) Density plots; For

each assembly shown in panels (A1-C1), its Euclidean distance and angle vs. the eigenvector of the full-β was calculated (normalized for the maximum value between

two assemblies, Nmax

ffiffiffi
2
p

for distance and 90 degrees for angle). Color is normalized probability (log10 scale) of an assembly having a certain angle and distance. See

section: Compotype-community assignment. (A3-C3) Same as (A2-C2), except for each assembly the distance and angle are calculated against the one eigenvector of β�

which has the lowest angle to this assembly. Number of Infomap communities detected is: 9 (A3), 7 (B3) and 6 (C3). Further examples are available at http://ico2s.org/

data/extras/gard/ and [73].

https://doi.org/10.1371/journal.pone.0192871.g003
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Communities detection

This section presents how community detection algorithms were applied to the β network,

and the next section presents how the detected communities were related to the emergence of

species in the prebiotic evolution model (GARD) (Fig 2). In order to adequately compare a

detected community to an observed compotype one needs to convert a community–which is a

set of molecule types (nodes and their links)–to a composition, that is–the ratios between

those molecule types. This composition can then be directly compared with the composition

of a compotype. To detect communities within different β matrices, each of the three different

algorithms used (Louvain [74], Infomap [75] and OSLOM [76]), were run on each β, and the

list of nodes (molecule types) belonging to each community was recorded per each β.

Each of the three algorithms always detected several communities (>1) in each of the

10,000 different β‘s studied here (Fig 4 A and 4B). Louvain algorithm detected on average

fewer communities than Infomap or OSLOM. Interestingly, both OSLOM and Infomap

detected similar numbers of communities, even though OSLOM allows for overlaps (i.e. mole-

cules belonging to more than 1 community). The latter suggests that a detection algorithm

may sometime consider two overlapping communities as one, if overlaps are allowed. In

GARD these overlaps are suggested to be the facilitators of species interconverting into each

other–a phenomenon best seen in GARD populations [42].

Different simulations under different β’s give rise to different compotypes, which calls for

the search for a link between the inner structures of a β to the emerging compotypes in a simu-

lation under this β. However, as the average number of communities detected in a β is higher

than the average number of compotypes observed in a simulation under this β and no correla-

tion between number of communities to number of compotype exists (Fig 4C), finding such

link is not trivial. The next section will discuss a methodology for community–to–compotype

assignment and prediction.

Compotype-community assignment

In order to perform such comparison, compotypes observed in each β-dependent simulation

were collected (will sometime be referred to as original compotypes) and on the other hand the

communities detected in each β were collected (respectively corresponding to (A) and (B) in

Fig 2). Then, for each detected community in each β, a matrix β� is created with elements βij
�:

b
�

ij ¼

(
bij i 2 C AND j 2 C

0 otherwise
Eq 2

Where C is the set of the indices of all nodes (molecule types) that belong to a community, i and

j are nodes’ indices and βij are elements of β (Eq 1). β� has the same dimensions as β. That is– β�

is a sparser version of β matrix in which only pairs of molecule types that belong to a commu-

nity can interact (all other rates are set to zero). This particular formulation of β� was picked

such that its eigenvectors will have the same dimensionality as the original compotypes. Next,

linear algebra is used on β�.
According to the Perron-Frobenius theorem a matrix such as β� or β has a nondegenerate

largest real eigenvalue with a corresponding eigenvector with all non-negative elements [77,

78]. Indeed, an eigenvector analysis on all the β�’s and β’s studied here showed that only a sin-

gle non-negative eigenvector exists for each. It is tempting to consider an eigenvector with all

non-negative elements as representing a molecular composition (as sometimes done [39, 77,

79]), homologue to a compotype. A vector with some negative elements, representing negative

molecular counts or concentrations, by definition cannot represent molecular composition.
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Because GARD simulations can exhibit more than 1 compotype (Fig 4C), it is unclear what is

the relation between the single eigenvector of β to the observed compotypes and the same can

be said about the communities. What follows presents a method to successfully predict the

content (i.e. composition) of all compotypes observed in a simulation under a given β, given

only the ensemble of communities of that β.

The Perron-Frobenius theorem was applied to all β� and the eigenvectors were recorded.

Exploring the role of communities in the actual GARD dynamics, the angle and distance

between each assembly during a simulation to the eigenvector of the full-β and to the eigenvec-

tor of β� were calculated (Fig 3 panels A2-C2 and A3-C3, respectively). Indeed, the assemblies

show a lower angle to β� than to β (see also Fig C in S1 File), symbolizing the significance of

communities in analysing GARD’s dynamics.

Fig 4. Communities in β’s. (A) Histogram of total number of communities detected in each network, for the 3 algorithms. Frequency is given out of the 104 β’s studied

here. (B) Average occurrence of community-sizes. An occurrence of 10−4 means that this community-size appeared only in 1 β out of the 10,000 studied here and an

occurrence of 1 means that on average each β has one community with this size. Insert show the occurrence of sizes> 30. (C) Average number of communities detected

vs. number of observed compotype species shows no correlation. Vertical bars mark standard deviation. (D) Histogram of the size of assigned communities, when a

community is assigned to a compotype based on eigenvector similarity (see section: Compotype-community assignment). Mean and standard deviation are given in

Table 1.

https://doi.org/10.1371/journal.pone.0192871.g004
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Each such eigenvector of β� is compared with each compotype, using cosine of compotype

vectors as typically applied in GARD studies [38, 41, 44, 80]:

HðV1;V2Þ ¼ cosðV1;V2Þ ¼
V1 � V2

jV1j � jV2j
Eq 3

H measures how well an eigenvector matches a compotype’s content (i.e. composition),

where a value of 1.0 means identical compositions (i.e. one vector is the other vector multiplied

by a positive scalar). Each compotype is then assigned with the community that give rise to the

highest H.

Fig 5 shows, out of all the H values between the communities’ eigenvectors and the original

compotypes, the percentage of particularly high values (H>0.8). Full histograms are given in

Fig D in S1 File. When multiple compotypes were observed in a simulation, the eigenvectors

of β� showed a high degree of similarity to all compotypes whereas the eigenvector of the full-β
showed much lower similarity values (Table 1). Only in the limiting case, when only a single

compotype is produced by the simulation, the eigenvector of the full-β showed high similarity

to that compotype. Two-sample Kolmogorov-Smirnov tests were performed, with the null

hypothesis that the similarities with respect to the full-β are from the same continuous distri-

bution as the similarities with respect to β�, against the alternative hypothesis that they are

from different continuous distributions. The Kolmogorov-Smirnov tests were repeated for the

cases of single and multiple compotypes, for each of the three community detection algorithms

(that is– 6 tests in total). All the tests rejected the null hypothesis with alpha level that is

Fig 5. Bar plot of the percentage of high compositional similarity (H, Eq 3) when predicting compotypes using the

eigenvectors of β� (Eq 2) vs. full-β. Percentage is given out of the total number of compotypes observed under all β
networks. Mean and standard deviation are given in Table 1 and full histograms are given in Fig D in S1 File.

https://doi.org/10.1371/journal.pone.0192871.g005
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essentially zero. Further, when taking into account the overall dataset (that is, without distin-

guishing between cases with single or multiple compotypes), the majority of β� showed sub-

stantial similarity to their original compotypes, with more than 60% of cases showing H>0.8

(Fig 5). The overall high degree of similarity achieved across all three community detection

algorithms indicates that the communities are able to successfully predict the composition of

compotypes, while the eigenvector of β may represent something else (see S1 File, section: On

the eigenvector of the full-β). Thus, compotype species can be successfully predicted based

only on the complex chemistry that is in a β. A test to ascertain whether a better community-

to-compotype assignment and prediction could be achieved at random was performed. The

test measured (for each community-to-compotype assignment) the probability of achieving

higher H values by a random community–a community with the same size as the assigned

community but with different molecule types. The test was repeated 103 times for each

assigned community. The test showed that it is highly unlikely to achieve better H values by

random community assignment (Table 1, and Fig E in S1 File).

Finally, it is important to verify whether indeed β� represents a meaningful chemistry that

can give rise to a compotype species under GARD’s stochastic dynamics (Eq 1). To this end,

GARD simulations were repeated with exactly the same parameters (see section: GARD simu-

lations), and with β� for each assigned community rather than with the full β. Compotype

identification in the new simulations was performed exactly as before (i.e., k-means clustering)

and the compositional similarity to the original compotype was calculated (Fig 6 ‘Original’). A

high similarity to the original compotype was always obtained, corroborating the community

detection algorithms ability to detect the communities which serve as the ‘invariant content’ of

GARD’s compotypes. In [81], the authors analysed stochastic Kauffman-like dynamics via the

introduction of a temporal-window in order to determine which part of their reaction network

is currently active, however, the novelty of the present paper is in enabling to make such deter-

mination a-priori based on the network topology.

As presently it is impossible to determine a priori the number of compotype species that

will be observed, the algorithm for compotype-community assignment presented above is

required to address all compotypes (however, it was previously shown that having an excess of

mutual-interactions over self-interactions in β (i.e. βij over βii) is a necessary but insufficient

condition for a high number of compotypes [40]).

On the nature of non-assigned communities

Lastly, it is asked why some communities successfully predict compotypes while other commu-

nities do not, and are there differences between those communities. It was previously sug-

gested that compotype dynamics are somehow related to the compartments formed by high βij

values [44]. The morphology of the communities assigned to compotypes seems to be different

Table 1. Statistics related to communities and compotypes.

Louvain Infomap OSLOM β

NC = 1 Mean 0.829±0.157 0.839±0.149 0.845±0.158 0.975±0.540

NC>1 Mean 0.797±0.217 0.823±0.171 0.747±0.254 0.624±0.269

Overall Mean 0.805±0.204 0.827±0.166 0.773±0.237 0.716±0.280

Probability of a better similarity at random 0.0257±.135 0.00388±0.0156 0.0137±0.0399

Size of assigned community 9±14 6±3 10±5

Mean, standard deviation and percentage of dataset achieving high similarity between the eigenvectors of β� and full-β and the original compotypes (NC = 1, cases when

single compotype observed; NC>1, cases when multiple compotypes observed; Overall, the entire dataset), for the three algorithms (Fig D in S1 File).

https://doi.org/10.1371/journal.pone.0192871.t001
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than that of those which were not assigned (Fig 7), which may begin to point to the nature of

differences between the assigned and non-assigned detected communities. Additionally, the

similarity between the eigenvector of β� and the compotype from GARD under β� was calcu-

lated, both for the assigned and non-assigned communities. It was found that this similarity is

much higher for the assigned communities than for the non-assigned (Fig 6 ‘Assigned’ and

‘Rest’). This last result suggests that the dynamics of the non-assigned communities is funda-

mentally different than that of the assigned ones, in the sense that the former are less likely to

exhibit faithful replication. An ongoing investigation is on its way to further understand those

differences, which may prove critical for reverse-engineering, i.e. the design of a β network

that give rise to specific and desired compotypes dynamics.

Conclusions

The GARD model performs biased and far from equilibrium random walks on a network that

has previously been linked to pre-biotic evolutionary dynamics. Via community analyses, we

were able to bypass the dynamic trajectories of the stochastic simulator and use the ensemble

of detected communities to predict the emergence of (proto) species of this system as well as

their invariant content. Interestingly, the morphology of assigned communities is different

than that of non-assigned ones, which deserve further scrutiny in order to understand the

nature of this difference, how the various topological characteristics affect dynamics as well as

the precise role of those un-assigned communities.

We have used the eigenvector of β� to predict compotypes and corroborated by performing

GARD dynamics under β�, to find that GARD-dynamics approach gives rise to a compotype

more similar to the original one (the original compotype observed under the full-β). In other

words: using β�, GARD-dynamics are ‘closer to the truth’. This is both non-intuitive and inter-

esting, because the eigenvector approach does not employ GARD’s stochastic dynamics, where

the latter are expected to introduce some variation in the compotype content. If we treat the

observation of species in GARD’s dynamics as the ground truth–analogous to how species are

observed in nature–then this points that the theoretical prediction using the eigenvector is

imperfect (but still very good!), probably because the eigenvector method takes into account

only β and not the full physio-chemical details of the GARD model, such as the reversibility of

assembly-joining.

For tractability, the present manuscript kept to the definition and identification of compo-

type species as they have traditionally been used in GARD and lipid world literature [32, 40–

42, 80]. We would like to argue in favour of rethinking species identification, as follows. We

speculate that the un-assigned communities represent either assemblies that are unable to

faithfully replicate or compotype species that are very rare. The latter may require an even

larger scale simulation analysis than the one we have done here involving more runs and lon-

ger simulation times before these rare species could be observed. Any species identification

algorithm developed must, critically, acknowledge faithful replication. As presently it is impos-

sible to determine a-priori the number of compotype species that will be observed in a simula-

tion under a given β network, we are in the process of extending this current paper in order to

precisely predict the expected number of compotype species under a given β without running

Fig 6. Box plots of compositional similarity, for the three community detection algorithms (Louvain, top;

Infomap, middle; OSLOM, bottom). Similarity was measured in three cases: ‘Original’, when comparing the original

compotype observed vs. the one in GARD under β� of its assigned community; ‘Assigned’, when comparing the

compotype observed in a GARD simulation with β� of its assigned community to the eigenvector of β�; ‘Rest’, analogue

to ‘Assigned’, only with communities that were not assigned to original compotypes β�. Mean and standard deviations

for ‘Original’ respectively are: 0.849±0.165, 0.856±0.145 and 0.813±0.216.

https://doi.org/10.1371/journal.pone.0192871.g006
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Fig 7. Network topology for assigned communities and rest, for the three community-detection algorithms (Louvain, top; Infomap, middle, OSLOM, bottom).

(left) Node-betweenness-centrality [82], normalized by dividing with (n-1)�(n-2), where n is number of nodes in a community. (right) Clustering-coefficient [83].

Parameters were calculated using [84].

https://doi.org/10.1371/journal.pone.0192871.g007
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simulations. The community count provides an upper limit for the species count, and the com-

munity eigenvectors, even if somewhat numerous, still strongly narrows the search for

compotypes.

Our heuristic approach gave very similar results among all three community-detection-

algorithms we used, thus providing robustness to our findings. Future extension of this work

will apply the species-prediction-algorithm developed herein on multiple dynamical models

and their emergent species (or species equivalent), as well as address larger networks which is

more realistic, in order to address the generality of the algorithm presented here.
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