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ARTICLE INFO ABSTRACT

Keywords: Spectral entropy (SE) allows comparing task-related modulation of electroencephalogram (EEG) between pa-
Schizophrenia tients and controls, i.e. spectral changes of the EEG associated to task performance. A SE modulation deficit has
Entropy been replicated in different schizophrenia samples. To investigate the underpinnings of SE modulation deficits in
Sgii}:t}il:iot;y schizophrenia, we applied graph-theory to EEG recordings during a P300 task and fractional anisotropy (FA)

data from diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy controls. Functional con-
nectivity was assessed from phase-locking values among sensors in the theta band, and structural connectivity
was based on FA values for the tracts connecting pairs of regions. From those data, averaged clustering coef-
ficient (CLC), characteristic path-length (PL) and connectivity strength (CS, also known as density) were cal-
culated for both functional and structural networks. The corresponding functional modulation values were
calculated as the difference in SE and CLC, PL and CS between the pre-stimulus and response windows during the
task. The results revealed a higher functional CS in the pre-stimulus window in patients, predictive of smaller
modulation of SE in this group. The amount of increase in theta CS from pre-stimulus to response related to SE
modulation in patients and controls. Structural CLC was associated with SE modulation in the patients. SE
modulation was predictive of negative symptoms, whereas CLC and PL modulation was associated with cognitive
performance in the patients. These results support that a hyperactive functional connectivity and/or structural
connective deficits in the patients hamper the dynamical modulation of connectivity underlying cognition.

Fractional anisotropy
Negative symptoms

1. Introduction

Mental functions are partially based on the dynamic coordination of
cerebral networks (Dehaene and Changeux, 2011; Tanaka, 1996; Varela
et al., 2001) whose interactions evolve in hundreds of milliseconds
(Bressler and Tognoli, 2006; Sporns, 2011). The temporal resolution of
electroencephalography (EEG) allows the assessment of this dynamic
coordination, which can be applied to the study of functional under-
pinnings of mental disorders. Measurements summarizing the EEG
properties and their modulation with cognition can be useful for that
purpose. One of these measurements is Spectral Entropy (SE), a para-
meter derived from information theory that estimates regularity by
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quantifying the degree of uncertainty in a signal (Duff et al., 2013).
Larger SE values correspond to more uniform spectra whose frequency
content is broader (i.e., more random), and low SE values to spectra
with only a few frequency components (i.e., more regular).

In schizophrenia, we have described a SE modulation deficit during
a P300 task in response to relevant tones (Bachiller et al., 2014). SE
decreased in healthy controls secondarily to task-related increased
theta power, and both SE decrease and theta power increase were of
smaller magnitude in patients (Bachiller et al., 2014), which seems
coherent with the expected increase in theta band power during P300
(Mazaheri and Picton, 2005). Later, we replicated the same SE mod-
ulation deficit in schizophrenia in a larger and completely different
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sample (Molina et al., 2017a), showing its relation to cognition and
symptoms. In these reports we defined modulation as the difference in
SE values between the pre-stimulus and the response windows of the
P300 task being performed by the subjects. Neither treatment dose nor
illness duration were associated to the SE deficit, also found in first
episode patients.

Given the apparent robustness of the SE modulation deficit, we
considered it worthy to attempt to characterize it. This could help de-
scribing a reliable functional alteration in schizophrenia. Since cogni-
tion during P300 involves a global network rather than focal engage-
ment (Bledowski et al., 2004), we hypothesized that the analysis of
global properties of the functional network would help to identify un-
derpinnings of the SE modulation deficit in schizophrenia. Global net-
work properties can be assessed at system level using graph theory.
Thus, parameters derived from graph-theory can help assessing both
basal network properties predictive of SE modulation and properties of
global network dynamics associated to SE modulation deficits.

Among the graph parameters of interest to this purpose, local
clustering coefficient (CLC) is related to the degree of local con-
nectivity. Specifically, clustering coefficient is the ratio between the
number of triangles in which a node is included and the total number of
possible triangles that include the node. This measure, when averaged
across the network, indicates the segregation and local efficiency for
information transfer. In turn, characteristic path length (PL) is the
average of shortest distances for all possible pairs of nodes. Thus, PL is
related to information integration across areas. Mean connectivity
strength (CS, sometimes also known as density) in a weighted graph can
be interpreted as the average of connections among nodes in a network.
The application of these parameters to functional connectivity analyses
is based on the degree of similarity of signals, based in turn on phase-
locking values (PLV) of the signals between regions or (for the EEG)
sensors. These parameters can be also applied to structural connectivity
measurements derived from diffusion magnetic resonance imaging
(dMRI), such as fractional anisotropy (FA), which may allow a de-
scription of the dependence of functional connectivity modulation on
structural connectivity. Although a direct relation between both con-
nectivity dimensions could seem intuitive, functional connections are
found between regions without direct anatomical connections (Honey
et al., 2009).

Our hypotheses are that functional (prior to cognitive activity) and
structural graph-derived network measurements would predict task-
related SE modulation and that the dynamics of functional network
parameters would be associated to SE modulation. As in previous re-
ports (Bachiller et al., 2014; Mazaheri and Picton, 2005) modulation
will be defined and the corresponding EEG change (for SE and func-
tional network parameters) associated to task performance. These ideas
could reveal relevant insights on the functional deficits in schizo-
phrenia. Based on previous findings supporting a smaller increase of
theta power in patients in the response to target (Bachiller et al., 2014)
and the relevance of theta power for the task used, the P300 (Mazaheri
and Picton, 2005), we focused our analyses on the theta EEG band.

2. Subjects and methods

We included 48 schizophrenia subjects (of them, 23 first episodes
(FE) and 87 healthy subjects with normal hearing. Patients were diag-
nosed according to the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition. They were receiving stable doses of anti-
psychotic monotherapy. Of them, MRI data were also collected in 33
patients (20 males) and 24 controls (15 males). Out of the sample, 42
patients and 65 controls were included in a previous report on SE
modulation deficit in schizophrenia (Molina et al., 2017a).

First episode patients were treated with antipsychotics for less than
72 h. prior to MRI and EEG data acquisition, with a wash-out period of
24 h prior to the acquisitions to avoid possible bias due to the selection
of patients able to cooperate during EEG acquisition without prior
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Table 1

Demographic, clinical and cognitive characteristics of patients and controls, as well as
latency and amplitude of the P300 (P3b) potential. Between-group statistically significant
differences were marked with asterisks: ***p < 0.001.

Controls Patients

Age (years) 30.51 (10.77) 33.58 (9.27)

Antipsychotic dose (CPZ equivalents) N/A 377.92 (196.94)
Duration (months) N/A 97.84 (116.94)
Sex 44/43 25/23

Positive symptoms N/A 11.63 (3.39)
Negative symptoms N/A 18.03 (7.52)
Total PANSS score N/A 54.35 (18.56)
Verbal memory*** 51.65 (8.26) 33.92 (12.74)
Working memory*** 21.46 (3.90) 15.81 (5.01)
Motor speed*** 68.59 (17.84) 58.14 (14.41)
Verbal fluency*** 27.13 (5.33) 17.99 (5.70)
Performance speed*** 68.79 (13.25) 42.83 (15.78)
Problem solving*** 17.54 (2.72) 15.40 (4.64)
Total 1Q*** 111.83 (11.87) 91.22 (14.19)
WCST (perseverative errors)*** 10.17 (5.81) 27.31 (47.43)
WCST (completed categories)*** 5.79 (0.72) 4.39 (1.87)
P3b amplitude (microvolts)*** 3.20 (1.76) 1.92 (1.21)

P3b latency (miliseconds) 472.28 (67.54) 461.53 (87.57)

treatment.

Exclusion criteria were: (i) any neurological illness; (ii) history of
cranial trauma with loss of consciousness; (iii) past or present substance
abuse, except nicotine or caffeine (iv) intelligence quotient (IQ) smaller
than 70; and (iv) for patients, any other psychiatric process, and (v) for
controls, any psychiatric or neurological diagnosis or treatment.

Schizophrenia symptoms were scored using the Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987). Healthy controls
were recruited through advertisements. Demographic and clinical data
are shown in Table 1.

Cognitive data for both groups were collected using: the Wechsler
Adult Intelligence Scale, WAIS-III (IQ), the Wisconsin Card Sorting Test
(WCST; completed categories and percentage of perseverative errors),
and the Spanish version of the Brief Assessment in Cognition in
Schizophrenia Scale (BACS)(Segarra et al., 2011).

After receiving full printed information, subjects gave their written
informed consent. The ethical committees of the Hospital Clinico de
Valladolid endorsed the study.

2.1. EEG processing

2.1.1. EEG acquisition and preprocessing

EEG recordings were obtained following MRI scans, after a resting
period of 30 minutes. Data were recorded using a 17-channel EEG
system (BrainVision®, Brain Products GmbH). Active electrodes were
placed in an elastic cap at Fpl, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, O1,
02, T5, T6, Fz, Pz and Cz (international 10-20 system). Impedance was
kept under 5kQ. Sampling frequency was 500 Hz. During EEG acqui-
sition, each channel was referenced over Cz electrode and re-referenced
to the average activity of all active sensors (Bledowski et al., 2004;
Gomez-Pilar et al., 2018). Thirteen minutes of eyes-closed EEG was
obtained during an auditory odd-ball 3-stimulus paradigm, which
consisted of 600 random sequences of target (500 Hz-tone, probability
0.2), distractor (1000 Hz-tone, probability 0.2), and standard (2000 Hz-
tone, probability 0.6) tones. The tone duration was 50 ms, rise and fall
time being 5ms and intensity being 90 dB. Inter-stimulus interval be-
tween tones randomly jittered between 1.16 and 1.44s. The partici-
pants were asked to press a button whenever they detected the target
tones. Target tones were considered ‘attended tones’ when they were
followed by a button press. Only ‘attended’ target tones were taken into
account for further analysis (Gomez-Pilar et al., 2015). Alertness dif-
ferences across groups were controlled by comparing accuracy of target
responses.
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A three-step artifact rejection algorithm was applied to minimize
electrooculographic and electromyographic contamination (Bachiller
et al., 2015a): (i) an Independent Component Analysis (ICA) was car-
ried out to discard noisy ICA components; (ii) after ICA reconstruction,
EEG signals were divided into trials of 1 s length (ranging from 300 ms
before stimulus onset to 700 ms after stimulus onset); and (iii) an au-
tomatic method was applied to reject trials whose amplitude exceeded
an adaptive statistical-based threshold (Nunez et al., 2017). In this last
method, the mean and standard deviation of each channel and for each
stimulus was computed. Then, trials that exceeded mean *
4 x standard deviation in at least two channels were discarded. This
ensures to obtain artifact-free trials for all channels.

Signals were band-pass filtered between 1 and 70 Hz. In addition, a
50 Hz notch filter was used to remove the power line artifact.

2.1.2. EEG entropy

Entropy is a thermodynamic function adapted from information
theory. Entropy can be seen as a measure of the irregularity of a signal,
estimating the degree of disorder by assessing the distribution of its
spectral components. In this study, the continuous wavelet transform
was used to compute the entropy of the signals. The spectral entropy
(SE) can be defined as follows:
1

SE(k) = )

D WS, (k,s)log [WS, (k,s)],
s @

where WS, is the normalized wavelet scalogram, k is the time interval,
and s the scaling factor of the mother wavelet. In order to avoid edge
effects in continuous wavelet transform (CWT), the cone of influence
(COI) for pre-stimulus and response time windows was computed. The
SE was computed in the broadband, i.e. between 1 Hz and 70 Hz, since
we want to describe the overall SE dynamics.

2.1.3. EEG brain graphs

EEG brain graphs provide a useful tool to characterize the functional
brain network. Using this approach, network nodes are represented by
electrodes, whereas network edges are set by computing the neural
coupling between pairs of electrodes. Different methods can be used to
estimate the neural coupling. In this study, we selected the PLV across
successive trials (Lachaux et al., 1999), since it is sensitive to both low-
amplitude oscillatory EEG components (Spencer et al., 2003) and
nonlinearities (van Diessen et al., 2015). PLV can be computed using
different methodologies. We used the CWT to compute the phase in-
formation from each trial (Bob et al., 2008). As in the SE computation,
cones of influence were also considered.

Functional connectivity matrices were constructed using PLV values
to characterize the neural coupling between each pair of electrodes.
With no thresholding applied, these matrices ranged between 0 and 1,
thereby, functional connectivity matrices were also constrained based
on PLV ranged between 0 and 1: a value of 0 is obtained when signals
do not show any synchronization and a value of 1 is observed when two
signals are perfectly synchronized.

2.1.3.1. Graph parameters. After using CWT approach to perform
filtering and phase extraction in one operation, the PLV between two
signals x(t) and y(t) can be obtained evaluating the variability of the
phase difference across successive trials:

N
Z A%y (K.s,m)
n=1

where N, is the number of trials, Ag,, is the instantaneous phase
difference between x and y signals, k is the time interval, and s the
scaling factor of the mother wavelet.

Firstly, the event-related wave was computed for each subject by the
synchronized averaging of all the trials corresponding to attended
target tones. Secondly, a low-pass finite impulse response filter with

PLV, (k,s) =

>

1
Nt )
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cut-off frequency of 8 Hz was applied to the evoked wave in order to
obtain only the components related to delta and theta frequency bands.
Thirdly, the maximum amplitude of the low-pass filtered evoked wave
in the Pz channel was located into a window ranging from 250 to
550 ms from the stimulus onset (Bachiller et al., 2015b). The corre-
sponding sample to the maximum amplitude was used as a central time
sample of the response window. Finally, the response window was set
on = 150 ms around the central time sample.

Normalized CLC and PL can be defined as:

(e}
CLC = Crandum ’ 3)
L
PL = Lmndom’ 4
where C and L can be defined as:

1 N Zi# z;illwijwilel
C=— —_———

N Zz# z;illwijwil )

N(N-1)

L=< 1

Zint Z#i Ly (6)

Finally, the connectivity strength was computed using the network
density as:

_ Zf\;1 Zj>iwij
- T ' %)

In the previous equations, w; refers to PLV between nodes i and j
(for functional analyses) or to the structural connectivity between two
regions using the streamlines from MRI (for structural analyses). N is
the total number of nodes of the network (17 in EEG analyses, 84 in
MRI). L; is defined as the inverse of the network edge weight wy (Stam
et al., 2009). Finally, in Eq. (7), T = N(N — 1)/2, which is the total
number of connections in an undirected graph.

2.1.4. Segmentation of the EEG response

The modulation of the graph parameters along the odd-ball task was
assessed by considering two windows: (i) the pre-stimulus window,
which is a period of expectation before the stimulus onset, ranging from
-300 ms to the stimulus onset; and (ii) the response window, chosen to
capture the P3b response (150 to 450 ms after stimulus onset).

2.2. MRI acquisition and processing

A Philips Achieva 3 Tesla Unit (Philips Healthcare, Best, The
Netherlands) at the MRI facility from Valladolid University was em-
ployed. Acquisitions consisted of a T1-weighted (anatomical) image
and diffusion weighted images. A pipeline processing was carried out in
order to obtain structural connectivity matrices (structural con-
nectomes), as described in (Molina et al., 2017b).

For the T1 images, a turbo field echo (TFE) sequence was employed,
and parameters included the following: 256 X 256 matrix size,
1 x 1 x 1 mm?® of spatial resolution and 160 slices covering the whole
brain.

With regard to the diffusion weighted images (DWIs), a single shot
EPI (echo planar imaging) spin echo sequence was employed. 61 gra-
dient directions and one baseline volume were acquired, with b-
value = 1000 s/mm?, 2 x 2 x 2mm? of voxel size, 128 x 128 matrix
and 66 axial slices covering the entire brain.

From the acquired images, a processing pipeline was designed in
order to employ both the T1-weighted and the diffusion images for the
construction of structural connectivity matrices. This pipeline is com-
posed of several steps and uses different freely available software tools
(FSL, Freesurfer, MRTRIX).

The processing pipeline of the acquired MRI volumes is designed to
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Fig. 1. Schematic overview for the network analyses from the structural and functional data.

obtain structural connectivity matrices by using both the anatomical
(T1-weighted) and diffusion images.

Firstly, non-brain structures were removed from the T1 images by
means of BET, a brain extraction tool from the FSL software (http://fsl.
fmrib.ox.ac.uk) (Smith, 2002). Next, 84 cortical structures were seg-
mented using Freesurfer (https://surfer.nmr.mgh.harvard.edu) (Fischl
et al., 2004; Desikan et al., 2006). Also starting from the same T1
images, gray matter, white matter and cerebrospinal fluid (CSF) were
also segmented, and subcortical gray matter structures were delineated
using FAST and FIRST utilities from FSL, respectively (Patenaude et al.,
2011; Zhang et al., 2001), and combined into a volume called 5tt (5-
tissue-type) image.

At the same time, and starting from the diffusion weighted images
(DWI), the brain was extracted using DWI2MASK tool from MRtrix
(www.mrtrix.org) (Dhollaner and Connelly, n.d.). Afterwards, orienta-
tion distribution functions were estimated from the diffusion data using
spherical deconvolution, employing DWI2RESPONSE and DWI2FOD
tools from MRtrix (Tournier et al., 2007). This method allows the use of
diffusion information beyond the tensor model, thus overcoming tra-
ditional problems of tensor-based tractography such as its bad behavior
in fiber crossings and kissings, which are abundant in the white matter.
The method of choice for fiber tracking (anatomically-constrained
tractography, using TCKGEN -ACT) uses both the diffusion data and the
5tt image (after registration) in order to discard streamlines that are
anatomically unfeasible. Two million streamlines were generated for
each subject.

In order to describe the diffusion at each voxel, diffusion tensors
were estimated using a least squares method (Salvador et al., 2005),
and Fractional Anisotropy (FA) volumes were computed from the dif-
fusion tensors using DTIFIT tool from FSL. FA quantifies the amount of
anisotropy in the diffusion tensor or, equivalently, how much it de-
viates from a totally isotropic diffusion. FA is usually interpreted as a
descriptor of white matter integrity, and decreases in FA have been
related to alterations in the white matter due to several factors (de-
myelination and axonal destruction, among others).

Finally, connectivity matrices were constructed from the tracto-
graphy results and the (registered) cortical segmentations using
TCK2CONNECTOME tool from MRtrix. When streamlines (tractography
output) connecting two cortical regions were found, this tool computes
the average FA for that specific connection. Thus, 84 X 84 connectivity
matrices were obtained using FA as connectome metrics. A threshold
was not applied to the connectivity matrices; however, some matrix
coefficients can be equal to zero when streamlines are not found for that

particular connection.

Similar dMRI analyses have been reported in schizophrenia (Di
Biase et al., 2017) and other neurocognitive conditions (Jones et al.,
2015).

2.3. Graph-theory parameters

From both the structural and functional connectivity matrices, we
calculated three graph-theory parameters to characterize global prop-
erties of the brain network: (i) connectivity strength by means of net-
work density (CS), (ii) network segregation using CLC, and (iii) network
integration by means of PL (Rubinov and Sporns, 2010). CLC and PL
were computed over an ensemble of 50 surrogate random networks,
which were used to normalize CLC and PL values obtained from the
original networks (Stam et al., 2009). This widespread method is useful
to obtain graph parameters independent of the network edge weights
and the network size.

As opposed to the broadband approach used to compute de SE,
functional parameters were computed into the theta frequency range
during pre-stimulus and task-related modulation (i.e. difference be-
tween the response and the pre-stimulus windows) and will be referred
to as EEG-PLpgrp, EEG-CSpgrr and EEG-CLCpgg, for the pre-stimulus
parameters, and as EEG-PLyop, EEG-CSyop and EEG-CLCyop, for the
modulation-related parameters. On the other hand, structural para-
meters will be referred to as dMRI-PL, dMRI-CS and dMRI-CLC.

The present data do not duplicate our published EEG network
analyses in schizophrenia (Gomez-Pilar et al., 2017), since those were
performed in a different sample using evoked response instead of
single-trial analyses.

A schematic overview for the network analyses both for functional
and for structural data is shown in Fig. 1.

3. Statistics

After testing parametric test assumptions, demographic, cognitive
and P300 latency and amplitude values were compared between pa-
tients and controls using Chi-square and t tests.

Network measurements were also compared between patients and
controls using t tests. When significant differences were found between
groups, the corresponding values were compared between chronic and
FE patients.

To test the main study hypothesis, in a first step we applied a
principal component analysis (PCA) with varimax rotation to individual
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SE modulation values, thus reducing the number of SE modulation
measurements (one per electrode) to one or few factors capturing most
of the corresponding variance for each case. The resulting individual
factor scores were saved for further analyses. We compared these SE
modulation factor scores between patients and controls using t tests.
Nodal SE values were compared between patients and controls in pre-
vious reports (Bachiller et al., 2014; Molina et al., 2017a) and therefore
not shown here.

Then, after testing for normality and homoscedasticity in the dis-
tribution of graph parameters, we applied two stepwise multivariate
regression models to assess: (i) the baseline predictors of entropy
modulation, and (ii) the correlates of entropy modulation. In both
cases, the dependent variables were the SE modulation factor scores.
For all the analyses, the level of significance was set to 0.05.

In the first analysis, we introduced the pre-stimulus graph para-
meters with significant between-group differences as independent
(predictive) variables. For the second analysis, independent variables
were modulation values in these parameters, showing significant dif-
ferences between patients and controls. These analyses were separately
performed in patients and controls, since previous analyses showed a
statistically significant difference between groups for both entropy and
graph-parameters (Bachiller et al., 2014; Molina et al., 2017a; Gomez-
Pilar et al., 2017) and we hypothesized different associations in both
groups. We discarded relevant collinearity effects with tolerance values.

When significant between-groups differences were found we re-
peated the comparisons including only FE patients and controls to
discard that differences were merely an effect of chronicity and/or
treatment.

In the group with dMRI data, we studied the associations between
structural graph parameters and SE modulation. Since the distribution
of structural graph parameters differed from normality in the patients,
their association with SE modulation was assessed by means of
Spearman correlations.

Clinical and cognitive correlates of graph parameters were assessed
using multivariate stepwise regression models, where predictive vari-
ables were graph parameters with significant differences between
groups. We also calculated the possible relationships between treatment
doses, illness duration and functional parameters.

A database with the main data supporting the present results is
available (Mendeley Data doi:10.17632/g9crh5b6bz.2).

4. Results

There were no significant differences in age or sex distribution be-
tween patients and controls. Patients showed a significant generalized
cognitive deficit and reduced P300 amplitude (table 1).

Factor analysis for SE modulation yielded a two-factor solution
factor (Table 2) that explained 67.11 % of total variance. The first
factor was positively contributed by frontal anterior and medial (Fp1,
Fp2, F3, F4, Fz), central (C3, C4, Cz) temporal (T5, T6), occipital (O1,
02), sensors (eigenvalue 10.10, 59.44% of variance), while the second
factor was contributed by frontal lateral (F7, F8) and parietal (P3, P4,
Pz) sensors (eigenvalue 1.41, 8.33% of variance). Scores for the first
factor were significantly higher for the patients (t = 4.20, df = 133,
p < 0.001), reflecting a smaller modulation at the sensors included in
this factor (since SE values decreased at the response window and thus
the difference should be negative). FE patients alone also showed more
positive values for the first factor (i.e., smaller SE modulation) than
controls (mean 0.206, sd 0.695, t = 2.03, df = 108, p = 0.04)

4.1. Comparison of functional network parameters

Patients showed larger connectivity strength values at the pre-sti-
mulus window (EEG-CSpgg) for the theta band (t = 3.03, df = 133,
p = 0.003), and smaller modulation values: EEG CLCyop (t = —2.42,
df = 133, p = 0.017), EEG-PLyop (t= —2.77, df = 133, p = 0.006)
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Table 2
Factor structure resulting from the principal components analysis of SE mod-
ulation values for each sensor. Factor loads are shown.

Component

1 2
FP1 0.604 0.551
FP2 0.602 0.527
F3 0.841 0.276
F4 0.739 0.345
Cc3 0.576 0.492
C4 0.542 0.529
P3 0.282 0.853
P4 0.267 0.764
o1 0.720 0.375
02 0.704 0.372
F7 0.377 0.705
F8 0.324 0.751
T5 0.666 0.420
T6 0.629 0.378
Fz 0.918 0.098
Cz 0.715 0.374
Pz 0.268 0.844

and EEG-CSpop (t= —2.89, df =133, p=0.004) in that band
(Table 3). Those values were used as predictors in further analyses.
Chronic patients showed significantly larger EEG-CSPRE values than FE
patients, but not significant differences for EEG_CLCyop, EEG-PLyop
and EEG-CSy;op were found between chronic and FE patients (Table S1,
see Supplementary material).

4.2. Prediction of SE modulation

4.2.1. Functional predictors

In controls, pre-stimulus graph parameters were not predictive of
factor scores summarizing SE modulation. In patients, theta band EEG-
CSpgrg directly predicted scores of the first factor for SE modulation
(R?=0.188, df=1,46; F=10.65; f=0.43; p=0.01; Fig. 2). Thus, a
larger average strength of pre-stimulus functional connections in this
band was associated with smaller SE modulation (since SE decreased
from pre-stimulus to response).

In the FE patients considered alone, pre-stimulus EEG-CSpgg did not
predict SE modulation.

4.2.2. Structural predictors

In controls, no significant associations were found between struc-
tural brain network  parameters and SE = modulation
(—0.10 < R < 0.20). In patients, first factor scores for SE modulation
were negatively associated to structural dMRI-CLC (R* = 0.144,
p = 0.03). Thus, larger structural clustering was associated to better
task-related SE modulation (Fig. 3).

Table 3

Spectral entropy (factor scores) and graph parameters (pre-stimulus and modulation) in
patients and controls. Statistically significant differences are marked using asterisks:
*p < 0.05; *p < 0.01; ***p < 0.005.

Controls Patients
Entropy modulation factor scores (Factor 1)*** -0.31 (1.13) 0.44 (0.66)
Entropy modulation factor scores (Factor 2) 0.06 (1.12) -0.13 (0.53)
EEG-CLCprg 1.01 (0.00) 1.01 (0.01)
EEG-PLprg 1.10 (0.02) 1.10 (0.03)
EEG-CSprg** 0.34 (0.04) 0.36 (0.04)
EEG-CLCpop* 0.00 (0.01) 0.00 (0.01)
EEG-PLpop™ 0.01 (0.02) 0.00 (0.02)
EEG-CSymop™** 0.02 (0.03) 0.01 (0.02)
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Fig. 2. Scatterplot showing the association in the patients between A) pre-stimulus theta
density and SE modulation for the sensors included in the first factor from the principal
components analysis and B) between structural clustering coefficient and SE modulation
(first factor).

o
§ 2 [ . 8
"
oy
51 Wreman® O O
i | ¥ o0
% OF (@) -8
= O 0 " e,
w1t @ O o
-0.04 -0.02 0 0.02 0.04 0.06
Modulation of functional connectivity strength
o 2
3 * X
0 x %
© -~
oS
E'z %* # .~.~fl
8, % ** .
-0.05 0 0.05 0.1 0.15

Modulation of functional connectivity strength

Fig. 3. Scatterplot showing the association of theta band density modulation and SE
modulation (first factor) in patients (A) and controls (B). Open circles: FE patients; solid
circles: chronic patients; stars: healthy controls). In both groups, the modulation of
connectivity strength was inversely associated with SE modulation, but pre-stimulus
connectivity strength was associated with SE modulation only for patients (see text).

4.3. Underpinnings of entropy modulation

In controls, first factor scores for SE modulation were inversely as-
sociated to EEG-CSyop (R% = 0.171, df = 1,85, F = 17.58; § = —0.414,
p < 0.0001; Fig. 3). Therefore, larger increases of EEG-CSyop (i.e.,
larger global connectivity increases in the theta band from pre-stimulus
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to response) were associated with more negative values of SE mod-
ulation. In other words, larger increases of theta connectivity strength
were associated to a higher task related SE modulation, since an SE
decrease from pre-stimulus to response is the expected task-related
response. SE modulation scores for the sensors included in the second
factor were not predicted by network modulation properties in controls.

In patients, SE modulation for the electrodes included in the first
factor was similarly inversely associated to EEG-CSyop in the theta
band (R*=0.380, df =1,46; F =28.21; = —0.617 p < 0.0001;
Fig. 3). Therefore, larger increases of theta band EEG-CSy;op Were also
associated with higher SE modulation in patients.

In the FE patients considered alone, SE modulation for the first
factor was also inversely associated to theta band EEG-CSyop
(R? = 0.318, df = 1,21; F = 9.32; B = —0.564; p = 0.006; Fig. 3).

As in controls, SE modulation scores for the sensors included in the
second factor were not predicted by network modulation properties.

4.4. Clinical and cognitive correlates

In the patients, EEG-CSyop was inversely associated with negative
symptoms (R® = 0.117, df = 1,46; F = 5.58; f = —0.343 p = 0.023).
In this group, EEG-CLCpop predicted verbal memory (R? = 0.102,
df =1,46; F=4.54; [=0.319, p=0.039), working memory
(R? = 0.208, df = 1,46; F = 10.25; B = 0.456 p = 0.003) and verbal
fluency (R? =0.121, df = 1,46; F = 4.85; f = 0.348, p = 0.035) per-
formance, and EEG-PLyop predicted problem solving performance
(R? = 0.190, df = 1,46; F = 8.92; B = 0.507 p = 0.005).

In controls, modulation of theta network properties was unrelated
to cognitive performance.

There were no significant associations between treatment doses or
duration and, on the other hand, SE modulation and network para-
meters.

5. Discussion

In this study, SE modulation at frontal anterior, central, temporal
and occipital electrodes (contributing to most of SE variance) was in-
versely associated with the pre-stimulus functional connectivity
strength (EEG-CSpgg) in patients. Moreover, a larger theta CS increase
from pre-stimulus to response windows (EEG-CSysop) leads to higher SE
modulation.

Our data also reveal a large pre-stimulus theta EEG-CSpgg in pa-
tients. This result, considered together with the smaller change of theta
EEG-CS modulation (i.e., in the patients, this parameter increased from
pre-stimulus to response windows to a smaller degree than in controls),
suggests that a hyperactive baseline contributes to a smaller capacity
for modulation.

It worth mentioning that the first factor in the PCA included the
sensors where significant entropy modulation differences were found in
our previous SE comparison between patients and controls (F3, C3, C4,
Fz and Cz) (Molina et al., 2017a). Thus, the first factor summarized the
modulation in the sensors with significant between-group differences.
This would imply that theta EEG-CS (both at baseline and its task-re-
lated modulation) is relevant to explain the modulation deficits found
in schizophrenia.

Connectivity strength represents an average of the graph functional
connections. The direct association in the patients between EEG-CSprp
and SE modulation suggests that a larger number of global functional
connections in the pre-stimulus period (in the theta band of the func-
tional network) is associated with a smaller task-related change in SE.
This seems coherent with a previous finding at the sensor-lever: larger
values of noise power (likely reflecting induced activity) were asso-
ciated to smaller entropy modulation in a different sample (Molina
et al.,, 2016). Larger broadband (Winterer et al., 2004) and gamma
(Diez et al., 2013) noise power was earlier reported in schizophrenia.
Taken together, these results support a functional hyper-connectivity
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state in schizophrenia patients that may hamper modulation in the
functional network, which also seems coherent with previous data with
functional magnetic resonance (Manoach, 2003).

Our functional network analysis is based on connectivity derived
from PLV between sensors. Since phase synchrony likely reflects the
coordinated activation of neural ensembles between regions (Roach and
Mathalon, 2008), the larger density values at baseline in the patients
might reflect an over-activation of neural ensembles, which, according
to their inverse association with SE modulation, hampers the flexibility
of neural assemblies with task demands. One possible reason behind
these findings might be related to the described inhibitory hypofunction
of the cortex in schizophrenia (Lewis et al., 2012), given the role of
GABA cells in the appropriate building of transitory neural assemblies
underlying cognition (Buzsdki, 2006). Values of EEG-CSyop Were as-
sociated to entropy modulation in both control and schizophrenia
groups, whereas in the case of patients, EEG-CS was higher at pre-sti-
mulus and its pre-post stimulus modulation was smaller. Therefore, a
quantitative difference seems more likely than a qualitative, categorical
difference in the underpinnings of such modulation between patients
and controls.

It is interesting that negative symptoms were predicted by EEG-
CSyop, but cognitive performance was instead predicted by modulation
in EEG-CLCyop and EEG-PLyop. This may imply that cognitive abilities
are underpinned by a reorganization of network properties more
readily reflected in graph parameters. For instance, local and inter-re-
gional changes in connectivity may be more easily captured by CLC
than by SE modulation, even if the latter was previously reduced to two
factors and thus likely reflects a more global effect.

The association found in the patients between SE modulation and
structural network properties (AMRI-CLC) suggests that density and
integrity of short-distance structural connections (clustering reflects the
connections among regions connected to a given node) facilitates the
modulation of functional connectivity. Structural properties (FA) of
interregional connections may thus facilitate the formation of neural
assemblies underlying task response. Widespread alterations of white
matter integrity (which likely produce structural connectivity deficits)
have been reported in schizophrenia using dMRI (Ellison-Wright and
Bullmore, 2009).

Our work has limitations, most notably the absence of a treatment-
naive group. However, FE patients showed similar patterns of func-
tional connectivity differences and treatment doses did not relate to
entropy or graph parameters. Also, since both entropy and density
modulation were obtained from the same dataset, it might be con-
sidered that their relation would result from data redundancy.
However, both parameters reflect completely different properties of
EEG dynamics and connectivity strength measurements help char-
acterizing SE deficit in the patients. In addition, EEG is not completely
free of volume conduction, even using a reference average approach as
in the present study. Nevertheless, dMRI data can be used as control for
the field spread effect. Finally, the number of EEG sensors was low, but
this may be a relatively minor problem since we did not attempt to
localize sources.

In conclusion, our findings suggest that an excess of pre-stimulus
functional connectivity in the theta band and a deficit of structural
clustering hamper SE modulation of the EEG, and this deficit might be
underpinned by a smaller reorganization of connectivity, with a re-
duced formation of transitory functional connections.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.02.005.
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