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Abstract

For many bacterial infections, drug resistant mutants are likely present by the time antibiotic 

treatment starts. Nevertheless, such infections are often successfully cleared. It is commonly 

assumed that this is due to the combined action of drug and immune response, the latter 

facilitating clearance of the resistant population. However, most studies of drug resistance 

emergence during antibiotic treatment focus almost exclusively on the dynamics of bacteria and 

the drug and neglect the contribution of immune defenses. Here, we develop and analyze several 

mathematical models that explicitly include an immune response. We consider different types of 

immune responses and investigate how each impacts the emergence of resistance. We show that an 

immune response that retains its strength despite a strong drug-induced decline of bacteria 

numbers considerably reduces the emergence of resistance, narrows the mutant selection window, 

and mitigates the effects of non-adherence to treatment. Additionally, we show that compared to 

an immune response that kills bacteria at a constant rate, one that trades reduced killing at high 

bacterial load for increased killing at low bacterial load is sometimes preferable. We discuss the 

predictions and hypotheses derived from this study and how they can be tested experimentally.
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1. Introduction

By the time bacterial infections cause symptoms and thereby call for antibiotic treatment, 

the bacterial population is often so large that it likely includes mutants that are resistant to 

the treating antibiotic (Drusano, 2004; Drlica, 2003). One might therefore expect treatment 

with single antimicrobial agents to fail. One reason why this is frequently not the case is the 

host's immune defense, which contributes to bacteria clearance (Pamer, 2007; Happel et al., 

2004). Despite the general recognition of the important role of the host's defenses, most 

studies of the within-host dynamics of bacteria and antibiotics focus almost exclusively on 

the pharmacokinetics (PK) and the pharmacodynamics (PD) of the drug and bacteria, 

without explicitly considering the immune response (Lipsitch and Levin, 1997; Mueller et 
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al., 2004; Mager et al., 2003; Drusano, 2004; Schentag et al., 2001; DeRyke et al., 2006; 

Mouton et al., 1999; Craig, 1998; Andes and Craig, 2002; Ambrose et al., 2007).

Such omission of the immune response also applies to models that are specifically intended 

to develop treatment protocols to prevent the ascent of resistant mutants, like those based on 

the mutant selection window (MSW) theory (Zhao and Drlica, 2001, 2008; Jumbe et al., 

2003; Drlica and Zhao, 2004). The MSW is defined as the range of drug concentrations for 

which the drug is strong enough to remove the sensitive population, but not strong enough to 

remove the (partially) resistant population. In the absence of an immune response, this is 

expected to lead to selection of the resistant mutant, which can ascend to high levels (Negri 

et al., 2000; Drlica and Zhao, 2007). As we show here, the presence of an immune response 

can alter the MSW. Several theoretical and experimental studies have addressed the role of 

the immune response during antimicrobial treatment, and the issue has also been studied in 

the context of viral infections (Dalhoff and Shalit, 2003; Labro, 2000; Tsai and Standiford, 

2004; Dalhoff, 2005; Imran and Smith, 2007; Austin et al., 1998; Curlin et al., 2007). But, to 

our knowledge, the interactions between antibiotics and the host's immune response as it 

affects the emergence of resistance during bacteria infections has not been addressed.

While the lack of data precludes the development of detailed and quantitatively accurate 

models of the contribution of the immune response for the antibiotic treatment of specific 

bacterial infections, simple mathematical models can provide a way to generate hypotheses 

for the design and interpretation of future experiments. We develop such simple 

mathematical models and use them to analyze the effects of different types of immune 

responses on the ascent of resistance during antibiotic treatment. We show that an immune 

response that retains its strength despite a strong drug-induced decline of bacteria numbers 

considerably reduces the emergence of resistance, narrows the MSW, and mitigates the 

effects of non-adherence to treatment. Additionally, we show that compared to an immune 

response that kills bacteria at a constant rate, one that trades reduced killing at high bacterial 

load for increased killing at low bacterial load is sometimes preferable. We discuss the 

implications of these theoretical results to antibiotic treatment and how the hypotheses 

generated from our analysis can be tested experimentally.

2. The mathematical models

2.1. Bacteria and drug dynamics

To describe bacterial growth, PK and PD, we use a model that has previously been shown to 

successfully fit data from in vitro experiments on the emergence of fluoroquinolone 

(ciprofloxacin) resistance in Staphylococcus aureus (Campion et al., 2005; Chung et al., 

2006). We consider two populations of bacteria, one susceptible to the antibiotic (Bs) and the 

other resistant (Br). The susceptible and resistant bacteria grow at rates gs and gr. Growth 

slows down as the total number of bacteria approaches a maximum population size, N0. 

During growth, susceptible bacteria generate resistant mutants at a rate μ back mutations to 

the sensitive genotype are ignored. The antibiotic is administered at a dose C0 every T hours. 

It decays according to a standard first-order PK function with an exponential decline in 

concentration at rate d. The antibiotic kills bacteria according to a hyperbolic (Monod like) 

Emax function with maximum kill rates ks and kr and half-maximum antibiotic 
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concentrations  and , for the sensitive and resistant bacteria, respectively. (This 

corresponds to a Hill function with Hill-coefficient of 1: Regoes et al., 2004). Note that the 

resistant bacteria are not fully resistant to the drug, instead they require higher drug 

concentration for clearance, which reflected in the values of the kill and half maximum kill 

concentrations, i.e. kr<ks and . This is the type of resistance usually found in 

experimental or clinical situations. The model is expressed by the set of coupled differential 

equations (a dot denotes differentiation as a function of time)

(1)

(2)

(3)

While the model was shown to describe in vitro data, it is not clear how it applies to an in 
vivo situation. However, since not enough is known about the in vivo dynamics of bacteria 

and drugs during the process of resistance generation, we decided to choose the present 

model because of the availability of experimentally measured values for the model 

parameters (Table 1).

2.2. Immune responses

The important and novel aspect of our study is that we explicitly model the dynamics of an 

immune response. The immune response is immensely complex; many interdependent 

players, such as different cell types and cytokines, participate at varying degrees. This 

complexity, combined with the experimental difficulty in accurately measuring all the 

different immune response components, leads to a lack of detailed, quantitative data. 

Because of this lack of data, we do not try to create a detailed model of the immune response 

for a specific infection, such as S. aureus. Instead, we employ several simple, heuristic 

models that are meant to capture known aspects of immune response dynamics, while at the 

same time realizing that these are simplified caricatures and the obtained insights are 

therefore conceptual. We consider the following four models:

Immune response model 1—For the first model, we consider an immune response, I, 
that is triggered upon onset of infection and increases exponentially at rate gi (clonal 

expansion: De Boer et al., 2003; Antia et al., 2003; De Boer et al., 2001), independent of the 

bacteria. Pathogen independent aspects of the expansion dynamics have recently been found 

for CD4 and CD8 T-cells (Kaech and Ahmed, 2001; Mercado et al., 2000; van Stipdonk et 

al., 2001; Bajenoff et al., 2002; Lee et al., 2002), which are known to play important roles 
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against obligate or facultative intracellular bacteria, such as Listeria monocytogenes and S. 
aureus (Pamer, 2004; McLoughlin et al., 2006). The immune response saturates once it 

reaches some maximum strength. Such dynamics seems to hold for CD4 and CD8 T-cells in 

the lung after tuberculosis infection (Kamath et al., 2004, 2006). Since I is given in arbitrary 

units, we choose the maximum strength to be Imax = 1. This leads to a term for the immune 

dynamics given by İ = giI(1 −I). We set the immune response at the beginning of the 

infection to I0 = 10−6 and a rate of expansion of gi = 1 h−1. These values was chosen based 

on data from CD4 and CD8 T-cells (De Boer et al., 2003). However, the exact choices are 

not important, the results presented below also hold for different values. Killing of bacteria 

by the immune system is assumed to occur at a rate directly proportional to the strength of 

the immune response, with a killing rate constant b. In all our immune response models, 

killing of sensitive and resistant bacteria occurs in the same manner. This leads to the terms 

−bIBs and −bIBr added to the equations for sensitive and resistant bacteria, respectively. This 

mass-action type killing term is consistent with observations from CD8 T-cells and 

neutrophils (Li et al., 2002; Regoes et al., 2007; Yates et al., 2007).

Immune response model 2—For the second model, we consider the same dynamics of 

the immune response as in model 1, but now the rate at which bacteria are killed saturates at 

some maximum level as the bacterial load increases. We implement this by scaling the 

killing term with the total number of bacteria present, so that these terms become −bIBs/(N 
+ s) and −bIBr/(N + s), where N = Bs + Br and s is a saturation constant for the killing rate. 

This captures the observation that immune cells need time to kill and under these conditions, 

the mass-action formulation of model 1 breaks down at high pathogen load (Pilyugin and 

Antia, 2000; Mempel et al., 2004). This has been observed experimentally for neutrophils 

and is also likely to apply to CD8 T-cell mediated killing at high infected cell densities 

(Leijh et al., 1979; Li et al., 2004; Regoes et al., 2007; Yates et al., 2007).

Immune response model 3—For the third model, we change the dynamics of the 

immune response. We assume that the immune response grows proportional to the bacterial 

load and decays at a fixed rate. This leads to the term İ = giN − diI. If the decay of the 

immune response is reasonably fast—and we will focus on that situation in the following—

this model approximates an immune response that closely tracks the bacterial load, i.e. I ≈ 
gi/diN. Such dynamics might apply to cytokines or highly activated immune cells (Fritz et 

al., 1999; Hayden et al., 1998; Green et al., 2003). For the killing, we again assume a mass-

action term, as described for model 1.

Immune response model 4—The fourth model uses the same assumption for the 

dynamics of the immune response as model 3, and combines it with the saturated killing 

term of model 2.

We want to again stress that these four models we use here are simple and heuristic, meant 

to capture aspects of the spectrum of possible immune response dynamics. Fig. 1 shows 

graphically the different conditions for the models just described, Table 2 summarizes the 

model equations. All models were implemented in Matlab R2007a (The Mathworks), the 

code is available from the authors upon request.
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3. Results

3.1. Resistance emergence in the absence of an immune response

We start by considering the dynamics of susceptible and resistant bacteria in a situation 

where there is no immune response. The infection starts with a few drug sensitive bacteria. 

As the bacteria grow, resistant mutants are generated and because they also replicate (at a 

lower rate compared to the drug sensitive population), they too increase. Both the resistant 

and susceptible populations level off when the total bacterial load reaches the saturation 

level. In the absence of drug treatment, the less-fit resistant population constitutes a small 

fraction of the total population. Once antimicrobial treatment is started, the sensitive 

population is cleared by the drug and the total bacterial load falls below the saturation level. 

This allows the resistant population to increase until its net growth rate equals the rate of 

killing by the antibiotic (Fig. 2). (Recall that resistance is not complete, the drug can kill the 

resistant population, albeit at a very low rate.)

3.2. Resistance emergence in the presence of immune responses

In the worst case, even the combined effect of antimicrobial drug and immune response 

cannot eradicate the susceptible population. While this will likely prevent the ascent of the 

resistant population, this scenario represents treatment failure not due to resistance but 

simply due to an ineffective drug. We do not consider this situation further. If the immune 

response alone is not strong enough to clear the susceptible population, but a combination of 

antimicrobial treatment and immune response can do so, two possibilities exist for the 

resistant subpopulation: Either the immune response (together with the weak effect of the 

antibiotic on the resistant mutants) can prevent the emergence of the resistant population. 

This will likely occur if the cost of resistance is non-negligible (Fig. 3A, black lines). Or, 

alternatively, the immune response cannot prevent the emergence of resistance. This might 

be the case if the fitness of the resistant strain is close to that of the sensitive strain (Fig. 3A, 

gray lines), or if the immune response is less potent (e.g. a value for b half that shown for the 

first scenario in Fig. 3A leads to resistance emergence. Graph not shown).

The type of killing can also impact the outcome. If the killing rate saturates for high 

bacterial load (model 2) and the rate is the same as for the non-saturating model at low 

bacterial load, the result is a weaker immune response and less good control of the resistant 

population (compare Figs. 3A and B, black lines). In contrast, if the killing at low bacterial 

load is more effective, it can lead to better clearance of the resistant subpopulation once the 

drug has reduced the sensitive subpopulation, even if the killing strength at high bacterial 

load is much weaker compared to the non-saturating, mass-action killing (compare Fig. 3A 

and B gray lines).

For the two models considered so far, the immune response quickly reaches a constant level 

and remains at this level, independent of the bacteria dynamics. We now turn to models 3 

and 4 to investigate how an immune response that depends on bacteria numbers affects 

resistance emergence. If the immune response decays quickly (di large), a decline in bacteria 

due to drug treatment will result in a rapid decline of the immune response and subsequent 

emergence of resistance is likely, even if the immune response is very potent. The black 
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lines in Fig. 3C show this for a scenario where resistance emerges, even though the killing 

rate, b, is 10 times larger compared to model 1. Note how closely the immune response 

(dotted line) tracks the bacterial load. If the decay of the immune response is slower, it will 

lead to less immediate tracking of the bacteria decline and improved ability to control the 

resistant population. the gray lines in Fig. 3C show a situation where resistance emergence is 

almost prevented. A further reduction in the decay rate leads to a situation that approaches 

the pathogen-independent immune response shown in panels A + B, where resistance 

emergence is prevented (not shown).

As seen for models 1 and 2, a saturating immune response that kills less efficiently at high 

bacterial load but more efficiently at low bacteria numbers can help to prevent resistance 

emergence. This is also true if the immune response declines almost immediately as the 

bacteria decline. The higher killing efficiency at low bacteria numbers can make the 

difference between resistance emergence or clearance (compare Fig. 3C and D, gray lines).

3.3. Immune responses can reduce the mutant selection window

So far, we have shown illustrative examples how different types of immune responses can 

affect the emergence of resistance. We now investigate the impact of the different immune 

responses in more detail. We begin by exploring how the immune response can change the 

size of the MSW. The MSW is defined as the range of drug concentrations for which the 

drug is strong enough to remove the sensitive population, but not strong enough to remove 

the resistant population. In the absence of an immune response, this is expected to lead to 

selection of the resistant mutant, which can ascend to high levels (Negri et al., 2000; Drlica 

and Zhao, 2007). Fig. 4 illustrates the MSW idea.

The presence of an immune response is expected to change the MSW. One would expect to 

see the MSW shrink at the right side, for high drug concentrations, simply because in the 

presence of additional killing by an immune response, a lower drug dose is required to 

remove both the susceptible and the (partially) resistant subpopulations. This is indeed what 

one finds (Fig. 5). Also, as expected, the immune responses that do not tightly follow the 

decline of bacteria (models 1 and 2) are able to shrink this part of the window by a larger 

amount, though model 4, which declines in strength as bacterial load declines, but at the 

same time has an increasing killing rate, is able to perform almost as good as models 1 and 

2.

Less intuitively obvious is why the MSW shrinks at the left side, for low drug 

concentrations. Since the immune response acts together with the drug, the sensitive 

population is cleared at lower drug concentrations. One might therefore also expect 

resistance to emerge at lower, not higher, drug concentrations compared to the situation 

without an immune response. This would indeed be the case if the immune response were to 

act only on the sensitive population. However, it affects both populations equally. In the 

absence of an immune response, any drug-induced decline of the sensitive population allows 

the resistant population to quickly increase in numbers. In contrast, if an immune response is 

present, it can prevent the resistant population from growing, even if some of the competitive 

pressure is removed by a reduction in the sensitive population. It therefore takes higher drug 

doses, corresponding to a stronger selective pressure in favor of the resistant population, 
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before resistance can emerge. Since at high bacteria loads, the saturating immune responses 

(models 2 and 4) are rather weak, they are not very good in preventing resistance to emerge 

at low drug concentrations (Fig. 5, green diamonds and magenta stars). In contrast, the mass-

action models retain a potent response at high bacteria numbers, therefore preventing the 

emergence of resistance (Fig. 5, blue squares and red triangles) and significantly shrinking 

the MSW at the left side.

3.4. Immune responses can dampen the effect of imperfect adherence to treatment

The emergence of resistance is often due to the failure of patients to follow a prescribed 

antibiotic treatment protocol. A prominent example is treatment failure of long-term 

infections like tuberculosis (Lipsitch and Levin, 1998; Gillespie, 2002; Gomez and 

McKinney, 2004). It is therefore of interest to understand how the immune response might 

modulate the effect of imperfect adherence to an antibiotic treatment regime. As our model 

for non-adherence we use a scheme similar to one of those considered previously (Lipsitch 

and Levin, 1997). In this scenario, patients are less likely to take the prescribed drug dose as 

symptoms reduce. We assume that symptoms are proportional to bacterial load. This is 

implemented by assuming that a dose is taken with probability p = 0.25 + 0.75 log10(N)/

log10(N0)). This means that for maximum bacterial burden (N = N0), adherence is perfect. 

As bacteria load declines, so does the probability that the patient takes the drug. At very low 

bacteria load, the probability that the patient takes the antibiotic is reduced to ≈ 25%. We 

simulate 5000 infections using a Monte Carlo routine where at each scheduled dosing 

interval the drug will be taken with probability p. Fig. 6 shows the MSW for perfect and 

imperfect adherence in the absence or presence of immune responses. We plot the median 

value for the time to resistance emergence, defined as previously. As expected, in the 

absence of an immune response, non-adherence increases the MSW (Fig. 6, open and filled 

circles). The presence of an immune response dampens the impact of non-adherence. The 

immune response models with a bacteria load-dependent killing (models 2 and 4) seem to 

perform slightly better, compared with the bacteria load-independent killing models (models 

1 and 3). This is presumably because killing in these models is improved at low bacteria 

numbers, which is exactly the regime where the probability of taking the prescribed drug 

dose is the lowest.

3.5. Immune responses can change optimal dosing strategies

The goal of an optimal treatment strategy is to achieve all specified goals (e.g. clearance, 

prevention of resistance emergence), while at the same time ensuring that the smallest 

possible amount of drug is used (to reduce toxicity and financial costs). Additionally, one 

might want to reduce the frequency at which the drug is administered. If the killing action of 

the drug (the PD) is well described by an Emax model, such as the one we use here, overall 

killing of bacteria is larger if a given amount of drug is administered in frequent small doses 

instead of few large ones (Lipsitch and Levin, 1997). Because the Emax model applies to 

both the sensitive and resistant populations, we expect that in the absence of an immune 

response, more frequent drug doses are better at killing the resistant strain and clearing the 

infection. This is indeed the case (Fig. 7, black circles). We also find that this holds for the 

immune response models 1 and 3, which kill at a rate independent of bacterial load (blue 

squares and red triangles). Interestingly, the bacterial load-dependent killing models, model 
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2 and 4, behave differently. For model 2 (green diamonds), small frequent doses can prevent 

resistance emergence, but so can few large ones. The reason for this is that a high drug dose 

strongly reduces the sensitive population, which leads to improved per-capita killing by the 

immune response and subsequent clearance of the resistant population. For model 4, this 

latter mechanism works as well, while the improved overall killing by the drug due to the 

Emax PD has less impact.

Note that we chose the total drug dose administered over the 24 h interval (Ĉ) for the 

different models such that a change in dosing frequency lead to a switch between resistance 

emergence and resistance prevention. There are of course a wide range of values for the drug 

concentration that lead to less interesting results, namely resistance emergence or bacteria 

clearance, no matter how the dosing schedule over a 24 h period is chosen. While it is not 

clear if for a realistic situation, any of the results shown in Fig. 7 might occur, it is 

nevertheless important to illustrate what could happen, and how the complicated dynamical 

interactions between the antibiotic, bacteria and immune response can lead to unexpected 

outcomes, which depend on the details of the immune response.

4. Discussion

Help from the immune response is often necessary to clear bacterial infections, even in the 

presence of antibiotic treatment. An example is the success of drugs that—at least in vitro—

are only bacteriostatic (Pankey and Sabath, 2004). Here we developed mathematical models 

that combine the dynamics of bacteria and drugs with different models for the immune 

response. We used these models to analyze the emergence of resistance during the course of 

treatment.

4.1. Caveats and limitations

As with all mathematical (as well as verbal) models of biological systems, the models 

employed in this study represent strong simplifications of the complex interactions between 

bacteria, antibiotics, and the host's immune response. Although the equations for bacteria 

and drug dynamics provided a reasonable fit to data for S. aureus and ciprofloxacin 

generated in vitro (Campion et al., 2005; Chung et al., 2006), it is not clear how well such 

models apply in vivo. In fact, S. aureus readily evolves resistance to ciprofloxacin (Dalhoff 

and Schmitz, 2003) which makes this fluoroquinolone a less than optimal drug for treating 

staphylococcal infections.

However, the focus of this study was not on prediction of resistance emergence for a specific 

infection but rather to generate a conceptual framework for addressing questions about the 

contribution of the immune response to preventing the evolution of antibiotic resistance 

during the course of therapy. With minor modifications, this same theory could apply to 

many different antibiotics and bacteria for which resistance can be generated by mutation. 

Of particular relevance in this regard is multi-drug therapy in situations where mutants 

resistant to single drugs are almost always present (Lipsitch and Levin, 1998; Sacchettini et 

al., 2008). Although our model of the immune response is a simplistic caricature of the 

plethora of host responses to a bacterial infection, it is based on biologically realistic 

assumptions and captures aspects of the anticipated dynamics of the host response. More 
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specifically, we chose scenarios were the strength of the immune response is independent of 

or strongly dependent upon the bacterial load, and where the rate of immune-mediated 

killing does and does not saturate at high bacterial load. We believe these models capture 

aspects of the dynamics of the induction, buildup and waning of the immune defenses and 

immune-mediated killing of bacteria.

Our models focused on resistance generated by genetic mutation through a one-step process. 

We did not formally consider non-inherited resistance due to physiological processes, 

biofilm formation, or persistence, which can prolong therapy and promote the generation 

and ascent of inherited resistance (Hogan and Kolter, 2002; Gomez and McKinney, 2004; 

Levin and Rozen, 2006; Dhar and McKinney, 2007; Lewis, 2007). We also assumed that a 

resistant population already existed prior to treatment start. As mentioned in the 

introduction, we chose this setup because it is likely to occur for many clinical infections, 

where the bacteria have reached such high numbers by the time symptoms occur and 

treatment starts that the existence of a resistant subpopulation is likely. For a situation where 

resistance had not yet emerged at the beginning of the treatment period, an immune response 

that helps to eradicate the sensitive population as quickly as possible—and thereby minimize 

the chance that a resistant mutant is created—is expected to perform best.

4.2. Predictions and hypotheses

Our results suggest that the presence of an immune response narrows the MSW, helps to 

mitigate the negative effects of non-adherence, and influences the optimal dosing strategy. 

We find that if antibiotic drug concentrations can be maintained at relatively high levels (the 

right border of the MSW), the synergism between immune response and drug in reducing 

resistance emergence is best for immune response components that are largely independent 

of the dynamics of the pathogen (Fig. 5, models 1 and 2). Such dynamics applies probably 

most strongly to parts of the adaptive immune responses. For an immune response that is 

tightly linked to pathogen load (cytokines, parts of the innate immune response, highly 

activated CD8 T-cells), trading reduced killing at high bacterial load for increased killing at 

low bacterial load can be better at preventing resistance emergence (Fig. 5, model 4). In 

contrast, if antibiotic drug concentrations cannot reach levels that are high enough to be 

above the MSW (for instance due to toxicity), immune responses that do not saturate in their 

strength of killing at high bacterial load will perform best (Fig. 5, models 1 and 3). Saturated 

killing might be unavoidable due to biological constraints (e.g. time it takes to kill Pilyugin 

and Antia, 2000), one can speculate that reduced killing at high pathogen load might be a 

“choice” made by the immune response in certain situations to prevent excessive immuno-

pathology. It is worth pointing out that the type of killing function depends on the exact 

numbers of immune players and bacteria and the killing mechanism, and can switch from 

non-saturated to a saturated regime in some but not other situations. In general, a higher 

number of immune players (e.g. a certain type of immune cell) and a faster killing process 

will reduce the potential for killing saturation at high bacterial load.

The predictions from our models can be tested experimentally in laboratory animals. One 

can use a “resistance competition assay” (Negri et al., 2000; Bull et al., 2002), whereby 

animals are inoculated with low numbers of bacteria resistant to the treating antibiotic and 
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high numbers of the susceptible population, and the changes in frequency of resistance 

during the course of antibiotic treatment are followed. In addition to measuring the bacterial 

load and concentrations of antibiotics in these experiments, different components of the 

immune responses should also be quantified. Applying this protocol to laboratory animals 

with normal immune systems and animals with specific components of the immune system 

impaired can provide information into the role different components of the immune response 

play in affecting the MSW, dosing strategies, etc. (Drlica, 2003). We would expect that 

animals with impaired immune response components which are largely independent of 

bacterial load, both in their dynamics and their killing behavior, will be most susceptible to 

resistance emergence, compared with healthy animals or animals that have bacteria load-

dependent immune dynamics or killing. Of course, the main problem with such 

experimental tests (and the direct applicability of our results) is the fact that immune 

response components tightly interact, therefore it might be difficult to knock out certain 

components without affecting the performance of others.

To summarize, we have shown that the host's immune defenses can play an important role in 

the emergence or prevention of drug resistance. This highlights the need for further studies 

that consider the joint impact of the immune response and antimicrobial drug treatment on 

the emergence of resistance. Eventually, such a combination of experimental and theoretical 

studies should allow us to design treatment protocols that prevent resistance emergence and 

lead to complete bacteria clearance, while also optimizing drug dose, robustness against 

non-adherence and treatment schedule.
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Fig. 1. 
Graphical representation of the differences between the four models. IR: immune response.
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Fig. 2. 
Dynamics of infection in the absence of an immune response. Antimicrobial treatment is 

started at day 4. Every T = 24 h, a dose of C0 = 4μg/ml is administered. Parameters as given 

in Table 1.
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Fig. 3. 
Dynamics of infection in the presence of immune responses. Dotted lines show immune 

response (with axis label on the right side), solid and dashed lines show the drug resistant 

and drug sensitive bacteria. Drug dosing as described in legend of Fig. 2. The parameters b, 

gr, di, gi are all given in units of h−1. All parameter values are as given in Table 1 unless 

otherwise stated. (A) Model 1. Black: low-fitness (growth rate) resistant strain (gr = 0.65), 

prevention of resistance. Gray: high-fitness resistant strain (gr = 0.9), resistance emerges 

(killing rate b = 0.5). (B) Model 2. Black: maximum killing at low bacterial load is the same 

as in model 1, killing rate declines once the bacteria increase beyond 1% of the carrying 

capacity and is about one-hundredth that of model 1 for N → N0 (s = N0/100, b = 0.5s, gr = 

0.65). Gray: maximum killing at low bacterial load is twice that of model 1 but still only 

one-fiftieth that of model 1 for N → N0 (s = N0/100, b = s, gr = 0.9). (C) Model 3. Black: 

the immune response changes rapidly as bacterial load changes (b = 5, di = 0.25, gi = di/N0). 

Gray: the immune response changes less rapidly as bacterial load changes (b = 5, di = 0.05, 

gi = di/N0). (D) Model 4. Black: maximum killing at low bacterial is the same as in model 3, 

killing rate declines once the bacteria increase beyond 1% of the maximum carrying 

capacity and is about one-hundredth that of model 3 for N → N0 (s = N0/100, b = 5s, di = 

0.25, gi = di/N0). Gray: maximum killing at low bacterial load is twice that of model 1 but 

still only one-fiftieth that of model 1 for N → N0 (s = N0/100, b = 10s, di = 0.25, gi = di/

N0).
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Fig. 4. 
The mutant selection window (MSW) in the absence of an immune response. Shown is the 

time of resistance emergence following treatment (txt), as a function of drug concentration 

(C0). Emergence is defined as the resistant population reaching 10% of the carrying 

capacity. The simulation is run until 14 days (txt) post-treatment start. If the resistant 

population has not reached 10% by day 14, the time of emergence is set to infinity. At low 

drug concentrations, the drug sensitive population is not removed and the resistant 

population cannot emerge. Very high drug doses kill both sensitive and resistant populations. 

Intermediate drug doses clear the sensitive population only, and thereby allow the resistant 

population to reach high levels.
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Fig. 5. 
The MSW in the presence of the different immune responses. Time to emergence is defined 

as described in the caption for Fig. 4. Immune responses are chosen as in Fig. 2 with gr = 

0.65, b = 0.5 (model 1), s = N0/100 and b = s (model 2), b = 5, di = 0.25, gi = di/N0 (model 

3), and s = N0/100, b = 10s, di = 0.25, gi = di/N0 (model 4).
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Fig. 6. 
The mutant selection window for imperfect adherence (empty markers). For comparison, 

results for complete adherence are replotted from Fig. 5 (solid markers). Everything else as 

described for Fig. 5.
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Fig. 7. 
Bacteria clearance or resistance emergence as a function of dosing regime. Drug is 

administered at the indicated time intervals, in doses such that the total amount of drug 

administered over one day, Ĉ, remains fixed. Ĉ for the situation without immunity and the 

four immune response models are 10, 0.75, 1.5, 8 and 2.5 μg/ml (see text). Everything else 

as described for Fig. 5.
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Table 1

Variables and parameters for the part of the model describing bacteria and drug dynamics.

Symbol Meaning Values

Bs(0) Susceptible bacteria inoculum 103

Br(0) Resistant bacteria inoculum 0

N Total bacteria Bs + Br

N0 Carrying capacity 109

gs Maximum sensitive growth 1 h−1

gr Maximum resistant growth 0.65 h−1

ks Maximum kill rate of sensitives 1.5 h−1

kr Maximum kill rate of resistant 1.1 h−1

Half-maximum kill rate of sensitives 0.25 μg/ml

Half-maximum kill rate of resistant 5 μg/ml

μ Mutation rate 10−8

d Drug decay rate 0.15h−1

T Times at which drug is administered Varied

C0 Drug dose administered at times T Varied

Parameter values are chosen in accordance with Campion et al. (2005) and Chung et al. (2006).
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Table 2

Summary and parameters of the immune response (IR) models.

IR model IR term Killing term

Model 1 I = gi I(1 − I) −bIBn

Model 2 I = giI(1 − I)

Model 3 I = giN − diI −bIBn

Model 4 I = giN − diI

Subscript i denotes terms for the immune response, the subscript n is a placeholder for either s or r, indicating susceptible and resistant bacteria, 
respectively. Values for the parameters are given in the results section.
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