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Diffusion tensor imaging (DTI) studies in 22q11.2 Deletion Syndrome (22q11DS), a neurogenetic 

condition associated with psychosis, report brain white matter (WM) microstructure aberrations. 

Several studies report that WM disruptions in 22q11DS are similar to deficits in idiopathic 

schizophrenia. Yet, DTI results in 22q11DS are inconsistent. We used DTI to compare WM 

structure in 22q11DS individuals to healthy controls (HC) and explored WM differences in 

22q11DS with (+) and without (−) psychosis spectrum symptoms. We examined 39 22q11DS 

individuals and 39 age, sex and race equivalent HC. DTI was performed at 3T using a 64-direction 

protocol. Fractional anisotropy (FA) was lower, while radial diffusivity was higher in 22q11DS 

within the cingulum bundle. Mean diffusivity was lower in the inferior longitudinal fasciculus, 

while axial diffusivity (AD) was lower in the cingulum bundle, forceps major, and several 

posterior to anterior fasciculi. 22q11DS+ had lower FA in the cingulum bundle and lower AD in 

the uncinate fasciculus compared to 22q11DS−. Overall, we found aberrant WM microstructure in 

individuals with 22q11DS compared to age and sex matched HC and exploratory analysis 

indicated subtle WM deficits associated with psychosis. The findings highlight the dysfunction of 

WM microstructure in 22q11DS and its potential importance in elucidating WM abnormalities in 

psychosis.
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1.0 Introduction

The 22q11.2 deletion syndrome (22q11DS) is the most common known genetic 

microdeletion in humans (McDonald-McGinn et al., 2015). 22q11DS is associated with 

craniofacial, cardiovascular, cognitive, endocrine, immune, and gastrointestinal disorders 

(McDonald-McGinn et al., 2015). Notably, 22q11DS is also associated with an increased 

risk for psychiatric disorders (Gothelf et al., 2007; Murphy et al., 1999; Pulver et al., 1994; 

Schneider et al., 2014; Tang et al., 2014), including psychosis (Bassett et al., 1998; 

Shprintzen et al., 1992). Individuals with 22q11DS who develop psychosis show similar 

symptoms to individuals with idiopathic schizophrenia (Murphy et al., 1999), and 

approximately 1–2% of cases of idiopathic schizophrenia have 22q11.2 deletions (Bassett et 

al., 2010). Thus, understanding brain dysfunction in 22q11DS may elucidate critical neural 

mechanisms in psychosis.

Structural brain abnormalities, including lower gray matter volume (Schneider et al., 2014; 

Tan et al., 2009), cortical thickness (Bearden et al., 2007; Schaer et al., 2008), surface area 

(Jalbrzikowski et al., 2013) and gyral complexity (Schaer et al., 2008; Schaer et al., 2006; 

Schmitt et al., 2015), are common in 22q11DS. Neural dysfunction in 22q11DS extends into 

structural connectivity of the brain, which can be measured using diffusion tensor imaging 

(DTI). DTI facilitates the in vivo study of brain white matter (WM) microstructure (Mori et 

al., 2008), and typical DTI measures include fractional anisotropy (FA), mean (MD), axial 

(AD) and radial diffusivity (RD). Alterations in these metrics are reported in 22q11DS 

(Barnea-Goraly et al., 2003; da Silva Alves et al., 2011; Deng et al., 2015; Kates et al., 2015; 
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Kikinis et al., 2012; Martin et al., 2014; Ottet et al., 2013; Padula et al., 2015; Radoeva et al., 

2012; Scariati et al., 2016; Sundram et al., 2010; Villalon-Reina et al., 2013), and some of 

the patterns observed are similar to deficits in SZ (Kyriakopoulos et al., 2008; Roalf et al., 

2015; Thomason and Thompson, 2011), adolescents with psychosis (Davenport et al., 2010; 

White et al., 2007) and youth at risk for developing psychosis (Epstein et al., 2013; Lee et 

al., 2013). In contrast to structural gray matter findings, DTI results in 22q11DS are more 

inconsistent. The most common findings are lower FA and AD, but several studies report the 

opposite pattern and indicate conflicting deficits (See Supplemental Table 1). Accordingly, 

additional large scale studies that compare WM microstructure in 22q11DS to healthy 

individuals are warranted.

The overlap in brain structural abnormalities between individuals with 22q11DS and 

schizophrenia has led to intensive examination of the links between brain development, 

genetic defects and the development of psychotic symptoms (Kates et al., 2015). Patients 

with 22q11DS who develop schizophrenia have similar symptoms compared to patients with 

idiopathic schizophrenia (Murphy et al., 1999). Indeed, both 22q11DS and idiopathic 

schizophrenia share brain morphological changes (Eliez et al., 2001; Eliez et al., 2000; 

Glahn et al., 2008; Jalbrzikowski et al., 2013; Schaer et al., 2006), including alterations in 

WM structure and organization (Asami et al., 2014; Epstein et al., 2013; Kyriakopoulos et 

al., 2008; Lee et al., 2013; Roalf et al., 2013b). Thus, direct comparison of WM differences 

between 22q11DS patients with and without psychotic symptoms may elucidate deficits 

specific to psychosis.

The goals of this study were to 1) evaluate WM microstructural abnormalities in a large age, 

gender and race equivalent sample of participants with 22q11DS and healthy controls (HC) 

and 2) compare diffusion metrics in 22q11DS with and without psychotic symptoms. We 

hypothesized that: A) participants with 22q11DS will have lower FA and lower AD 

compared to HC throughout brain white matter; and B) 22q11DS participants with psychotic 

or prodromal symptoms will show lower FA and AD in white matter as compared to 

22q11DS participants without psychotic-like symptoms.

2.0 Methods and Materials

2.1 Subjects

Individuals with 22q11DS (n=54; Table 1) were recruited for a prospective study Brain-
Behavior and Genetics Studies of the 22q11DS at the University of Pennsylvania and 

Children’s Hospital of Philadelphia (CHOP). This sample overlaps with a previous report of 

abnormal brain structure in 22q11DS (Schmitt et al., 2014). Briefly, inclusion criteria 

included age ≥ 8 years, proficient in English, estimated IQ >70 by available records and the 

Wide Range Achievement Test IV (Wilkinson, 1993), and medically stable. 22q11DS 

participants were between 13–30 years of age. Exclusion criteria included pervasive 

developmental disorder or IQ < 70, medical disorders that may affect brain function (e.g., 

uncontrolled seizures, head trauma, CNS tumor and infection) or visual deficits (e.g., 

blindness). Deletion status was confirmed using multiplex ligation dependent probe 

amplification (Jalali et al., 2008). The University of Pennsylvania and the CHOP 
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Institutional Review Boards approved all study procedures. Informed consent/assent was 

obtained from minors and accompanying parent at the time of initial evaluation.

Psychopathology was assessed using the Kiddie-Schedule for Affective Disorders and 

Schizophrenia (K-SADS)(Kaufman et al., 1997), Structured Interview for Prodromal 

Syndromes (SIPS)(Miller et al., 2003), and the psychotic and mood diagnoses modules of 

the Structured Clinical Interview for DSM-IV (Modules C and D)(First and Gibbon, 2004). 

As in previous reports, positive, negative and disorganized SIPS symptoms were rated on a 

7-point scale (0 - “absent,” 1 - “questionably present,” 2 - “mild,” 3 - “ moderate,” 4 - 

“moderately severe,” 5 - “severe but not psychotic,” and 6 - “severe and psychotic”)(Schmitt 

et al., 2014). Individuals with at least one positive symptom rated ≥ 3 or at least two negative 

and/or disorganized symptoms rated ≥ 3 were considered at heighten psychosis risk (e.g. 

prodromal). Seventeen individuals were considered psychosis-spectrum based upon only the 

positive symptoms. Ten individuals were considered psychosis-spectrum individuals based 

upon negative/disorganized symptoms.

Age and gender matched healthy individuals from the follow-up study to the Philadelphia 

Neurodevelopmental Cohort (PNC; (Gur et al., 2012; Roalf et al., 2016; Satterthwaite et al., 

2015) served as a comparison group. Matching was conducted in a similar manner as a 

previous study (Tang et al., 2016) using an optimizing algorithm (Konsake and Bergstralh, 

2004) in SAS programming language. Variable selected to match included age, gender and 

then race. Note that all analyses were conducted using a larger sample (n=141) of 

individuals who returned as part of the PNC; these analyses are presented in the Supplement 

(See “Diffusion Tensor Imaging Results using 141 healthy comparison participants from the 

Philadelphia Neurodevelopment Cohort”). HC had no DSM-IV Axis I psychotic disorder, no 

subthreshold prodromal symptomatology, no history of psychosis in a first-degree biological 

relative, and no personal Axis II Cluster A diagnosis. Participants were excluded for any 

history of neurological disorder, head trauma with loss of consciousness, lifetime history of 

substance dependence, substance abuse within the preceding 6 months, any medical 

condition that might affect brain function or any contraindication for MRI. In addition, the 

Global Assessment of Functioning (GAF) (Hall, 1995) scale was administered to assess 

overall daily functioning and the Penn Computerized Neurocognitive Battery(CNB(Gur et 

al., 2001) examined neurocognitive functioning. CNB performance in 22q11DS has 

previously been reported(Gur et al., 2014) and here we present overall performance 

accuracy, speed and variability (Roalf et al., 2013a; Roalf et al., 2014).

2.2 Neuroimaging

Neuroimaging was performed on all participants without contraindications for MRI. A 

standard protocol was followed to familiarize individuals with MRI scanning procedures. 

All participants underwent mock scanning prior to MRI scanning. This procedure was 

completed using a decommissioned GE MRI scanner with similar audio/video projection 

equipment. The environment mimicked the actual MR environment including the use of 

earplugs, headphones, and foam padding cushions. MRI scanner noise was simulated, head-

motion was monitored and feedback was provided. All MRI scans were acquired on the 
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same 3T Siemens Tim Trio whole-body scanner, used the same 32-channel head coil and 

acquisition protocol at the Hospital of the University of Pennsylvania.

2.2.1 Diffusion Weighted Imaging Acquisition—DTI scans were obtained using a 

twice-refocused spin-echo (TRSE) single-shot EPI sequence (TR=8100 ms, TE =82 ms, 

FOV = 240mm2/240mm2; Matrix= RL: 128/AP:128/Slices:70, in-plane resolution (x & y) 

1.875mm2; slice thickness=2 mm, gap=0; FlipAngle=90°/180°/180°, volumes=71, GRAPPA 

factor =3, bandwidth = 2170 Hz/pixel, PE direction = AP; 11 minutes) (Roalf et al., 2016; 

Satterthwaite et al., 2014a). The complete sequence consisted of 64 diffusion-weighted 

directions with b = 1000 s/mm2 and 7 interspersed scans where b = 0 s/mm2 (Satterthwaite 

et al., 2014a). In addition, a B0 field map was acquired and used in the pre-processing (Roalf 

et al., 2016).

2.2.2 DTI quality control and image processing—DTI quality control (QC), pre- and 

post-processing are published in detail elsewhere (Roalf et al., 2016) and in the 

Supplemental Methods. Briefly, images were first checked for data quality using manual and 

automated methods (Roalf et al., 2016). QC metrics include temporal signal-to-noise 

(TSNR), mean relative motion, mean and maximum outlier counts.

Following QC, diffusion data were skull stripped by generating a brain mask for each 

subject by registering a binary mask of a standard image (FMRIB58_FA) to each subject’s 

brain using FLIRT (Smith, 2002). When necessary, manual adjustments were made to this 

mask. Next, eddy currents and movement were estimated and corrected using FSL’s eddy 

tool (Andersson and Sotiropoulos, 2016; Graham et al., 2016; Roalf et al., 2016). Eddy is an 

improvement upon the typical eddy/motion correction used as part of FSL’s Diffusion Tool 

Box (Behrens et al., 2003). This tool simultaneously models the effects of diffusion eddy 

current and head movement on DTI images in order to reduce the amount of resampling and 

is a vast improvement of the standard FSL eddy correct tool (Andersson and Sotiropoulos, 

2016; Graham et al., 2016). Next, the diffusion gradient vectors were rotated to adjust for 

motion using the 6-parameter motion output generated from eddy. Then, the B0 field map 

was estimated and distortion correction was applied to the DTI data using FSL’s FUGUE 

(Smith, 2002). Finally, the diffusion tensor was modeled and metrics (FA and MD) were 

estimated at each voxel using FSL’s DTIFIT.

Registration from native space to a template space was completed using DTI-TK (Zhang et 

al., 2014; Zhang et al., 2006). First, the FA and MD output of DTIFIT was converted to DTI-

TK format. Next, template was generated from the tensor volumes using 14 representative 

diffusion data sets that were considered “Excellent” from the PNC sample. One individual 

from each of the 14 ages (age range 8–21) was randomly selected. These 14 DTI volumes 

were averaged together to create an initial template. Next, data from the 14 subjects were 

registered to this template in an iterative manner. Unlike standard intensity-based registration 

algorithms, this process utilizes the full tensor information in an attempt to best align the 

underlying white matter tracts using iterations of rigid, affine and diffeomorphic registration 

leading to the generation of a successively refined template. Ultimately, one high-resolution 

refined template was created and used for registration of the remaining diffusion datasets. 

All DTI maps were then registered (rigid, affine, diffeomorphic) to the high-resolution 
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study-specific template using DTI-TK. Whole brain analysis was performed using a 

customized implementation of tract-based spatial statistics (TBSS) (Bach et al., 2014). FA, 

MD, AD, and RD were compared along a study specific white matter skeleton. Then, 

standard regions of interest (ROI; ICBM-JHU White Matter Tracts; Harvard-Oxford Atlas) 

were registered from MNI152 space to the study-specific template using ANTs registration 

(Avants et al., 2011). Mean diffusion metrics were extracted from these ROIs using FSL the 

‘fslmeants’ command.

2.3 Statistical Analysis

Demographic and clinical differences between groups were examined with chi-square and t-

tests, which were corrected for unequal variance using the Welch approximation. Prior work 

has demonstrated that brain development is not a linear process (Giedd et al., 1999), 

including white matter development (Peters et al., 2014). Thus, group-level analyses of DTI 

data were flexibly modeled using penalized splines within a general additive model (GAM; 

(Wood, 2004, 2011). The GAM is a commonly used statistical approach (Satterthwaite et al., 

2014b; Satterthwaite et al., 2016) that assesses a penalty for increasing nonlinearity to avoid 

over-fitting. The GAM was employed for both whole brain analysis in randomise (5000 

permutations) using threshold-free cluster estimation (TFCE). Only F-statistics could be 

generated for the voxelwise GAM. Thus follow-up ROI analyses were completed. All 

models included factors for sex, race and TSNR (Roalf et al., 2016). A significance 

threshold of p<5.0×10−3 was used to control for Type-I error probability across both the 

whole brain TBSS analysis and the analyses of 17 ROIs. All ROI statistics were performed 

using R (3.1.2) statistical software (R-Core-Team, 2012). The relationships between DTI 

metrics and clinical measures were examined within each group using Pearson correlations.

3.0 Results

3.1 Participant Characteristics, Clinical and Cognitive Scores

22q11DS and HC were similar in age, gender, race, maternal and paternal education (Table 

1). HC had higher education attainment [t(55.91)=3.75, p<4.10×10−4]. As expected, 

22q11DS participants had higher positive, negative, and disorganized symptoms, and had 

lower overall functioning assessed by the GAF (Table 1).

3.2 Diffusion Tensor Imaging

3.2.1 Quality Control Metrics—Overall 22q11DS individuals had poorer QC metrics as 

compared to HC (Figure 1). 22q11DS had lower TSNR [t(49.23)=6.49, p<3.96×10−8], 

higher motion [t(43.71)=4.23, p<1.16×10−4], average intensity outliers [t(42.46)=3.61, 

p<7.86×10−4] and maximal intensity outliers [t(56.26)=3.82, p<3.35×10−4]. Subsequently, 

TSNR was included as a factor in subsequent analyses.

3.2.2 Whole brain analysis—Group differences in AD and MD were found in the whole 

brain TBSS analysis (Figure 2). The groups differed in AD within one cluster centered and 

the juncture between the CST and SLF. Differences in MD were found in a large cluster 

including the SLF, Forceps Major, Forceps Minor and ILF. Post-hoc follow-up indicated 

diffusivity values were lower in 22q11DS as compared to HC. No group differences in FA or 
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RD reached significance at the voxel level. As the TBSS approach was limited to 

comparison along only the white matter skeleton, complementary ROI analyses were 

completed to further probe potential white matter differences since these ROI more 

thoroughly measure the extent of white matter microstructure.

3.2.3 Region-of-Interest Analysis—Diffusion metrics are displayed in full for each 

region of interest in Supplemental Table 2 and plots are show for all regions in Supplemental 

Figures 1–4.

3.2.3.1 Fractional Anisotropy (FA): 22q11DS participants had lower FA in the CGC 

(p<2.86×10−3) and CGH (p<2.98×10−6; Figure 3) as compared to HC. Lower TSNR was 

associated with lower FA in the ATR (p<4.41×10−4) and ILF (p<1.44×10−3). There were no 

effects of age, sex or race.

3.2.3.2 Mean Diffusivity (MD): 22q11DS participants had lower MD in the ILF 

(p<2.86×10−3) as compared to HC (Figure 3). Lower TSNR values were associated with 

higher MD in the ATR (p<4.50×10−3) and IFO (p<3.31×10−3). Higher MD values in the 

CGH were associated with younger age (p<3.90×10−3). There were no effects sex or race.

3.2.3.3 Axial Diffusivity (AD): Axial diffusivity was lower in 22q11DS in the CGC 

(p<2.34×10−4), Forceps major (p<4.36×10−3), IFO (p<4.08×10−5), ILF (p<1.73×10−4), and 

SLF (p<7.70×10−5) as compared to HC (Figure 3). There were no effects of age, sex, race or 

TSNR.

3.2.3.4 Radial Diffusivity (RD): Radial diffusivity was higher in 22q11DS in the CGH 

(p<8.20×10−5) as compared to HC. (Figure 3). Lower TSNR was associated with higher RD 

in the ATR (p<1.88×10−3) and IFO (p<4.26×10−3). There were no effects of age, sex or race.

3.2.3.5 Exploratory analysis of DTI in 22q11DS with psychotic symptoms: We 

considered, in an exploratory manner, that 22q11DS psychosis spectrum participants (n=27; 

22q11DS+), who included individuals with a psychotic disorder (n=4) and prodromal 

individuals (n=23), may exhibit subtle differences from 22q11DS without psychotic 

symptoms (n=12; 22q11DS−). Thus, we repeated the above analysis on only 22q11DS 

individuals and, given the exploratory nature, used an uncorrected statistical threshold due to 

small sample size (p<0.05). The subsamples did not differ in age, education, maternal or 

paternal education, sex or race distribution. 22q11DS+ had higher positive, F(1,35)=19.153, 

p<1.0×10−4, negative F(1,35)=24.19, p<2.0×10−5, and disorganized F(1,35)=8.16, 

p<7.0×10−3 symptoms, and lower GAF F(1,32)=20.53, p<7.72×10−5 than 221DS−.

Diffusion metrics are displayed in full for each region of interest in Supplemental Table 3. 

22q11DS subgroups did not differ on DTI QC metrics (all p > 0.65). Whole brain TBSS 

analysis did not reveal any significant differences. But, exploratory regional analysis 

indicated that 22q11DS+ had lower mean FA in the CGC (p=0.02) and lower mean AD in 

the UF (p=0.02) compared to 22q11DS− (Figure 4). Indeed, 22q11DS− showed similar 

mean FA within the CGC (0.534±0.028) to HC (0.548±0.035), while 22q11DS+ had lower 

mean FA than both (0.512±0.032). 22q11DS+ and 22q11DS− did not differ in mean MD or 
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mean RD in any region. There were no associations with clinical or cognitive symptoms. It 

should be noted that many investigations of 22q11DS limit criteria of psychosis-spectrum 

symptoms to individuals with SIPS Positive Symptom Scores > 3. This is based on the 

notion that negative symptoms in 22q11DS are predominant features of the overall 

behavioral phenotype associated with the syndrome. The CGC effects remain in the same 

direction and trends accordingly when only positive symptoms were used (22q11DS− > than 

22q11DS+ (p=0.13); See “Exploratory analysis of psychosis spectrum symptoms” in the 

Supplement for more detail).

4.0 Discussion

Overall, we find aberrant WM microstructure in individuals with 22q11DS compared to age 

and sex matched healthy individuals. Along the whole brain white matter skeleton we find 

lower in AD in the ILF and in MD in the SLF, ILF, and the Forceps Major and Minor. 

Regionally, we report 1) lower FA in the CGC and CGH; 2) lower AD in the CGC, Forceps 

major, IFO, ILF and SLF; 3) lower MD in the ILF; and 4) higher RD in the CGH in 

22q11DS compared to healthy individuals. Intriguingly, our exploratory analysis of 

22q11DS with (+) and without (−) psychosis symptoms indicated lower FA in the CGC and 

lower AD in the UF in 22q11DS+, albeit this result would not have survived statistical 

correction for multiple comparisons.

Our results confirm and extend previous DTI studies in 22q11DS. Overall, all previous 

studies report alterations in white matter FA, but the direction of FA effects is inconsistent 

(See Supplemental Table 1), which may be the result of relatively small sample sizes, 

heterogeneity of deficits in 22q11DS, or a failure to account for potential data confounds. 

Here, we include a large sample of individuals with 22q11DS and employ a strategy to 

mitigate the influence of data quality. Ultimately, we only report significantly lower FA 

within the CGC and CGH, lower MD in the ILF, and lower AD within the CGC, Forceps 

major, IFO, ILF, and SLF, while also finding higher RD in the CGH in 22q11DS. Similar 

results—specifically alterations in portions of the cingulum bundle (Jalbrzikowski et al., 

2014; Kates et al., 2015; Kikinis et al., 2012), IFO (Kikinis et al., 2012), ILF (Kikinis et al., 

2012) and SLF (Kikinis et al., 2012) have been reported in 22q11DS. Lower FA within the 

cingulum bundle (Kelly et al., 2017; Roalf et al., 2013b) and SLF aligns with patterns of 

disruption seen in schizophrenia, including in the recent results from the ENIGMA-DTI 

consortium (Kelly et al., 2017). Below, we expand upon several of the specific findings and 

their relevance for 22q11DS.

White matter alterations in the cingulum bundle are commonly reported in 22q11DS 

(Jalbrzikowski et al., 2013; Kates et al., 2015; Simon et al., 2005). In addition, the cingulum 

bundle has been intensely studied in schizophrenia due to its role in emotion processing and 

executive functioning, and has received recent attention in 22q11DS (Kates et al., 2015). 

Here, we found lower FA and AD in the cingulate gyrus of the cortex (CGC), and lower FA 

and complementary higher RD in the cingulum bundle proximal to the hippocampus (CGH). 

Lower FA and AD in the CGC aligns with a recent study of 47 22q11DS participants (Kates 

et al., 2015). The cingulum bundle is a major fiber tract that connects limbic and cortical 

brain regions, has connections with several regions including the thalamus, amygdala, 
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hippocampus, and dorsolateral and dorsomedial prefrontal cortex (Croxson et al., 2005; Di 

Rosa et al., 2008; Goldman-Rakic et al., 1984), and is critical for memory and executive 

functioning—two abilities disrupted in 22q11DS (Gur et al., 2014). Disruption within the 

cingulum white matter, a midline structure, correlates with anatomic imaging and 

connectomic data (Vaáša et al., 2016) that localize many 22q11DS deficits to the midline. 

Moreover, our exploratory comparisons of 22q11DS with (+) and without (−) psychosis 

symptoms indicated lower FA in the CGC. While this difference was small and would not 

have survived stringent multiple comparison correction, it suggests that this disruption may 

be associated with features associated with psychosis. Lower FA of the cingulum bundle in 

psychosis is linked to lower attention, poorer executive function (Nestor et al., 2007) and 

greater inconsistency in neurocognitive performance (Roalf et al., 2013b). In addition, the 

cingulum bundle is associated with conflict monitoring (Bush et al., 2002), providing 

feedback to guide prospective decisions (Carter et al., 2001), and is important for other 

neurocognitive tasks (Carter et al., 2001; Peters et al., 2012). These results further suggest 

disorganization of critical axons that connect the anterior cingulate with the limbic and 

motor cortices (Nestor et al., 2008; Nestor et al., 2007; Roalf et al., 2015; Roalf et al., 

2013b; Takei et al., 2009) in 22q11DS and, moreover, that this deficit may be related to 

psychosis.

We also found significantly lower AD in several long-range white matter tracts in 22q11DS. 

Lower AD in the IFO, ILF, and SLF corroborate several recent reports (Bakker et al., 2016; 

Kates et al., 2015; Kikinis et al., 2012; Villalon-Reina et al., 2013) and suggest that specific 

aspects (e.g. myelination or axonal diameter) of the white matter microstructure may be 

disrupted. Importantly, these large association white matter fibers connect rostral and caudal 

brain regions. For example, the SLF connects aspects of the parietal lobe with frontal cortex, 

including the DLPFC. As such, disruption of the SLF is associated with poorer working 

memory, an ability often affected in 22q11DS (Bava et al., 2011; Montojo et al., 2014). 

Moreover, one previous study found lower AD in 22q11DS (Kikinis et al., 2012), but no 

associations with cognition were reported. The IFO, another region with significantly lower 

AD in 22q11DS, forms the main connection between the fusiform and lingual gyri and the 

prefrontal cortex (Martino et al., 2010). Disruption of the right IFO is associated with 

deficits in semantic processing (Duffau et al., 2005) and recognition of facial expressions, 

including emotional content (Philippi et al., 2009; Thomas et al., 2008). Finally, it appears 

that lower AD is a more common finding in 22q11DS than in schizophrenia (Kikinis et al., 

2012) and it was the most common finding in the current study. Importantly, our diffusivity 

results in 22q11DS align with the results of a recent direct comparison of 22q11DS and ultra 

high risk psychosis (UHR) patients (Bakker et al., 2016). In this study, the most pronounced 

alterations were found in AD, but in different directions for 22q11DS (lower) and UHR 

(higher). While it is tempting to speculate that lower AD is specifically associated with 

changes in axonal diameter in 22q11DS, it is incomplete information and mapping the 

outcome of complex diffusion analyses onto specific microstructural features is extremely 

difficult, if not impossible (Wheeler-Kingshott and Cercignani, 2009). Nonetheless, the 

current findings illuminate significant neuroanatomical deficits in white matter structural 

connectivity in 22q11DS and in individuals with 22q11DS and psychosis features.
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Our exploratory findings in 22q11DS+ individuals suggest that the use of 22q11DS as a 

model for understanding psychosis is likely useful, but significantly larger samples of 

22q11DS+ participants are needed to confirm these findings. Moreover, lower FA and AD 

and higher radial diffusivity in other white matter regions align with some whole brain 

findings in 22q11DS (Bakker et al., 2016; Barnea-Goraly et al., 2003; da Silva Alves et al., 

2011) and psychosis (Asami et al., 2014; Epstein et al., 2013; Kyriakopoulos et al., 2008; 

Lee et al., 2013; Roalf et al., 2013b). While it is tempting to draw conclusions as to how 

white matter alterations in 22q11DS can inform us about structural changes in psychosis, 

more research is necessary to elucidate the specific features that overlap and those that are 

distinct to each disorder.

4.1 Limitations

While our study benefitted from a large sample, rigorous attention to data quality, and 

nonlinear analytics, several limitations should be noted. First, only high functioning 

22q11DS participants without a neurological diagnosis and with IQ > 70 were included in 

the sample and some individuals did not qualify for MRI due to contraindications. This may 

have precluded the sicker individuals from participating, and as such our results may 

underestimate white matter deficits in 22q11DS. Notably, high functioning individuals with 

22q11DS are anxious and have learning disabilities (Tang et al., 2014). These factors may 

have increased the rate of questionable data within this sample, which was considerably 

higher than the exclusion rate in a much larger sample of typically developing youth (~10%) 

(Roalf et al., 2016) collected on the same scanner, by the same investigators, using the same 

DTI acquisition protocol. However, procedures were in place to minimize anxiety as much 

as possible, including the use of a prescribed protocol to familiarize individuals with MRI 

scanning procedures. Secondly, we employ an uncommon, but powerful statistical approach 

(GAM) (Wood, 2004, 2011) that did not assume a linear trajectory with age. This approach 

differs from most analysis of DTI data in 22q11DS, yet we believe that this is a significant 

strength of the current approach. We do not report the effects of medication in the 22q11DS 

group. However, previous reports have not consistently shown a relationship between DTI 

metrics and medications (Kanaan et al., 2009; Kyriakopoulos et al., 2011), but at least one 

report in 22q11DS suggests a reparative effect (Kates et al., 2015). Finally, discrepancies 

between our whole brain and ROI approach is not surprising given that when a significant 

cluster is quite large and spans multiple anatomical regions, it is difficult make inferences 

about a specific anatomical region with confidence, as one can only infer that there is 

significant signal somewhere within the expansive cluster. While TFCE is more robust to 

this issue than other cluster based approaches, it still suffers from low spatial specificity 

when clusters are large (Woo et al., 2014). Hence, ROI based analyses aid in the regional 

interpretation of potential differences based upon group.

Finally, we offer a note of caution regarding data quality. Our results provide a specific 

example of the confounding effects of poor data quality on DTI analysis. While not the 

focus of the current study, it should be noted that data quality is an important factor to 

consider when comparing individuals with and without 22q11DS. We reported lower overall 

data quality in 22q11DS, as measured by TSNR, head motion, and image intensity outliers. 

As a result, we included TSNR as a covariate in all regional analyses. Nonetheless, lower 
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TSNR was associated with significant differences in FA and diffusivity metrics. These issues 

are certainly not specific to 22q11DS, but indicate a systemic problem in the use of DTI in 

clinical populations. Importantly, not all group differences could be explained by data 
quality issues, and as such real differences in white matter are likely a true reflection of 

aberrant neuronal processes in 22q11DS.

In conclusion, we find individuals with 22q11DS to have consistent alterations in white 

matter microstructure, some of which are specifically relevant for psychosis.
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• WM microstructure in individuals with 22q11DS is aberrant compared to age 

and sex matched healthy individuals.

• The general pattern of DTI dysfunction was lower FA, MD, and AD, while 

also finding higher RD in 22q11DS

• White matter microstructure within the cingulum bundle was lower in 

22q11DS with psychosis symptoms
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Figure 1. Diffusion Tensor Imaging data quality
Data quality was lower in 22q11DS than healthy comparison participants. Hence, data 

quality (TSNR) was included in statistical analysis of group differences in diffusion metrics. 

*p<0.05.
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Figure 2. 
Whole brain comparison using tract-based spatial statistics. Healthy comparison differed 

from 22q11DS in both whole brain MD and AD. Lower AD was found in one cluster 

centered near the SLF and CST. Lower MD in 22q11DS was found in a large cluster 

including the SLF, Forceps Major, Forceps Minor and ILF.
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Figure 3. 
Significant differences in mean FA, MD, AD an RD between 22q11DS and healthy 

comparison participants are displayed across the age spectrum (in months). Linear and non-

linear associations with age were analyzed using a general additive model. Significant group 

mean FA differences across age are displayed in A–B; significant group mean MD results in 

C; significant group mean AD results in D–H; and significant group mean RD results in I. 

All analyses are corrected for temporal signal-to-noise ratio. Significance threshold was 

p<5.0×10−3. Complete display of all ROI plots are available in the Supplement. (Color)
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Figure 4. 
Exploratory analyses between 22q11DS+ and 22q11DS−. 22q11DS+ had lower FA in the 

CGC and lower AD in the UF as compared to 22q11DS−. Healthy comparison participants 

are show for comparison. Mean +/− SEM are reported. *p<0.05.
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Table 1

Sample demographics, clinical and cognitive measures for Healthy Comparison (HC) and 22q11DS. This 

information is also shown for 22q11DS with (+) and without (−) psychosis symptoms

Full Sample 22q11DS subsamples

HC (n=39) 22q11DS (n=39) 22q11DS+ (n=27) 22q11DS− (n=12)

Sex, n

Male 20 20 15 5

Female 19 19 12 7

Race, n

Non-Caucasian 6 6 6 0

Caucasian 33 33 21 12

Age (years) 19.99 (1.73) 19.83 (4.25) 19.25 (4.50) 21.17 (3.42)

Education (years) 13.05* (1.59) 11.05 (2.84) 10.50 (2.92) 12.36 (2.20)

Maternal Education (years) 14.30 (3.83) 14.65* (2.13) 14.42 (2.12) 14.09 (2.18)

Paternal Education (years) 14.43 (2.57) 14.02 (2.30) 14.00 (2.50) 14.09 (1.87)

Global Functioning (GAF) 85.79* (7.24) 60.44 (17.13) 53.92 (15.08) 77.40 (8.22)

Medication APS/ADS/Stim/Other - 3/13/6/6 2/13/2/2 1/0/4/4

Clinical Aymptoms

SIPS Positive 1.12* (2.00) 7.87 (6.19) 10.25 (5.82) 2.50 (2.57)

SIPS Negative 1.07* (1.89) 10.53 (8.25) 13.92 (7.62) 2.91 (2.53)

SIPS Disorganized 0.31* (0.61) 5.43 (5.78) 7.04 (6.21) 1.83 (1.95)

Cognitive Performance

Accuracy (z-score) 0.52* (0.44) −1.28 (0.66) −1.28 (0.68) −1.27 (0.65)

Speed (z-score) 0.35* (0.37) −0.22 (0.74) −0.27 (0.78) −0.09 (0.63)

Accuracy Variability 0.67* (0.18) 1.08 (0.32) 1.17 (0.32) 0.90 (0.26)

Speed Variability 0.71* (0.47) 1.09 (0.63) 1.14 (0.69) 0.91 (0.40)

APS= Antipsychotic medication; ADS= Antidepressant medication; Stim=Stimulant; Other = Other CNS medication. Cognitive scores are global 
indicies of performance across all tasks.

*
denotes p<0.05 between groups.
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Table 2
ICBM-JHU White Matter Tracts

Abbreviations for regions used in DTI analysis.

Abbreviation Region-of-Interest

ATR Anterior Thalamic Radiation

CST Corticospinal Tract

CGC Cingulate Gyrus-Cingulum Bundle

CGH Cingulate Gyrus proximal to the Hippocampus

Forceps Major Forceps Major

Forceps Minor Forceps Minor

IFO Inferior Fronto-Occipital Fasciculus

ILF Inferior Longitudinal Fasciculus

SLF Superior Longitudinal Fasciculus

UF Uncinate Fasciculus
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