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Abstract
The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with

the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that

the optimal fractal tree-like channel network obeys the well-accepted Murray’s law of βm = N−1/3 (βm is the optimal diameter ratio

between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the

assumption of no-slip conditions at the channel wall–liquid interface. However, at the microscale, the no-slip condition is not

always reasonable; the slip condition should indeed be considered at some solid–liquid interfaces for the optimal design of the

fractal tree-like channel network. The present work reinvestigates Murray’s law for laminar flow in a fractal tree-like microchannel

network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like

microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic

resistance is not only dependent on the branching number, as stated by Murray’s law, but also dependent on the slip length, the

level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal

diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the

daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found

to become relaxed and simplified to Murray’s law when the ratio between the slip length and the diameter of the channel is small

enough.

482

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:jingdalei_hit@126.com
mailto:yunlupan@hit.edu.cn
mailto:kazen_6@163.com
https://doi.org/10.3762%2Fbjnano.9.46


Beilstein J. Nanotechnol. 2018, 9, 482–489.

483

Introduction
For the microfluidic systems widely used in various fields such

as lab-on-a-chip for chemical and biomedical detection and

microchannel heat sinks for the cooling of electronic systems

[1,2], the optimal mass and heat transfer performance is essen-

tial, yet challenging. For example, a microchannel heat sink has

a better convective heat transfer performance, but needs a larger

pumping power. Thus, the optimal design of the channel layout

to achieve better mass and heat transfer performance is needed.

Fractal tree-like branched networks are found abundant in

nature, for example, in the vascular systems of animals, in tree

branches and leaf veins of plants, all of which can provide

inspiration for the optimal design of the channel layout to

achieve the optimal mass and heat transfer [3-5]. These

branched networks are known to have excellent performance in

transport processes of heat and mass, and have been widely

studied and used in the fields of fluid flow, heat conduction, and

heat convection [6-18].

For fluid flow, it is found that the fractal tree-like channel

networks require less pumping power and have a smaller

hydraulic resistance as compared with the conventional parallel

channel systems under the constraint of the same channel

volume. Furthermore, the optimal structure of the fractal tree-

like channel networks for fluid flow to achieve minimum

hydraulic resistance obeys the well-accepted Murray’s law in

the manner of βm = NΔ, where βm is the diameter ratio between

the daughter channel and the parent channel, N is the branching

number, Δ is a parameter relating to the different practical ap-

plications. It has been found that Δ = –1/3 for laminar flow and

−7/3 for turbulent flow [12,14-18].

Although Murray’s law has been verified by numerous theoreti-

cal and experimental studies, it is obtained under a no-slip

condition assumption at the channel wall–liquid interface

[12,14-18]. This no-slip condition assumption is reasonable for

fluid flow in a macroscale channel, however, for a microscale

channel, this assumption is debatable, because it has been found

that there is another hydrodynamic condition, the slip condition,

at some solid–liquid interfaces [19-23]. Figure 1 gives a simpli-

fied schematic of the no-slip condition and the slip condition,

indicating that a significant difference between the no-slip

condition and the slip condition is the relative velocity between

the solid wall and the adjacent liquid. For the slip condition, the

relative velocity is non-zero and the degree of slip is mani-

fested by the slip length b at the solid wall–liquid interface as

follows [20-23]

(1)

where νlw is the relative velocity between the solid wall and the

adjacent liquid, and  is the liquid velocity gradient in the

direction perpendicular to the solid wall. The reported value of

the slip length at various solid–liquid interfaces varies from tens

of micrometers down to several nanometers [19,21-23]. Thus,

the effect of slip on the macroscale fluid flow is usually weak

and negligible; however, for microscale fluid flow, slip is

believed to effectively reduce the hydraulic resistance of fluid

flow and should be considered [23-26]. Nevertheless, there is

less study on the fluid flow in the fractal tree-like microchannel

network considering the slip condition.

Figure 1: Simplified schematic of the no-slip and slip conditions. νlw is
the relative velocity between the wall and the adjacent liquid, νl is the
velocity field of the liquid, b is the slip length, and  is the liquid
velocity gradient in the direction perpendicular to the wall.

To solve this problem, the present work reinvestigates the

laminar flow in a fractal tree-like microchannel network consid-

ering the slip condition. The optimal structure of a fractal tree-

like microchannel network with slip for laminar flow to achieve

minimum hydraulic resistance is analyzed. The effects of slip

length, the structural and dimensional parameters (including the

branching number, the level number, the length and the diame-

ter of channel) on the optimal fractal tree-like microchannel

networks with slip condition are also studied.

Modeling
Generation of fractal tree-like microchannel
networks
For different applications of a fractal tree-like branched

network, a typical structure similar to that shown in Figure 2

has been widely used [6-18]. In the present work, a similar

structure of the fractal tree-like microchannel network is used to

study the transportation of fluid flow. This similar fractal tree-

like microchannel network is generated as follows. (1) From the

0th branching level with a single microchannel, every micro-
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channel is divided into N branches with the same length and

hydraulic diameter at the following level (e.g., N = 2 for the

case in Figure 2). (2) The geometric dimensions of every single

microchannel at a certain level satisfy the following scaling law,

(2)

where γ is the length ratio between the microchannel at the

(k+1)th level and the microchannel at the kth level, lk is the

length of the microchannel at the kth level, β is the hydraulic di-

ameter ratio between the microchannel at the (k+1)th level and

the microchannel at the kth level, dk is the hydraulic diameter of

the microchannel at the kth level, and m is the total number of

branching levels.

Figure 2: Schematic of a self-similar fractal tree-like microchannel
network with branching number N = 2 and total number of branching
levels m = 2. lk (k = 0, 1, 2) is the length of the microchannel at the kth
level and dk (k = 0, 1, 2) is the hydraulic diameter of the microchannel
at the kth level.

From Equation 2, the following equations can be easily ob-

tained,

(3)

where l0 and d0 are the length and hydraulic diameter of the

microchannel at the 0th level, respectively. During the genera-

tion of the fractal tree-like microchannel network, the values of

l0 and d0 are usually known. The fractal tree-like branched

network generated in this manner is a symmetric and self-simi-

lar network.

Theoretical model
In this section, the pressure-driven flow in the fractal tree-like

microchannel network generated in the last section will be

modeled. Before the modeling, the following assumptions are

made. (1) Every single microchannel is a smooth, cylindrical

tube and the thickness of the channel wall is thin enough to be

neglected. (2) The ratio between the length and diameter of

every single microchannel is large enough to make sure the

fluid flow is in steady state. (3) The fluid flow in every single

microchannel is incompressible, laminar, fully developed

Newtonian flow. (4) The effect of junctions on the pressure

drop is neglected. (5) The wall of every single channel suffers

the same slip length.

Based on the above assumptions together with the

Hagen–Poiseuille equation, the hydraulic resistance of fluid

flow in any single microchannel with boundary slip at the kth

level can be expressed as follows [26]

(4)

where RHk is the hydraulic resistance of fluid flow in any single

microchannel at the kth level, and μ is the dynamic viscosity of

the fluid flow.

For the pressure-driven flow in a fractal tree-like microchannel

network with N branches and m levels, the total hydraulic resis-

tance of the fluid flow in the entire network can be obtained

using the electric circuit analogy based on the physical similari-

ties between microfluidics and electronics as follows [17,27].

(5)

where RH is the total hydraulic resistance of the fluid flow in

the entire network.

Introducing Equation 3 into Equation 5, the total hydraulic

resistance can be further expressed as

(6)

In order to carry out the optimal analysis of the fractal tree-like

microchannel network with slip to achieve the minimum

hydraulic resistance, an equivalent single microchannel is intro-
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duced as a reference based on a similar method to that presented

in the literature [11,12,17]. Furthermore, the equivalent single

microchannel is assumed to have the same volume and length as

the entire network. This is because in the self-evolution of

natural fractal tree-like systems (or the optimal design of a

manufactured fractal tree-like channel network for fluid flow to

achieve minimum hydraulic resistance) the total volume and

length of the network are usually kept constant as constraints. In

addition, the equivalent single microchannel is assumed to

suffer under no-slip condition when analyzing the effect of slip

on the optimal design of the tree-like network and its hydraulic

resistance. Thus, the hydraulic resistance of the equivalent

single microchannel, RHe, can be expressed as follows.

(7)

where le is the equivalent length of the equivalent single micro-

channel, and de is the equivalent diameter of the equivalent

single microchannel. Based on the assumption that the equiva-

lent single microchannel has the same length as the entire

network, the equivalent length of the equivalent single micro-

channel is given as [11,12,17]

(8)

Because the equivalent single microchannel has the same

volume as the entire network, the equivalent diameter of the

equivalent single microchannel can be obtained as follows

[11,12,17]

(9)

where V is the total volume of the entire network and Vk is the

volume of every single microchannel at the kth level of the

network. Thus, the equivalent diameter of the equivalent single

microchannel can be expressed as,

(10)

Combining Equations 6–10, the dimensionless hydraulic resis-

tance of the laminar flow in the fractal tree-like microchannel

network can be expressed as,

(11)

From Equation 11, the dimensionless hydraulic resistance of the

laminar flow in the fractal tree-like microchannel network is de-

pendent on the slip length, the structural and the dimensional

parameters (γ, β, N, m, d0). Equation 11 can be used to analyze

the effects of different parameters on the hydraulic resistance of

fluid flow in a tree-like microchannel network and to optimize

the structure of the fractal tree-like microchannel network for

fluid flow to achieve the minimum hydraulic resistance. Actu-

ally, Equation 11 can be considered as a comprehensive model

to analyze the hydraulic resistance of laminar flow in the fractal

tree-like microchannel network with both no-slip (b = 0) and

slip conditions (b ≠ 0) and to compare their difference.

Results and Discussion
Based on Equation 11, Figure 3 gives the effect of the diameter

ratio β between the daughter channel and the parent channel on

the dimensionless hydraulic resistance of the laminar flow in

the fractal tree-like microchannel network at different slip

lengths b, branching numbers N, level numbers m and the length

ratios γ between the daughter channel and the parent channel. In

order to better illustrate the variation trend of the dimensionless

hydraulic resistance, β is limited to a small range from 0.5 to 1.

Figure 3 reveals that for both the no-slip (the case of b/d0 = 0 in

Figure 3) and the slip condition (the cases of b/d0 ≠ 0 in

Figure 3), the dimensionless hydraulic resistance first decreases

and then increases with the increasing diameter ratio β. This

means that there is an optimal diameter ratio βm, at which the

hydraulic resistance reaches minimum when the diameter ratio

between the daughter channel and parent channel is equal to βm.

This optimal diameter ratio βm is a significant parameter to

guide the optimal design of fractal tree-like microchannel

network for fluid flow to achieve the minimum hydraulic resis-

tance. From Figure 3, it can be found that for the laminar flow

in the fractal tree-like microchannel network under no-slip

condition (the case of b/d0 = 0 in Figure 3), the optimal diame-

ter ratio βm is only dependent on the branching number N of the

tree-like network. This is consistent with the well-accepted

Murray’s law of βm = N−1/3 and has been verified by both

theoretical analyses and experimental studies [12,14-18]. How-

ever, Figure 3 also reveals that for the tree-like microchannel

network with slip (the cases of b/d0 ≠ 0 in Figure 3), the

optimal diameter ratio βm to achieve the minimum hydraulic
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Figure 3: The dimensionless hydraulic resistance of laminar flow in a fractal tree-like microchannel network under both no-slip and slip conditions
versus the diameter ratio β at different (a) ratios between slip length b and the diameter d0 of channel at the 0th level, (b) the branching number N,
(c) the length ratio γ and (d) the level number m.
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resistance is not only dependent on the branching number N, but

also dependent on ratio between the slip length b and the diame-

ter d0 of channel at the 0th level, the length ratio γ and the level

number m. In other words, the existence of slip increases the

complexity of the optimal design of a fractal tree-like micro-

channel network to achieve the minimum hydraulic resistance.

Next, the effects of the slip length, the diameter of the channel

at the 0th level, the branching number, the length ratio and the

level number on the optimal diameter ratio will be analyzed in

detail.

When comparing the dimensionless hydraulic resistance of the

no-slip condition and the slip condition in Figure 3, it can be

found that the slip can significantly reduce the dimensionless

hydraulic resistance. From Figure 3a, when the diameter d0 of a

channel at the 0th level remains constant, the increasing slip

length can effectively reduce the dimensionless hydraulic resis-

tance for the networks with the same structural parameters and

dimensional parameters. This can be easily explained by Equa-

tion 4. Figure 3a also shows that the dimensionless hydraulic

resistance stays constant with the varying diameter d0 of the

channel at the 0th level for the no-slip condition. However, the

dimensionless hydraulic resistance for the case of slip decreases

with the decreasing diameter d0 of channel at the 0th level when

the non-zero slip length stays constant. Additionally, it can be

found that the effects of the branching number N, the length

ratio γ and the level number m on the dimensionless hydraulic

resistance for the case of slip is similar to the results for the case

of no-slip [17].

Based on the above analysis, Figure 4 gives the effects of the

slip length, the structural and dimensional parameters (the

branching number, the level number, the length ratio and the di-

ameter of channel at the 0th level) on the optimal diameter ratio

to achieve the minimum hydraulic resistance for the laminar

flow through a self-similar fractal tree-like microchannel

network with slip conditions (the cases of b/d0 ≠ 0 in Figure 4).

Furthermore, the effects of the branching number, the level

number, the length ratio and the diameter of channel at the 0th

level on the optimal diameter ratio for the laminar flow in

the tree-like microchannel network with no-slip (the cases of

b/d0 = 0 in Figure 4) are also given as comparison. All the

curves in Figure 4 are obtained based on Equation 11.

All the results for the case of no-slip in Figure 4 reveal that the

optimal diameter ratio for the laminar flow in the fractal tree-

like microchannel network to achieve the minimum hydraulic

resistance is independent of the level number, the length ratio

and the diameter of channel at the 0th level and is only depend-

ent on the branching number in a power function manner with a

power of −1/3. This result obtained from Equation 11 is in good

agreement with Murray’s law of βm = N−1/3. This also verifies

that the present model is correct.

However, for the case of slip, the results are much more compli-

cated. From Figure 4a, the optimal diameter ratio still decreases

with the increasing branching number N for slip conditions, but

the relationship between the optimal diameter ratio and the

branching number does not satisfy the strict manner of the

power function with a power of −1/3. Figure 4a also indicates

that both the slip length and the level number can affect the

optimal diameter ratio for the tree-like network with slip to

achieve minimum hydraulic resistance. In detail, Figure 4b

shows that the optimal diameter ratio always decreases with in-

creasing slip length for any tree-like network with different

branching number and level number. Furthermore, Figure 4c

shows that the optimal diameter ratio decreases with the in-

creasing level number for the case of slip. Figure 4d shows that

the optimal diameter ratio increases with increasing channel di-

ameter at the 0th level for the fractal tree-like network with a

fixed non-zero slip length, which seems completely different

from the result for the no-slip condition. Actually, the results

shown in Figure 4c and Figure 4d are consistent. Under a fixed

non-zero slip length at every single channel wall, the diameter

of the microchannels at the newly generated level decreases

with the increase of level number, and the effect of slip on the

fluid flow in the newly generated channels becomes stronger.

Thus, a smaller optimal diameter ratio is needed for the micro-

channel with a larger level number to achieve the minimum

hydraulic resistance. Figure 4e indicates that the optimal diame-

ter ratio for the case of slip decreases with the increasing length

ratio. This is also different from the result of the no-slip condi-

tion.

Additionally, both the results in Figure 4b and Figure 4d reflect

that b/d0 is an important parameter that affects the optimal di-

ameter ratio. With decreasing b/d0 or increasing d0/b, the

optimal diameter ratio will gradually increase to approach the

value of no-slip condition, that is, the complicated relations be-

tween the optimal diameter ratio and the structural and dimen-

sional parameters simplify to that of Murray’s law, N−1/3. This

is consistent with Equation 4, reflecting that the effect of slip on

the fluid flow gradually diminishes with the increasing diame-

ter of the channel. This is also the reason that the effect of slip

on the fluid flow on the macroscale is usually neglected.

The present work indicates that although the slip can effec-

tively reduce the hydraulic resistance as shown in Equation 4

and Figure 3, it increases the complexity of the optimal design

of the fractal tree-like microchannel network to achieve the

minimum hydraulic resistance for fluid flow. For the no-slip

condition, there is a well-accepted optimization principle (i.e.,
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Figure 4: The optimal diameter ratio to achieve minimum hydraulic resistance versus (a) the branching number N, (b) slip length b, (c) the level num-
ber m, (d) the channel diameter d0 at the 0th level and (e) the length ratio γ.

Murray’s law with a simple expression of βm = N−1/3) to guide

the optimal design, and the unique factor that influences the

optimal diameter ratio is the branching number. However, for

the slip condition, every parameter of the slip length, the

branching number, the level number, the length ratio and the di-

ameter of channel at the 0th level can affect the optimal diame-

ter ratio in a particular way, and there is no simple and clear

mathematical relation between the optimal diameter ratio and

the five influencing factors. However, using Equation 11, the

optimal diameter ratio can be easily obtained. Additionally, it is

noted that the complicated relations between the optimal diame-

ter ratio and the structural and dimensional parameters for the

slip condition become relaxed and simplify to that of Murray’s

law when b/d is very small.

Conclusion
In present paper, the effects of slip length b, as well as the struc-

tural and dimensional parameters (the branching number N, the
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level number m, the diameter ratio β of the daughter channel

and the parent channel, the length ratio γ of the daughter

channel and the parent channel and the diameter of channel at

the 0th level d0) on the hydraulic resistance of laminar flow in a

self-similar fractal tree-like microchannel network with slip

condition are studied. It is found that there is an optimal diame-

ter ratio βm for the laminar flow in the fractal tree-like micro-

channel to achieve minimum hydraulic resistance. For the

no-slip condition, the optimal diameter ratio is only dependent

on the branching number in the manner βm = N−1/3, namely, the

well-known Murray’s law. However, for slip condition, this

optimal diameter ratio is not only dependent on the branching

number, but also dependent on the slip length, the level number,

the length ratio and the diameter of channel at the 0th level.

Furthermore, the optimal diameter ratio decreases with increas-

ing slip length, increasing level number and increasing length

ratio, but decreases with decreasing channel diameter at the 0th

level. Thus, the optimal design of a fractal tree-like microchan-

nel network to achieve the minimum hydraulic resistance for

fluid flow should be carefully treated when slip condition is

considered. Additionally, the complicated relations between the

optimal diameter ratio and the structural and dimensional pa-

rameters become relaxed and simplify to Murray’s law when

the ratio between slip length and diameter of channel is small

enough.
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