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Development of a modeling approach to estimate indoor-
to-outdoor sulfur ratios and predict indoor PM2.5 and black
carbon concentrations for Eastern Massachusetts households
Chia Hsi Tang1, Eric Garshick2, Stephanie Grady2, Brent Coull3, Joel Schwartz1 and Petros Koutrakis1

The effects of indoor air pollution on human health have drawn increasing attention among the scientific community as individuals
spend most of their time indoors. However, indoor air sampling is labor-intensive and costly, which limits the ability to study the
adverse health effects related to indoor air pollutants. To overcome this challenge, many researchers have attempted to predict
indoor exposures based on outdoor pollutant concentrations, home characteristics, and weather parameters. Typically, these
models require knowledge of the infiltration factor, which indicates the fraction of ambient particles that penetrates indoors. For
estimating indoor fine particulate matter (PM2.5) exposure, a common approach is to use the indoor-to-outdoor sulfur ratio (Sindoor/
Soutdoor) as a proxy of the infiltration factor. The objective of this study was to develop a robust model that estimates Sindoor/Soutdoor
for individual households that can be incorporated into models to predict indoor PM2.5 and black carbon (BC) concentrations.
Overall, our model adequately estimated Sindoor/Soutdoor with an out-of-sample by home-season R2 of 0.89. Estimated Sindoor/Soutdoor
reflected behaviors that influence particle infiltration, including window opening, use of forced air heating, and air purifier. Sulfur
ratio-adjusted models predicted indoor PM2.5 and BC with high precision, with out-of-sample R2 values of 0.79 and 0.76,
respectively.
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INTRODUCTION
Air pollutant concentrations in indoor environments, where
people spend most of their time,1 may be the most relevant
exposure metrics to include in health studies.2 Because of high
cost and labor demand of indoor sampling, however, studies of
indoor air quality usually include data from only a few homes that
may not be representative of relevant exposures. This technical
limitation has led researchers to deploy models to predict indoor
exposure levels using more readily available outdoor
measurements.3 Typically, predictive models of indoor exposure
to fine particulate matter (PM2.5) are derived from mass balance
equations. A key model parameter is the infiltration factor, which
varies by housing characteristics (e.g., insulation, age of house,
etc.) and human activities (e.g., open windows and use of fan, air
purifier, or air conditioning).2,4,5 However, examination of various
methods and results suggest that a mass balance approach that
uses reliable estimates of infiltration and includes detailed
information about individual homes is not available.6 As the
exposure error associated with poorly characterized infiltration
was found to bias health effects assessment, the statistical power
of epidemiological studies to detect health effects of exposure to
indoor air pollutants remains limited.7

A common quantitative approach in estimating infiltration of
fine particles is to incorporate a tracer element that (a) is
predominantly of outdoor origin, (b) is measured accurately in

both indoor and outdoor environments, (c) is present in relatively
high levels to ensure small measurement error, (d) has a similar
size distribution to PM2.5, and (e) is chemically stable.8 The indoor-
to-outdoor ratio of tracer elements that meet these criteria can be
used as a proxy of the infiltration rate. Among major constituents
of PM2.5, sulfur or sulfate is generated mostly from outdoor
sources such as power plants and industrial activities.9 Moreover,
studies have shown that indoor sulfur sources are scarce and that
indoor sulfur concentrations are highly correlated with outdoor
concentrations.10,11 For these reasons, sulfur has been utilized as a
tracer element to assess infiltration rates;3,6,9,12,13 however,
infiltration rates estimated with the sulfur tracer method vary
significantly and quantifying Sindoor/Soutdoor remains a challenging
task.14 Uncensored or underreported indoor sulfur sources (e.g.,
kerosene heater use and cigarette smoking) may violate the
common assumption of zero indoor sulfur sources and subse-
quently bias the Sindoor/Soutdoor estimate.15 Furthermore, previous
studies often assumed the spatial variation of outdoor sulfur to be
negligible and relied on sulfur measurements from central
monitoring sites as a surrogate of sulfur concentration outdoors.
Although a substantial amount of sulfur is generated from
regional sources, local sulfur emissions have been found to
contribute significantly to outdoor sulfur concentrations. For
instance, in the New England area, the frequent use of oil as a
home heating fuel is a notable local sulfur source and cause
outdoor sulfur levels to vary significantly in this region.16 Thus,
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ignoring the spatial variability of outdoor sulfur concentrations
likely introduces exposure errors and subsequently lowers the
predictive power of Sindoor/Soutdoor models.
Numerous investigations have linked increased health risks with

exposure to PM2.5,
17–20 and a reliable estimation of indoor PM2.5

exposure levels may inform the development of effective
regulation and control strategies to reduce health risks. The aim
of this work is to develop a paradigm to estimate indoor air
pollution levels in specific homes at times when direct measure-
ments are not available, using sulfur as a measure of infiltration,
and accounting for the spatial variability of outdoor sulfur
concentrations. We constructed a robust model that accounts
for potential sources of exposure errors to estimate Sindoor/Soutdoor.
We then applied the modeled Sindoor/Soutdoor to predict indoor
PM2.5 and black carbon (BC) concentrations. Finally, we conducted
cross-validation on all models to examine their predictive power
specifically in situations where indoor measurements are not
available.

MATERIALS AND METHODS
Study Design
Between November 2012 and December 2014, we collected 405 indoor
samples in 130 homes of subjects with COPD who were participating in a
study assessing the health effects of indoor particulate matter. Subjects
were veterans living in Eastern Massachusetts who received care through
the VA Boston Healthcare System and non-Veterans who were recruited
via advertisement. Subjects who reported current smoking, indoor sources
of smoke, including regular candle burning or use of a fireplace, wood
stove, or other indoor combustion source, or known sources of indoor
sulfur (such as from a humidifier) were excluded from the study. After
excluding homes with reported indoor sulfur sources and those with fewer
than two samples, our analysis included 328 indoor samples from
weeklong sampling sessions collected at 102 residences. Samples were
collected at least twice per home in different seasons to measure indoor
sulfur, PM2.5, and BC concentrations.

Data Collection
Outdoor air pollution. Daily outdoor PM2.5 samples were collected at the
central monitoring site located on the roof of the Countway Library of the
Harvard Medical School in downtown Boston throughout the study period.
Details on outdoor PM2.5 measurements at the supersite were reported in a
previous study.21

Indoor air pollution. A Harvard School of Public Health Micro-
environmental Automated Particle Sampler (MAPS) was placed in each
subject’s home for indoor sampling. The MAPS includes an inertial
impactor that collects PM2.5 on Teflon filters at a low flow rate of 1.8 l/min.
Teflon filters were weighed on an electronic microbalance (MT-5 Mettler
Toledo, Columbus, OH, USA) before and after field measurements. Indoor
BC concentrations were analyzed by measuring filter blackness of the
Teflon filter using a smoke stain reflectometer (model EEL M43D, Diffusion
Systems, UK). Sulfur concentration in the indoor PM2.5 samples was
determined using X-ray fluorescence spectroscopy (model Epsilon 5,
PANalytical, The Netherlands).22 We defined the season that each sample
was obtained as winter (December–February), spring (March–May),
summer (June–August), and fall (September–November).

Questionnaires. Subjects completed a questionnaire at study entry to
collect information about building age, type of heating fuel, number of air
conditioning units, and type of heating system (i.e., forced air heating).
Following each sampling period, participants were asked to report specific
activities and home characteristics during the sampling period that could
generate indoor air pollution or alter the penetration of outdoor air
pollution into the home. The following questions were included: (1) how
many hours were the windows open during the sampling session? (2) How
many hours did you use an electric space heater during the sampling
session? (3) Did you use an air purifier during sampling session and for how
long? Responses to these questions and the baseline questionnaire were
used to examine the impact of activities on the sulfur ratio for each
residence.

Land use parameters. Land use parameters often serve as surrogates of
anthropogenic PM2.5 sources; in this study, land use parameters were used
to quantify the spatial variability of PM and BC concentrations outside
participating homes. The percentage of urban spaces in a grid of
1 km×1 km cells covering the study area was obtained from the 2011
collection of the National Land Cover Database. Major road (A1–A3)
density was gathered from the StreetMap USA database using the Feature
Class Code (A1–A4) classification from the U.S. Census Bureau Topologi-
cally Integrated Geographic Encoding and Referencing system. Annual
averaged traffic count for major roads was obtained from the Highway
Performance Monitoring System database. The built-in Kernel density
algorithm23 from ArcMap was used to calculate traffic count weighted for
major road density within 1 km2. Population density was calculated within
1 km2 from the census track database of year 2000.

Statistical Analysis
We considered the dynamics of PM2.5 involving infiltration (or inflow),
exfiltration (or outflow), indoor emission, and deposition removal
(Figure 1).
On the basis of the relationships illustrated in Figure 1, we can obtain a

simplified mass balance equation as follows:

dCindoorðtÞ
dt

¼ ðFin þ EÞ - ðFout þ RÞ ð1Þ

where dCindoor(t) is the change in indoor concentration of particle mass
(μg/m3) during the time interval dt, Fin represents particles infiltrated from
outdoor, E is the indoor emission, Fout is particle exfiltration to the
outdoors, and R is the indoor removal by deposition, with d as the
deposition rate. Dockery and Spengler24 first developed the mass balance
equation for indoor particles based on the assumption that air exchange
rate (α), penetration rate (p), and deposition rate (k) remain constant over
time period dt to obtain the following equation:

dCindoorðtÞ
dt

¼ α ´ p ´dCoutdoorðtÞ
αþ d

þ E
Vðαþ dÞ -

dCindoorðtÞ
dt ´ ðαþ dÞ ð2Þ

where dCoutdoor(t) is the change in particle concentration outside the
household (μg/m3), V is the volume of the house (m3), p is the penetration
factor (dimensionless), and d is the deposition rate (dimensionless). The
product of the penetration factor and air exchange rate is equivalent to the
infiltration factor, Finf, illustrated in Figure 1. Under the assumption that
indoor air is well mixed and outdoor concentration is constant,14 the
steady-state indoor concentration can be expressed as follows:

Cindoor ¼ E=V
ðαþ dÞ þ

α ´ p
αþ d

Coutdoor ð3Þ

As air exchange rate is usually much faster than the indoor deposition rate
(d),25 we can further rearrange Eq. 3 as follows:

Cindoor ¼ E=V
α

þ pCoutdoor ð4Þ

From the above derivation, it is apparent that the key parameter allowing
us to use outdoor particle concentrations to predict indoor concentrations
is the infiltration factor (Finf). The traditional method to estimate infiltration
is to measure the building tightness of each house, which is unrealistic due
to the large number of complex physical factors involved. For this reason,
the indoor-to-outdoor ratio of tracer elements is often used to quantify

Figure 1. Dynamics of inflow, outflow, emission, removal of PM2.5 in
the indoor environment.
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infiltration. In this study, we used sulfur as the tracer element and
constructed a sulfur model to estimate the indoor-to-outdoor sulfur ratio
(Sindoor/Soutdoor) for individual households. Subsequently, we incorporated
the estimated Sindoor/Soutdoor to predict indoor PM2.5 and BC concentrations
based on the mass balance concept (Eq. 4). Finally, we examined the
predictive ability of all three models using cross-validation by home and
season.

Sulfur model. As previously described, in situations where there are
no indoor sulfur emissions, we can calculate the indoor-to-outdoor
sulfur ratio (Eq. 5) directly and use it as a surrogate of the infiltration
factor (Finf):

F infp
Sindoor
Soutdoor

ð5Þ

However, given that indoor sulfur emissions may still have occurred
despite efforts to exclude these homes by questionnaire data, we
estimated the infiltration factor with the following model (Eq. 6):

Sindoor ¼ α0i þ β0 þ α1i þ β1ð ÞSoutdoor þ
X4
j¼1

βjþ1 Soutdoor ´ Ij
� � ð6Þ

where Sindoor and Soutdoor are is the sulfur concentration measured indoors
and outdoors, respectively, i is the identifier of the homes included in the
study, and j is the season identifier. Ij is an indicator variable for season j. As
sulfur was not measured outside each individual household, we used the
sulfur concentration measured at the central site as a surrogate of the
sulfur concentration outside homes. The exposure error introduced by
using sulfur measured at a central site was accounted for in the
subsequent indoor PM2.5 and BC model. Here we included a random
slope by home (α1i) to generate Sindoor/Soutdoor for individual homes and to
take into account the spatial variability of the sulfur concentrations outside
homes that are not captured when using central site measurements. We
also included fixed intercept (β0) and random intercept by home (α0i) to
capture potential indoor sulfur emissions such as underreported indoor
smoking and humidifier use. Finally, we included an interaction term
between outdoor sulfur concentration and season to capture the seasonal
variation of the infiltration. Thus, the estimated Sindoor/Soutdoor equals the
sum of the estimated fixed (β1) and random slope (α1i) and the slopes of
the season interaction terms (βj).

Indoor PM2.5 and BC model. Combining the estimated Sindoor/Soutdoor
(Eq. 6) and mass balance (Eq. 3) we can predict indoor concentrations of
PM2.5 and BC with the following equation:

Cindoor ¼ α0i þ β0 þ α1i þ β1ð Þ ´ Sindoor
Soutdoor

´ Coutdoor ð7Þ

where Cindoor (μg/m
3) is the indoor concentration of particle mass and

Coutdoor (μg/m3) is the particle concentration outside the individual
household. In this model, we included a random intercept (α0i) by home
(i) to account for indoor PM2.5 and BC emissions. The random slope (α1i) by
home corrects any bias in the sulfur ratio due to underestimating the
spatial variation of sulfur by using central site sulfur measurement as a
surrogate of outdoor sulfur concentrations.
To a greater extent than sulfur, the spatial distribution of PM2.5 and BC

can vary by location significantly, even within a small metropolitan area.
The PM2.5 and BC concentrations measured at the central site may not
reflect the local generation of particles outside participating homes, as BC,
and to a lesser extent PM2.5, are highly associated with traffic volume and
metropolitan activities. For this reason, we used land use variables,
including major road density, percent urban space, and the distance
between home and the central measurement site to predict outdoor PM2.5

and BC concentrations in addition to the measured concentrations. The
final indoor model (Eq. 8) is therefore formulated as

Cindoor ¼ α0i þ β0ð Þ

þ α1i þ β1ð Þ ´ Sindoor
Soutdoor

� �
´ Ccountway ´ ðβ2roaddensity

þ β3%urbanþ β4distance btw home i and central Þ ð8Þ
where Ccountway (μg/m3) is the measured concentration at the central
monitoring site, road density (number of vehicles‧distance traveled in km/
1 km2) is the traffic density of A1–A3 roads within a 1 km2 grid in which the

participating home falls, and %urban is the percentage of urban spaces
within a 1 km2 grid surrounding the homes.

Out-of-sample cross-validation. We conducted cross-validation by home
and season to evaluate the predictive power of the sulfur model (Eq. 6) and
indoor PM2.5 and BC model (Eq. 8) described above. For each home, we
first held out one measurement out of the two to four total samples
measured in the same home during the study period. We then trained the
sulfur, indoor PM2.5, and BC models using the rest of the samples from that
specific home and all samples from other homes to predict the held-out
data. We iterated the same procedure until all data were predicted once
and examined the R2 of the cross-validated prediction vs the observed
measurements. We designed the cross-validation to utilize measurements
from the same home to provide home-specific information and samples
from other homes to provide data that were temporally unavailable. In
essence, this cross-validation examined whether our models could
accurately predict Sindoor/Soutdoor, indoor PM2.5, and indoor BC during the
periods with no indoor measurements.

RESULTS AND DISCUSSION
General Characteristics
Samples with an observed sulfur ratio higher than 1.12 (95th
percentile of the total 405 samples) and homes with fewer than 2
samples were excluded for model predictability and cross-
validation purposes. This resulted in a data set collected during
328 weeklong sampling sessions at 102 residences that were
matched by date to a central monitoring site (countway supersite).
The distribution of measured indoor and outdoor concentrations
is summarized in Table 1. Indoor PM2.5 concentrations were
generally higher than those measured outdoors suggesting
significant indoor sources of particles. On the contrary, indoor
BC concentrations were lower than those measured outdoors,
which is likely due to the lack of indoor sources of BC and
potentially larger amount of traffic emissions and biomass burning
activities at the central site.26,27 More importantly, the mean
difference of the indoor and outdoor concentration of PM2.5 and
BC varied considerably. Previous studies have attributed this
variation to multiple factors, including indoor particle emission, air
exchange rate, and natural ventilation.9 Together, these findings
indicate the need to consider variability of the infiltration factors
in the modeling process of indoor PM2.5 and BC exposure levels.
Table 2 displays the land use environment and household

characteristics of the 102 homes in the Greater Boston included in
the study data sample. The land use setting of the study homes
varied significantly, suggesting that the spatial variation of outside
PM2.5 and BC is likely to vary from home to home. Furthermore,
the prevalence of air conditioning and forced air heating varied
considerably. Moderate variability was also found in natural
ventilation, specifically window-opening hours. These factors are
expected to influence the infiltration of particles and were found
to lower the model predictive power in previous studies.28 More
importantly, the large variation among land use and household
characteristics reinforces the notion that assuming no indoor
sulfur and homogeneous outdoor sulfur concentration may
contribute to reduced model fit.

Table 1. Distribution of measured indoor and outdoor (central site)
PM2.5 concentrations and its BC and sulfur constituents.

Indoor Central site

Mean SD Mean SD

PM2.5 (μg/m3) 8.8 6.5 6.5 2.2
BC (μg/m3) 0.24 0.26 0.58 0.24
Sulfur (μg/m3) 0.30 0.15 0.45 0.19
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Estimated Sindoor/Soutdoor
The performance of the mixed-effects model (Eq. 6) to predict
indoor sulfur using central site measurements was excellent, with
a high cross-validated R2 of 0.89, a non-biased slope, and a
negligible intercept bias when comparing the predicted to the
measured indoor sulfur concentration (Table 3).
Table 4 displays the relationship between the predicted

sulfur ratio and home characteristics and human activities. The
Sindoor/Soutdoor increased with higher natural ventilation (window
opening) and urban density. Use of an air purifier, air conditioning,
and forced air heating had an opposite effect on the predicted
Sindoor/Soutdoor (−0.06 to − 0.28). These findings are consistent with
those of previous investigations.29,30 As expected, homes using oil
as primary heating fuel had a higher sulfur ratio (0.07) compared
to those that using gas or electric fuel. Outdoor furnaces emitting
sulfur-rich particles may have added to the spatial variability of the
sulfur concentration outdoors. Consequently, the Sindoor/Soutdoor
for these oil-using homes was slightly overestimated (0.07), due to
the relatively lower concentrations of sulfur at the central site
compared to outside the home (Table 4). However, inclusion of a
random slope by home in the indoor PM2.5 and BC model to
account for indoor sulfur heterogeneity induced bias (Eq. 8).
Finally, the predicted sulfur ratio did not vary by electric space
heater use and there was a borderline association with traffic
density.

Predicted Indoor PM2.5 and BC
Using the estimated Sindoor/Soutdoor as the infiltration proxy, we
predicted indoor PM2.5 and BC concentrations. The cross-validated
R2 for indoor PM2.5 and BC was 0.79 and 0.76, respectively,
showing strong predictive power (Table 3). Model performance
was superior to previous indoor models, specifically those that did
not use a sulfur tracer as an infiltration surrogate (Table 5). We
relaxed the assumption regarding absence of indoor sulfur
sources and used fixed and random intercepts (Eq. 6) to filter

noise attributable to potential indoor sulfur emissions. This
approach is likely improved our model’s performance. Further-
more, the number of participating homes in this study was higher
than that of previous studies and, therefore, enhanced our
model’s predictive ability with a relatively larger sample size.
While indoor PM2.5 concentrations differed across households,

this variability was not explained by housing characteristics except
for the significantly lower PM2.5 concentration (−6.3 μg/m3) when
air purifiers were used. Unexplained variations in indoor particle
concentrations could have been generated by cooking and
unreported incense burning, which was found to contribute to
indoor particle concentrations in previous studies.28,31,32 On the
other hand, we found a significant relationship between indoor BC
of outdoor origin and traffic density surrounding homes. This is
consistent with previous reports that traffic pollutants, including
BC, can easily penetrate buildings.21,33–35

Our model’s predictive ability could be further improved by
extending the sample size, either by measuring daily instead of
weeklong indoor concentrations or by expanding the study area.
We also did not take into account the influence of chemical
transformations, such as changes in gas-to-particle partitioning
during the infiltration of volatile organic compounds, nitrate, or
ammonium,36,37 which may also affect the performance of indoor

Table 2. Distribution of home characteristics, surrounding land use, and questionnaire variables related to indoor air pollution.

Mean SD Min Median Max

Variables
Percent urban spaces within 1 km2 grid (%) 67 27 0 74 100
Major road density within 1 km2 grid (no. of vehicle·km/km2) 2.2 1.6 0.0 2.0 11.5
Distance to central site (km) 27.7 20.2 1.2 24.5 88.2
Building age (years) 62.8 31.9 9.0 51.0 171.0
No. of air conditioning 2.2 0.7 1.0 2.0 4.0

Use of forced air heating (# subject-week) Yes No
66 262

Questionnaire
(1) How many hours was the window open during sampling session? 31.4 57.1 0.0 0.0 168.0
(2) How many hours did you use an electric space heater during sampling session? 5.5 6.8 0.2 3.0 24.0
(3) How many hours did you use an air purifier during sampling session? 10.1 33.6 0.0 0.0 168.0
(4) What fuel do you use for heating? (# homes) Gas Electric Other/oil

44 21 30

Table 3. Cross-validated R2 and corresponding RMSE values for
predicted indoor Sindoor/Soutdoor, PM2.5, and BC.

R2

(unitless)
RMSE
(μg/m3)

Intercept
bias (μg/m3)

Slope bias
(unitless)

Indoor sulfur model 0.89 0.038 − 0.02 1.05
Indoor PM2.5 model 0.79 1.695 0.38 0.90
Indoor BC model 0.76 0.122 0.01 1.01

Table 4. Relationship between the predicted Sindoor/Soutdoor ratio and
household characteristics and behaviors.

Estimate Std. error t-value P-value

Heat fuel
Other/oil vs gas/electric 0.07 0.020 3.165 0.001

Window
Open vs closed 0.10 0.020 4.340 o0.001

Road density 0.03 0.017 1.790 0.07
Electric space heater use 0.003 0.030 0.096 0.92

Forced-air heating use
Yes vs no − 0.06 0.030 − 1.930 0.05

Land cover
Urban vs rural 0.20 0.043 4.477 o0.001

Air purifier use
Yes vs no − 0.28 0.095 − 2.884 0.004

Air conditioning use
Yes vs no − 0.06 0.026 −2.396 0.017

Development of a modeling approach for indoor PM2.5
Tang et al

128

Journal of Exposure Science and Environmental Epidemiology (2018), 125 – 130



PM2.5 and BC exposure models. Nevertheless, the models
developed in this study had superior predictive power compared
to models described the literature and, therefore, may provide
more reliable exposure data to study the health effects of particles
of indoor vs outdoor origin.

CONCLUSION
In this paper, we presented a new paradigm that utilizes a
relatively small number of indoor measurements to predict
exposures for individual households when indoor measurements
are not available. Our methods strengthen the estimation of
infiltration factor, indoor PM2.5, and BC concentrations for
individual residences in the Greater Boston Area. Our models
may improve indoor PM2.5 exposure assessments for future health
effects studies and could serve as an exposure model framework
more generally for other locations.
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