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Abstract

Programmed death-1 (PD-1) is a co-inhibitory molecule and is seen in CD4+ and CD8+ T cells. 

Upon binding to its ligands, programmed death ligand-1 (PD-L1) and -2 (PD-L2), PD-1 negatively 

regulates interleukin 2 (IL-2) production and T cell proliferation. Activated effector T-cells, which 

kill cancer cells, can be affected by PD-1 signaling in some lymphoid neoplasm that express PD-

L1 or PD-L2. PD-L1 expression in tumor cells can be induced by extrinsic signal (i.e. interferon 

gamma) or intrinsic signals, such as genetic aberrations involving 9p24.1, latent Epstein-Barr virus 

infection, PD-L1 3′-untranslated region disruptions, and activated Janus kinase/signal transducer 

and activator of transcription (JAK/STAT) pathway. Anti-PD-1 therapy improves the overall 

response rate to treatment in patients with lymphoid neoplasms, particularly relapsed/refractory 

classical Hodgkin lymphoma. Inspired by their success in treating patients with classical Hodgkin 

lymphoma, medical practitioners have expanded PD-1 therapy, given as a single therapy or in 

combination with other drugs, to patients with other types of lymphoma. In this review, current 

clinical trials with anti-PD-1 or anti-PD-L1 drugs are summarized. The results of numerous 

clinical trials will broaden our understanding of PD-1 pathway and shall expand the list of patients 

who will get benefit from these agents including those who suffer from lymphoid neoplasms.
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Introduction

T cell activation is explained by the two-signal model proposed by Bretscher and Cohn 

(Figure 1).[1] The first signal, which triggers T cell receptor (TCR) signaling, occurs when 

the major histocompatibility complex (MHC) molecule of an antigen-presenting cell (APC) 

presents a processed antigen to the TCR of a T cell. The second signal, which is an antigen-

independent, co-stimulatory or co-inhibitory signal delivered by the APCs, modulates TCR 

signaling and determines the T cell’s fate. The prototypical molecule of the second signal is 

CD28, which constitutively expressed in resting naïve T-cells.[2] CD28’s ligands (such as 

B7-1 or B7-2) induce cell-cycle progression, interleukin-2 (IL-2) production, and clonal 

expansion. If T cells do not receive co-stimulatory second signals from molecules like 

CD28, they become anergic. In contrast, cytotoxic T-lymphocyte antigen-4 (CTLA-4), 

which shares the same ligands with CD28, is a co-inhibitory receptor on T-cells that induces 

T-cell tolerance.[3] If T cells do not receive co-inhibitory second signals, fatal 

lymphoproliferation and multiorgan autoimmunity can occur in mice.[4] Additional second-

signal receptors and ligands, which are collectively called B7-CD28 family, have also been 

discovered and include programmed death ligand-1 (PD-L1) and PD-L2. Unlike B7-1 and 

B7-2, PD-L1 and PD-L2 do not bind to CD28 or CTLA-4. Instead, they bind to programmed 

death-1 (PD-1) on T-cells.

The PD-1 pathway has recently emerged as an attractive target in cancer immunotherapy. In 

the context of the cancer-immunity cycle, the aim of immunotherapy is to restore immune 

function at various steps of cancer-immunity cycle. Several clinical studies have shown that 

blocking the PD-1 pathway leads to significant responses in patients with various solid 

tumors.[5] Numerous clinical trials with PD-1 pathway blocking agents, used either alone or 

in combination with other therapies, are currently in progress. In this review, we discuss the 

functions of the PD-1 pathway in the cancer-immunity cycle, the armamentarium of PD-1 
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pathway blocking agents, current and prior clinical trials in patients with lymphoid 

malignancies and future directions in search.

The structure of PD-1, PD-L1, and PD-L2

PD-1 is a protein encoded by the 5-exon PDCD1 gene on chromosome 2q37.3. It consists of 

288 amino acids, and its calculated molecular weight is 31.6 kDa. However, Agata et al’s [6] 

immunoprecipitation of the protein revealed broad bands with molecular weights of 50–55 

kDa, suggesting that the protein is heavily glycosylated. PD-1 contains a single 

immunoglobulin V-like domain, a transmembrane domain, and an intracellular domain with 

an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-

based switch motif (ITSM).[7,8]

Two PD-1ligands, PD-L1 and PD-L2, have structures similar to that of PD-1 in that they 

contain an immunoglobulin V-like domain, an immunoglobulin C-like domain, a 

transmembrane domain, and an intracellular domain.[9] These ligands interact with PD-1 via 

their immunoglobulin V-like domains. PD-L1 is encoded by the 8-exon CD274 gene on 

chromosome 9p24.1, is composed of 290 amino acids, and has a molecular weight of 33.3 

kDa. Of note, it also competitively binds to B7-1, thus inhibiting the CD28-mediated co-

stimulation of T-cells.[10]

PD-L2 is encoded by the 7-exon PDCD1LG2 gene, and is located 42 kilobases apart from 

the CD274 gene on chromosome 9p24.1. It consists of 273 amino acids, and its molecular 

weight is 31.0 kDa.[11]

The PD-1 signaling pathway

PD-1 is present on T-cells as a monomer and is a negative regulator of IL-2 production and 

T-cell proliferation.[12,13] PD-1 inhibition of antigen receptor signaling is only seen when 

PD-1 ligation occurs close to the site of antigen receptor engagement.[13] Indeed, it has 

been observed that randomly located PD-1 migrates to the immunological synapse during 

the interaction between T cell and APC.[14] Once PD-1 has bound to ligands, its ITIMs and 

ITSMs are phosphorylated by the Src-family tyrosine kinases (Figure 2). The 

phosphorylated tyrosine residue subsequently recruits Src homology 2 domain-containing 

phosphatases (SHPs), which dephosphorylate signaling intermediates and down-regulate 

TCR signaling. Of note, ITIM recruits only SHP-2, but ITSM recruits both SHP-1 and 

SHP-2.[15, 16] SHP-2 appears to be more important than SHP-1 in PD-1 signaling because 

T cell stimulation with PD-L2 increases the amount of SHP-2 but not of SHP-1.[17] In 

addition, ITSM is more important than ITIM in PD-1 signaling because PD-1’s inhibitory 

function is lost when ITSM is mutated but not when ITIM is mutated.[15, 18, 19]

PD-1 inhibits phosphatidylinositol 3-kinase (PI3K)/Akt pathway by thwarting CD28-

mediated activation of PI3K via ITSM. In contrast, CTLA-4 bypasses PI3K and instead halts 

Akt induction via the intracellular serine/threonine phosphatase PP2A.[20] PD-1 can also 

block the RAS/MEK/Erk pathway. Of interest, PD-1 inhibits the PI3K/Akt pathway within 

minutes, whereas it takes a few hours for it to block the RAS/MEK/Erk pathway.[17] 

Ultimately, PD-1’s inhibition of both of these pathways halts cell cycle progression.[21] In 
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addition, PD-1’s inhibition of the PI3K/Akt pathway prevents T cell’s expression of the anti-

apoptotic protein Bcl-xL, which depends upon PI3K.[20] PD-1 also hinders phosphorylation 

of ZAP70, an essential molecule for T-cell activation; inhibits activation of PKC-θ, which is 

critical for IL-2 production, cell cycle progression and T-cell activation; and prevents 

effector T-cell development by inhibiting glycolysis and promoting fatty acid oxidation.[16, 

22, 23] Of note, PD-1 mediated inhibitory signals are inversely associated with the strength 

of the TCR signal. Furthermore, PD-1 inhibition can be overcome by T cell stimulation with 

CD28 or exogenous IL-2.[24]

The PD-1 pathway plays an important role in enabling tumor cells to evade the immune 

response. The rate of tumor lysis by cytotoxic T cells (CTLs) in vitro was lower in P815 

murine mastocytoma tumor cells with transgenic expression of PD-L1 than in parental tumor 

cells without PD-L1 expression. Furthermore, inoculating syngenic BALB/c mice with PD-

L1 expressing myeloma cells led to more rapid tumor growth, an outcome which was then 

suppressed by anti-PD-L1 antibodies.[25] Similarly, another study with a mouse model 

showed that PD-L1 expression in tumor cells confers resistance to activated CTLs but that 

this effect could be overcome with anti-PD-L1 or anti-PD1 antibodies.[26] In addition, Dong 

et al’s [27] study showed that PD-L1 expression in a melanoma cell line (624mel) enhanced 

apoptosis of PD-1-expressing CTLs.

Expression of PD-1, PD-L1, and PD-L2 in normal tissue

PD-1 is expressed in activated CD4+ and CD8+ T cells, naïve and activated B cells, myeloid 

dendritic cells, and with low intensity in monocytes. It is not expressed in resting T cells, but 

its expression can be induced within 24 hours of T cell activation.[28] In normal human 

tissue, PD-L1 expression is seen on follicular T-cells, macrophages and a subset of dendritic 

cells in lymphoid tissue, placental syncytiotrophoblasts, and dendritic cells/monocytes in the 

lung and liver, although low levels of PD-L1 mRNA are seen in almost all normal tissue.

[28–30] Expression of PD-L2 is more restricted compared with PD-L1. Low levels of PD-

L2 expression are seen in activated CD4+ or CD8+ T cell subsets, myeloid dendritic cells, 

monocytes, endothelial cells, and placental syncytiotrophoblasts.[31] Expression of PD-L1 

and PD-L2 is induced by inflammatory signals such as interferon gamma (IFN-γ), 

granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-4.[27, 32–34]

Expression of PD-L1 in lymphoid malignancies

In contrast to the infrequent PD-L1 expression in normal tissue, immunohistochemistry 

shows that expression of PD-L1 is often found in a variety of cancers.[5] However, the 

expression pattern of PD-L1 in tumor cells is not uniform. In some tumors, heterogeneous 

expression of PD-L1 is seen at the interface of the tumor and tumor-infiltrating lymphocytes 

(TILs).[35] In such cases, PD-L1 expression is likely to be induced by IFN-γ secreted from 

the TILs.[36] Homogeneous expression of PD-L1 is observed in other tumors, particularly in 

the Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (CHL).[37] Homogeneous 

PD-L1 expression usually correlated with intrinsic signals, which are reviewed below. The 

underlying mechanisms of PD-L1 expression are different in different types of cancer, and 

antibodies targeting different domains of PD-L1 have been used in various studies (Table 1).
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[35, 37, 38] Furthermore, companion diagnostic assays were developed specifically for trials 

of particular anti-PD1 or anti-PD-L1 agents, including 22C3 for pembrolizumab, 28-8 for 

nivolumab, and SP142 for atezolizumab.[35, 39, 40] Therefore, PD-1 pathway investigators 

should pay attention to antibody types when designing a study or interpreting clinical trial 

results.

As determined by immunohistochemistry, PD-L1 expression is present in CHL; in 87% of 

CHL cases, irrespective of subtype, over half of RS cells are PD-L1-positive.[41] A recent 

study demonstrated that almost all (97%) patients with CHL harbored either polysomy, 

copy-number gain or amplification of 9p24.1 detected by fluorescence in situ hybridization 

(FISH).[42] In approximately 40% of CHL cases of the nodular sclerosis subtype, the RS 

cells have copy number alterations (amplifications or gains) and/or translocations involving 

9p24.1/PD-L1/PD-L2.[43] Furthermore, Green and colleagues demonstrated that 

amplification of 9p24.1 not only increases the genetic dosage of PD-L1/PD-L2 but also 

induces JAK2 amplification and, consequently, enhancement of JAK/STAT signaling.[43] 

Since PD-L1 has a promoter which is responsive to Janus kinase/signal transducer and 

activator of transcription (JAK/STAT) signaling pathway, extra signaling for PD-L1 

expression is present in CHL. Advanced stage (stages III/IV) CHL patients with 9p24.1 

amplification have significantly shorter progression-free survival.[42]

Copy number alterations and/or translocations involving 9p24.1/PD-L1/PD-L2 are also 

frequently seen in patients with primary mediastinal large B-cell lymphoma (PMBL) 

(~70%), EBV-negative primary central nervous system lymphoma (PCNSL) (~60%), and 

primary testicular lymphoma (PTL) (~60%).[43, 44, 45] Immunohistochemistry shows that 

approximately 70%, 50% and 50% of PMBL, PCNSL and PTL tumors, respectively, express 

PD-L1, supporting the idea that PD-L1 expression is induced by cytogenetic abnormalities.

[41, 44]

In DLBCL, not otherwise specified (DLBCL, NOS), PD-L1 expression is seen in 11–26% of 

cases by immunohistochemistry.[41, 46, 47] Interestingly, a similar percentage (~20%) of 

cytogenetic abnormalities in 9p24.1 (gains, amplifications or translocations) is also observed 

in these cases.[43, 46, 47] Gains and amplifications of 9p24.1 and translocations of PD-L1 
correlate with increased PD-L1 mRNA expression and PD-L1 protein expression. 

Furthermore, cytogenetic abnormalities in 9p24.1 and PD-L1 protein expression are 

associated with activated B-cell-like or non-germinal center B cell-like phenotype of 

DLBCL, as determined by gene expression profiling and Hans classification, respectively.

[46, 47] A Japanese study determined that PD-L1 expression in DLBCL is an independent 

indicator of poor prognosis.[47] Available data suggest that, in DLBCL patients, the PD-1 

pathway could be an immune escape mechanism and that patients with PD-1 expression 

could be good candidates for anti-PD-1 or anti-PD-L1 therapies.

EBV provides an intrinsic signal to augment PD-L1 expression. EBV latent membrane 

protein 1 (LMP1) activates the JAK/STAT pathway and the transcription factor AP-1; this 

enables JAK3 to activate a PD-L1 promoter and AP-1 to stimulate a PD-L1 enhancer.[48–

50] Chen et al. [41] have shown that PD-L1 expression in RS cells is more commonly 

present in EBV-positive CHL than in EBV-negative CHL. Similarly, PD-L1 expression is 
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seen in all cases of EBV-positive diffuse large B-cell lymphoma (EBV+ DLBCL) and EBV-

positive immunodeficiency-related DLBCL.[41] Unlike EBV-negative PCNSL, EBV-

positive PCNSL frequently express PD-L1 without 9p24.1/PD-L1/PD-L2 copy number 

alterations, suggesting that PD-L1 expression is induced by viral proteins.[44] Other EBV-

associated lymphoproliferative disorders including EBV+ post-transplant 

lymphoproliferative disorder (PTLD), plasmablastic lymphoma, primary effusion 

lymphoma, and extranodal NK-T-cell lymphoma express PD-L1 in approximately 60%, 

50%, 50% and 70%, respectively.[41, 50]

Chen and colleagues showed that 91% of T-cell rich, histiocyte-rich large B-cell lymphomas 

(TCHRBCLs) express PD-L1, compared to only 13% of nodular lymphocyte predominant 

Hodgkin lymphomas (NLPHLs).[41] Since TCHRBCL and NLPHL have considerable 

morphologic overlap but opposite clinical behaviors, this finding is very intriguing.[51] One 

can speculate that acquiring PD-L1 expression is an immune escape mechanism of indolent 

NLPHL and that leads to more aggressive TCHRBCL. Of note, histiocytes adjacent to 

lymphoma cells also show strong PD-L1 expression in TCHRBCL, suggesting that both 

tumor cells and background inflammatory cells provide immune escape signals.[41] Since 

9p24.1 aberrations and EBV infection are not generally seen in TCHRBCL, PD-L1 is 

thought to be induced by IFN-γ secreted from tumor-infiltrating T-cells.[52]

Another intrinsic mechanism of increased PD-L1 expression was revealed by Kataoka and 

colleagues, who showed that increased PD-L1 expression is associated with PD-L1 3′-
untranslated region (UTR) disruption in about 30% and 10% of adult T-cell leukemia/

lymphoma patients and DLBCL patients, respectively.[53] Of interest, PD-L1 expression 

induced by 3′-UTR disruption with truncated protein was only seen when an antibody was 

directed against the extracellular domain and not when an antibody was directed against the 

cytoplasmic domain. Whether 3′-UTR disruption in PD-L1 is present in other lymphoid 

neoplasms is still unknown.

PD-L1 expression also occurs through constitutive activation of the JAK/STAT pathway. In 

ALK+ anaplastic large cell lymphoma with NPM-ALK rearrangement, the fusion transcript 

has been shown to induce expression of PD-L1 via STAT3 activation.[54] Furthermore, PD-

L1 expression in DLBCL correlates the ABC phenotype, which is known for its enhanced 

JAK/STAT pathway.[55]

PD-L1 expression in myeloma cells can be detected by flow cytometry.[56] Significant 

increase in copy number of PD-L1 and PD-L1 mRNA expression is seen in malignant 

myeloma cells, which correlates with PD-L1 expression in myeloma cells.[56] Compared 

with normal plasma cells, PD-L1 expression is up-regulated in non-hyperdiploid and 

hyperdiploid myeloma cells, with higher expression in the latter. However, PD-L1 

expression is not associated with del (1q), del (13), del(17p), t(11;14), t(4;14) or t(14;16).

PD-L1 expression is not generally seen in follicular lymphoma, mantle cell lymphoma, 

marginal zone lymphoma, Burkitt lymphoma or chronic lymphocytic leukemia/small 

lymphocytic lymphoma.[57, 58]
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Expression of PD-L2 in lymphoid malignancies

Lymphoid neoplasms with abnormalities in 9p24.1/PD-L1/PD-L2 generally express PD-L2. 

RS cells in CHL also express PD-L2, irrespective of EBV status.[59] PD-L2 expression by 

immunohistochemistry occurs in 72% of PMBL, and copy number gain of PDCD1LG2 gene 

has also been observed in most cases.[60] PD-L2 expression is also present in PTLs and 

PCNSLs, which are associated with 9p24.1/PD-L1/PD-L2 copy gains or translocations.[44] 

However, unlike PD-L1 expression, PD-L2’s expression of RNA and protein were not 

associated with cytogenetic abnormalities in 9p24.1 in DLBCL, NOS.[46] Also, PD-L2 

expression is not associated with EBV infection or 3′-UTR disruption in the PD-L1 gene.

[53, 57]

Expression of PD-1 in the lymphoid malignancy microenvironment

Although PD-1 expression is seen in a few lymphoid malignancies, particularly T cell 

lymphomas with the follicular helper T cell phenotype, most lymphoid neoplasms do not 

express PD-1.[30, 61] Thus, PD-1 expression is best examined in the microenvironment. 

PD-1 expression in TILs has been reported in follicular lymphoma, and NLPHL is well 

known for PD-1-expressing T-cell rosettes surrounding neoplastic L&H cells (LP cells or 

popcorn cells).[62, 63] Since both neoplasms arise from germinal center B cells, it is not 

surprising that their microenvironments are like those of their normal counterparts. 

Likewise, PD-1-expressing TILs are also correlated with DLBCL, germinal center B-cell-

like (GCB) phenotype.[47] Interestingly, the high number of PD-1-expressing TILs in the 

DLBCL microenvironment is inversely associated with PD-L1 expression in lymphoma 

cells. Furthermore, contrary to observations in solid tumors, the high number of PD-1-

expressing TILs in DLBCL and in follicular lymphoma (FL) is associated with a favorable 

prognosis; this suggests that the presence of PD-1-expressing TILs in lymphomas could 

simply indicate cell-of-origin, unlike tumor-mediated T-cell exhaustion in solid tumors.[47, 

62, 64, 65]

Anti-PD-1 antibodies

Pembrolizumab (Keytruda®, MK-3475, SCH 900475, previously lambrolizumab)

Pembrolizumab is a fully humanized IgG4 kappa isotype anti-PD-1 monoclonal antibody. It 

is well tolerated and is associated with durable anti-tumor activity in multiple solid tumors.

[66] In a phase 1b study (KEYNOTE-013 study, NCT01953692), pembrolizumab was 

administered to 31 patients with CHL every 2 weeks (10 mg/kg IV) until disease 

progression.[67] The median age was 32 years (range, 20–67 years). Seventeen (55%) 

patients had ≥ 5 lines of prior therapy, 31 (100%) failed with brentuximab vedotin (BV) 

treatment, 22 (71%) underwent prior autologous stem cell transplant (ASCT), and 8 (26%) 

were ineligible for transplantation. Examination of formalin-fixed, paraffin-embedded tissue 

revealed PD-L1 (clone 22C3) and PD-L2 (clone 3G2) expression in 94% and 90% of tested 

patients, respectively, before pembrolizumab treatment. With the median follow-up of 17.6 

months (range, 10.6–22.5 months), the overall response rate (ORR) was 65%, with 5 (16%) 

and 15 (48%) patients achieving complete remission (CR) and partial remission (PR), 

respectively. Among the 20 patients, 16 (80%) achieved their best response around 12th 
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week of therapy and 14 (70%) had ≥ 24 weeks of duration. The progression-free survival 

(PFS) rates were 69% and 46% at 24 weeks and 52 weeks, respectively. By flow cytometry, 

expansion of circulating total T cells, including CD4+ and CD8+ T cells, and NK cells was 

observed at cycle 7 compared to baseline. RNA profiling showed significant increases in the 

IFN-γ-induced, expanded immune-related, and TCR signatures.[67]

A multicohort phase 2 study is underway (KEYNOTE-087, NCT02453594) to confirm the 

clinical activity of pembrolizumab in CHL patients. Patients, all of whom have relapsed/

refractory CHL, are in 3 cohorts of those who: (1) had an ASCT and subsequent BV therapy, 

(2) are ineligible for ASCT due to unresponsiveness to salvage chemotherapy and BV 

failure, or (3) had an ASCT without BV therapy. At the time of writing, interim analysis of 

cohorts 1 (n=30; median age, 36 years) and 2 (n=30; median age, 33 years) has been 

reported. Similar to the phase 1b study, 40 (67%) patients had ≥ 4 lines of prior therapies. In 

cohort 1, the ORR was 70%, with 6 (20%) and 15 (50%) patients achieving CR and PR, 

respectively. In cohort 2, the ORR was 80%, with 8 (27%) and 16 (53%) patients achieving 

CR and PR, respectively.[68]

A phase 1 study of pembrolizumab given in combination with lenalidomide and low-dose 

dexamethasone to patients with relapsed/refractory plasma cell myeloma determined that the 

maximum tolerated dose/maximum administered dose (MTD/MAD) was a 200-mg fixed 

dose of pembrolizumab combined with 25 mg lenalidomide and low-dose dexamethasone. 

In the dose determination/confirmation phase, 17 patients were evaluated. The ORR was 

76% (13 patients), including 4 patients with a very good PR and 9 patients with a PR. The 

median duration of response was 9.7 months (range: 0–16.7 months). Updated efficacy data, 

including data for additional 33 patients in the expansion phase, are forthcoming 

(KEYNOTE-023, NCT02036502).[69, 70]

Table 2 lists numerous ongoing clinical trials of pembrolizumab given as a single therapy or 

in combination with other therapies.

Nivolumab (Opdivo®, BMS-936558, MDX-1106, ONO-4538)

Nivolumab is a fully human IgG4 anti-PD-1 monoclonal antibody. It has a high affinity for 

PD-1 and blocks it from binding to its ligands. Like pembrolizumab, it is well tolerated and 

is associated with durable anti-tumor activity in solid tumors.[71] In a phase 1b study, 23 

patients with relapsed/refractory CHL in whom ASCT and BV was unsuccessful, received 3 

mg/kg nivolumab at week 1, week 4, and then every 2 weeks until disease progression or CR 

or for a maximum of 2 years (NCT01592370).[37] The median age was 35 years (range, 20–

54 years). Twenty (87%) patients had received ≥ 3 lines of prior therapies, 18 (78%) had 

received BV, and 18 (78%) had undergone ASCT. Ten (43%) patients were tested for PD-L1 
and PD-L2 with FISH, and all had polysomy 9p and gain or amplification of PD-L1/PD-L2. 

Expression of PD-L1 (clone 405.9A11) and PD-L2 (366C.9E5) was seen in all 10 tested 

patients. At the median follow-up of 40 weeks (range, 0–75 weeks), the ORR was 87%, with 

4 (17%) and 16 (70%) patients achieving CR and PR, respectively. Twelve (60%) patients 

achieved CR or PR by 8 weeks. The PFS rate was 86% at 24 weeks. The median overall 

survival duration had not been reached.[37]
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A subsequent phase 2 study (CHECKMATE 205 cohort B, NCT02181738) recruited 80 

patients with relapsed/refractory CHL who received nivolumab (3 mg/kg IV) every 2 weeks. 

Independent radiologic review committee (IRRC)-determined ORR was 66%, including CR 

and PR rates of 8.8% and 57.5%, respectively. The investigator-determined ORR was 73%, 

including CR and PR of 27.5% and 45%, respectively. At the median follow-up 8.9 months, 

the IRRC 6-month overall survival and PFS rates were 99% and 77%, respectively. Notably, 

43 patients with no prior BV response showed an IRRC ORR of 72% with nivolumab 

treatment.[72]

A Japanese phase 2 study gave 17 patients with relapsed/refractory CHL nivolumab (3 

mg/kg) on day 1 of a 14-day cycle. All patients had previously been treated with BV. The 

ORR in efficacy-evaluable patients was 75%, including 4 (25%) and 8 (50%) patients with 

CR and PR, respectively. Among 8 BV-resistant patients in the study, 3 had a CR, 4 had a 

PR and 1 was not evaluable at that time point were observed (JapicCTI-142755).[73]

In a phase 1 study, 81 patients with B-cell lymphoma (n=31, including DLBCL [n=11], and 

FL [n=10]), T cell lymphoma (n=23), and plasma cell myeloma (n=27) were treated with 

nivolumab alone (NCT01592370). All patients had received prior systemic treatment 

regimens (median 3; range, 1–12). Among the 11 patients with DLBCL, the ORR was 36%, 

2 of these patients had a CR, and 2 had a PR. At the median follow-up duration of 22.7 

weeks, individual response durations were 6 and 77.3+ weeks for the patients with CR and 

12.1+ and 22.1 weeks for the patients with PR, respectively. The ORR of patients with FL 

was 40%, including 1 patient with CR and 3 patients with PR. At the median follow-up 

duration of 91.4 weeks, individual response durations were 81.6+ weeks for the patient with 

CR and 27.1+, 28.1+, and 32.1+ weeks for the patients with PR. Objective responses were 

not seen in the 10 patients with other B-cell lymphomas. Among the 23 patients with T cell 

lymphoma, the response rate was 17% (n=4), and all responding patients had PR. Individual 

response durations were 24.3+, 50+, 10.6, and 78.6+ weeks. For patients with plasma cell 

myeloma, stable disease was the best response in 17 (63%) patients. The response lasted a 

median of 11.4 weeks (range, 3.1–46.1 weeks).[74]

Table 2 lists numerous ongoing clinical trials of nivolumab given as a single therapy or in 

combination with other therapies.

Other anti-PD-1 antibodies

Clinical trials are underway with other anti-PD-1 antibodies (AMP-514, PDR001, 

REGN2810, BGB-A317, PF-06801591 and AMP-224), but results have not been publicized 

yet (Table 2).

Pidilizumab (CT-011, MDV9300, previously CT-AcTibody or BAT)

Pidilizumab was originally regarded as an anti-PD-1 antibody. However, Medivation, the 

company holding the right of pidilizumab, announced via a U.S. Securities and Exchange 

Commission filing in January 2016 that pidilizumab is not an inhibitor of PD-1.[75] The 

Food and Drug Administration placed a partial clinical hold on a phase 2 clinical trial of the 

drug in patients with relapsed or refractory DLBCL, but it lifted the hold in March 2016.[76] 
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Although the drug showed positive results in patients with follicular lymphoma and DLBCL, 

its mechanism of action needs to be elucidated.[77, 78]

Anti-PD-L1 antibodies

There are several ongoing clinical trials with anti-PD-L1 antibodies (atezolizumab, 

durvalumab, avelumab and CA-170) in patients with lymphoid neoplasms, but results have 

not been published yet (Table 2).

Anti-PD-1/PD-L1 agents in combination with other treatments

Anti-PD-1/PD-L1 antibodies can be combined with other treatments in a myriad of ways. 

Clinical trials of anti-PD-1/PD-L1 antibodies combined with standard chemotherapy, 

targeted therapy (i.e., rituximab or BV) or ASCT are plentiful (Table 2). In this review, we 

will discuss several approaches to combination therapy with anti-PD-1/PD-L1 antibodies.

One of the strategies is to combine an anti-PD-1 antibody with an agent that blocks another 

co-inhibitory molecules (e.g. CTLA-4 or lymphocyte activation gene 3 [LAG-3]) in T cells. 

Clinical trials of nivolumab combined with ipilimumab (an anti-CTLA-4 inhibitor) or 

BMS-986016 (an anti-LAG-3 inhibitor) are underway in patients with hematologic 

malignancies (Table 2). A similar approach is to combine anti-PD-1/PD-L1 antibodies with 

urelumab, a cytotoxic T cell- activating drug that binds CD137. The intent of this approach 

is not to block two different co-inhibitory molecules; rather, it is to simultaneously enhance 

CTL activity and block inhibitory signals. Preclinical studies have demonstrated that this 

combination of anti-PD-1/PD-L1 antibodies and urelumab enhances the anti-tumor activity 

of T cells.[26, 79] A phase 1 clinical trial of nivolumab plus urelumab is now under way in 

patients with advanced B-cell non-Hodgkin lymphoma.

Combination therapy with anti-PD-1/PD-L1 antibodies can involve modulating the 

immunosuppressive tumor microenvironment. Epigenetic modifying agents disrupt the 

immunosuppressive tumor microenvironment by eradicating myeloid-derived suppressor 

cells or enhancing the effector function of T- and NK cells.[80, 81] Furthermore, treating a 

human leukemia cell line with a hypomethylating agent has been shown to augment PD-L1 

and PD-L2 expression.[82] Therefore, combining epigenetic modifying agents with anti-

PD/PD-L1 antibodies is a sensible approach. Indeed, preclinical and clinical studies report 

promising results.[83, 84] Several clinical trials are under way (Table 2).

In a melanoma mouse model, the tumor-intrinsic, active Wnt/β-catenin pathway induces T 

cell exclusion in the tumor microenvironment and resistance to anti-PD-L1 antibodies.[85] 

The kinases FAK and PYK2 augment Wnt/β-catenin pathway, and a preclinical study has 

shown that combining a FAK/PYK2 dual inhibitor (VS-4718) with an anti-PD-1 monoclonal 

antibody is more effective than anti-PD-1 therapy alone and extended survival in vivo.[86] 

Combining VS-4718 and an anti-PD-1 monoclonal antibody also increases the CD8+ T cell: 

regulatory T cells ratio, suggesting an attractive approach to modulating the tumor 

microenvironment to enhance the anti-tumor activity of anti-PD-1 antibodies.[87] Patients 

with plasma cell myeloma could be potential candidates because VS-4718 alone already has 

been shown to inhibit myeloma cell growth in vitro and in vivo.[88]
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It is noteworthy that the administration of AFM13 and an anti-PD1 agent using an 

autologous PDX mouse model with donor-matched tumors and peripheral blood 

mononuclear cells from patients with Hodgkin lymphoma showed synergistic anti-tumor 

effect. AFM13 is a bi-specific, anti-CD30/CD16A, tetravalent chimeric antibody construct 

that targets CD30-expressing malignancies by recruiting NK cells.[89] Compared to 

monotherapy with anti-PD1, combined therapy with AFM13 initially enhances the 

infiltration of macrophages and activated NK cells and later enhances T cells and dendritic 

cell infiltration.[90] Based on this information, a clinical study of combined AFM13 and 

pembrolizumab in relapsed/refractory CHL is in preparation.

Chimeric antigen receptor (CAR) T cell therapy has been shown to be effective in patients 

with lymphoma, and blocking the PD-1 pathway in combination with CAR T cell therapy is 

an interesting approach.[91] A phase 1 study of durvalumab and anti-CD19 CAR T cell 

therapy will soon enroll patients with relapsed/refractory DLBCL. Oncolytic viral therapy 

activates innate immune responses against virally infected tumor cells and enhances adaptive 

anti-tumor immune responses by in vivo priming against tumor-associated antigens. A 

melanoma mouse model study of oncolytic vital therapy combined with anti-PD-1 or anti-

CTLA-4 demonstrated significant anti-tumor activity, providing a rationale for clinical 

studies.[92]

Immune-related adverse events

Thanks to the clinical success of nivolumab and pembrolizumab in solid tumors, the list of 

tumors treatable with anti-PD-1 or anti-PD-L1 antibodies is expanding. Therefore, clinicians 

would observe more patients with immune related adverse events (irAEs). Overall, grade 3 

or 4 irAEs are observed in 7–12% of patients with solid tumors who receive single anti-PD-1 

or anti-PD-L1 antibodies.[39, 93] Of note, a predictable pattern of irAEs has been observed 

in such patients; dermatologic and gastrointestinal toxicities appear early, and hepatic 

toxicities or endocrinopathies are seen later.[94]

In patients with lymphoid neoplasms, irAEs of any grade appear in 72%–100% of patients.

[37, 67, 69, 72–74] Common irAEs include thrombocytopenia, neutropenia, fatigue, infusion 

reaction, hypothyroidism, rash, diarrhea, nausea, pyrexia, pneumonitis, diarrhea, fatigue, 

back pain, decrease in platelets, dry skin, and couth.[67–69, 72] Grade 3 or higher irAEs are 

observed in 11–22% of patients and include interstitial pneumonia, pneumonitis, colitis, 

gastrointestinal inflammation, increased alanine aminotransferase/aspartate aminotransferase 

levels, pancreatitis, nephrotic syndrome, fulminant type 1 diabetes mellitus, myelodysplastic 

syndrome, leukopenia, thrombocytopenia, septic meningitis, pyrexia, infusion reaction, joint 

swelling, pain, stomatitis, tumor progression, and arrhythmia.[37, 67, 72–74]

The management of irAEs depends on their severity. Patients with grade 1 irAEs may 

continue PD-1-targeted therapy if symptoms are not observed, but it is recommended to 

withhold anti-PD-1 therapy from those with grade 2 irAEs and to manage symptoms with 

oral prednisone (1mg/kg/day) or an equivalent drug. Patients with irAEs of grade 3 or higher 

should discontinue anti-PD-1 therapy and be treated with intravenous methylprednisolone 
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(2–4mg/kg/day) or an equivalent drug. Daily monitoring with liver function test is also 

recommended.[95]

Conclusion

Programmed death-1 (PD-1) is a co-inhibitory molecule and is seen in CD4+ and CD8+ T 

cells. Upon binding to its ligands, programmed death ligand-1 (PD-L1) and -2 (PD-L2), 

PD-1 negatively regulates interleukin 2 (IL-2) production and T cell proliferation. PD-L1 

expression in normal tissue is limited, but its expression in tumor cells can be induced by 

extrinsic signals (e.g., IFN-γ). In various lymphoid neoplasms, PD-L1 expression can also 

be induced by intrinsic signals, including 1) genetic aberrations involving 9p24.1 

encompassing PD-L1, PD-L2 and JAK2; 2) latent EBV infection, particularly by LMP1; 3) 

PD-L1 3′-UTR disruption; and 4) the activated JAK/STAT pathway. Clinical use of PD-1-

pathway-blocking agents has successfully treated some lymphoid neoplasms, particularly 

those with PD-L1 expression induced by intrinsic signals. Currently, combination therapies 

involving anti-PD-1/PD-L1 agents and conventional chemotherapies, targeted therapies, or 

other immunotherapies are being studied, and we expect that the resulting data will broaden 

our understanding of the PD-1 pathway and expand the list of patients who will benefit from 

PD-1-pathway-blocking agents to include those who suffer from lymphoid neoplasms.
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Highlight points

• Immune checkpoint molecules are deregulated in hematological malignancies 

through diverse mechanisms

• Checkpoint antagonists have shown encouraging therapeutic effects in 

patients with relapsed/refractory classical Hodgkin lymphoma, follicular 

lymphoma and diffuse large B cell lymphoma

• Combined checkpoint antagonists with agents 1. reversing T cell dysfunction, 

2. regulating compensatory immune pathway and 3. enhancing tumor antigen 

are under robust clinical evaluation and shows great promise

• Checkpoint blockade may emerge as a potential agent for consolidation or 

salvage therapy for both autologous and allogeneic stem cell transplantation
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Practical points

• Clinical value of PD-1 signaling pathway dysregulation and regimen selection

• Relationship between monotherapy or combination regimen and potential 

complications

• Development of clinical algorithm for patient evaluation
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Figure 1. 
The two-signal model of T-cell activation. The first signal is a processed antigen presented 

by the MHC molecule of an APC to TCR of a T cells. This triggers TCR signaling, which is 

modulated by the antigen-independent co-stimulatory or co-inhibitory signals delivered by 

APCs. The T cell molecules CD28, PD-1, and CTLA-4 bind to B7-1/B7-2, PD-L1/PD-L2 

and B7-1/B7-2, respectively. CD28, when engaged with its ligands, induces cell cycle 

progression, interleukin-2 production and clonal expansion. In contrast, PD-1 and CTLA-4 

induces T cell tolerance when engaged with their respective ligands.

APC, antigen-presenting cells; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; 

MHC, major histocompatibility complex; TCR, T cell receptor; PD-1, programmed death 1; 

PD-L1/2, programmed death-ligand 1 or 2, +, activation of the pathway; −, inhibition of the 

pathway.
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Figure 2. 
PD-1 and its downstream effect. Upon binding to ligands, PD-1’s ITIMs and ITSMs are 

phosphorylated by Src-family tyrosine kinases. The phosphorylated tyrosine residue 

subsequently recruits SHP-2 and SHP-1/SHP-2 in ITIM and ITSM, respectively. Activated 

PD-1 eventually hinders PI3K/Akt and RAS/MEK/ERK pathways, thwarts the function of 

PKC-θ and ZAP70 phosphorylation and inhibits glycolysis. The net effect is decreased cell 

cycle progression, IL-2 production, T-cell activation and effector T-cell development and 

increased apoptosis.

Src, Src-family tyrosine kinases; ITIM, immunoreceptor tyrosine-based inhibitory motif; 

ITSM, immunoreceptor tyrosine-based switch motif; P in red circle, phosphorylated tyrosine 

residues; SHP1 and SHP2, Src homology 2 domain-containing phosphatases, PI3K/Akt, 

Phosphatidylinositol-4,5-bisphosphate 3-kinase; Akt, Protein kinase B; PKC-θ, protein 

kinase C-theta; RAS/MEK/ERK, RAS/MEK/ERK pathway.
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Figure 3. 
Images of various lymphoid neoplasms with PD-L1 expression. A–B. Diffuse large B-cell 

lymphoma, not otherwise specified. Hematoxylin and eosin (A, x400) and PD-L1 stain (B, 

x400). C–D. Primary mediastinal large B-cell lymphoma. Hematoxylin and eosin (C, x400) 

and PD-L1 stain (D, x400). E–F. Epstein-Barr virus-positive diffuse large B-cell lymphoma, 

not otherwise specified. Hematoxylin and eosin (E, x400) and PD-L1 stain (F, x400). G–H. 

Primary central nervous system lymphoma. Hematoxylin and eosin (G, x400) and PD-L1 

stain (H, x400). I–J. Primary testicular lymphoma. Hematoxylin and eosin (I, x400) and PD-

L1 stain (J, x400). All PD-L1 stains were performed using SP142 clone (Spring Bioscience, 

Pleasanton, CA, USA).
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Table 1

Available clones for anti-PD-L1 monoclonal antibodies

Clone Host Epitope Vendor References

E1L3N Rabbit Intracellular Cell Signaling 38

405.9A11 Mouse Intracellular Cell Signaling 38

SP142 Rabbit Intracellular Spring Biosciences 38

SP263 Rabbit Intracellular Spring Biosciences 96

E1J2J Rabbit Extracellular Cell Signaling 97

15 Rabbit Extracellular Sino Biological 38

22C3 Mouse Extracellular Dako 35

28-8 Rabbit Extracellular Dako 39

5H1 Mouse Extracellular Generated in the laboratory of L. Chen, Yale School of Medicine, New Haven, CT 98

339.7G11 Mouse Extracellular Generated in the laboratory of G. Freeman, Dana–Farber Cancer Institute, Boston, MA 38

29E.2A3 Mouse Extracellular BioLegend 99

EPR1161 Rabbit Proprietary Abcam 47

Cancer Treat Rev. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ok and Young Page 25

Ta
b

le
 2

C
lin

ic
al

 tr
ia

ls
 in

vo
lv

in
g 

an
ti-

PD
-1

 o
r 

an
ti-

PD
-L

1 
an

tib
od

ie
s

C
la

ss
A

ge
nt

In
te

rv
en

ti
on

C
on

di
ti

on
P

ha
se

C
lin

ic
al

 T
ri

al
 I

D
O

th
er

 t
it

le

A
nt

i-
PD

-1
 a

nt
ib

od
y

Pe
m

br
ol

iz
um

ab
Si

ng
le

 th
er

ap
y

R
/R

 o
r 

di
ss

em
in

at
ed

 m
al

ig
na

nt
 n

eo
pl

as
m

s 
in

cl
ud

in
g 

N
H

L
 o

r 
C

H
L

 in
 H

IV
-p

os
iti

ve
 

pa
tie

nt
s

I
N

C
T

02
59

58
66

Si
ng

le
 th

er
ap

y
PD

-L
1-

po
si

tiv
e 

R
/R

 ly
m

ph
om

a 
in

 p
ed

ia
tr

ic
 

pa
tie

nt
s

I/
II

N
C

T
02

33
26

68
K

E
Y

N
O

T
E

-0
51

Si
ng

le
 th

er
ap

y
C

D
19

+
 D

L
B

C
L

, F
L

, o
r 

M
C

L
 w

ho
 f

ai
le

d 
an

ti-
C

D
19

 C
A

R
-T

I/
II

N
C

T
02

65
09

99

Si
ng

le
 th

er
ap

y
R

/R
 M

F/
SS

II
N

C
T

02
24

35
79

Si
ng

le
 th

er
ap

y
R

/R
 P

M
B

L
II

N
C

T
02

57
69

90

Si
ng

le
 th

er
ap

y
R

ec
ur

re
nt

 P
C

N
SL

II
N

C
T

02
77

91
01

Si
ng

le
 th

er
ap

y
R

/R
 P

T
C

L
II

N
C

T
02

53
52

47

Si
ng

le
 th

er
ap

y
In

 th
e 

ly
m

ph
oc

yt
e 

re
co

ve
ry

 p
ha

se
 a

ft
er

 
hi

gh
-d

os
e 

ch
em

ot
he

ra
py

 a
nd

 A
SC

T
 in

 P
C

M
II

N
C

T
02

33
13

68

Si
ng

le
 th

er
ap

y
In

te
rm

ed
ia

te
 a

nd
 h

ig
h 

ri
sk

 s
m

ol
de

ri
ng

 P
C

M
N

ot
 y

et
 o

pe
n

N
C

T
02

60
38

87

Pe
m

br
ol

iz
um

ab
 w

ith
 d

in
ac

ic
lib

R
/R

 C
L

L
/S

L
L

, P
C

M
, o

r 
D

L
B

C
L

Ib
N

C
T

02
68

46
17

Pe
m

br
ol

iz
um

ab
 w

ith
 A

FM
13

R
/R

 C
H

L
Ib

N
C

T
02

66
56

50
K

E
Y

N
O

T
E

-0
26

G
10

0 
w

ith
 o

r 
w

ith
ou

t p
em

br
ol

iz
um

ab
FL

 o
r 

M
Z

L
I/

II
N

C
T

02
50

14
73

Pe
m

br
ol

iz
um

ab
 w

ith
 I

N
C

B
02

43
60

C
an

ce
rs

 in
cl

ud
in

g 
D

L
B

C
L

I/
II

N
C

T
02

17
87

22

Pe
m

br
ol

iz
um

ab
 w

ith
 A

C
P-

19
6

H
em

at
ol

og
ic

 m
al

ig
na

nc
ie

s 
in

cl
ud

in
g 

N
H

L
, 

PC
M

, H
od

gk
in

 ly
m

ph
om

a,
 C

L
L

 w
ith

 o
r 

w
ith

ou
t R

ic
ht

er
’s

 s
yn

dr
om

e,
 a

nd
 

W
al

de
ns

tr
om

 m
ac

ro
gl

ob
ul

in
em

ia

I/
II

N
C

T
02

36
20

35

Pe
m

br
ol

iz
um

ab
 w

ith
 p

om
al

id
om

id
e

R
/R

 P
C

M
I/

II
N

C
T

02
28

92
22

Pe
m

br
ol

iz
um

ab
 w

ith
 u

bi
lit

ux
im

ab
 a

nd
 

T
G

R
-1

20
2

R
/R

 C
L

L
/S

L
L

I/
II

N
C

T
02

53
52

86

Pe
m

br
ol

iz
um

ab
 w

ith
 id

el
al

is
ib

 o
r 

ib
ru

tin
ib

R
/R

 lo
w

-g
ra

de
 B

-c
el

l l
ym

ph
om

a
II

N
C

T
02

33
29

80

Pe
m

br
ol

iz
um

ab
 w

ith
 r

itu
xi

m
ab

R
el

ap
se

d 
FL

II
N

C
T

02
44

64
57

Pe
m

br
ol

iz
um

ab
 a

s 
co

ns
ol

id
at

io
n 

th
er

ap
y

PC
M

 w
ith

 r
es

id
ua

l d
is

ea
se

 a
ft

er
 tr

ea
tm

en
t

II
N

C
T

02
63

60
10

Pe
m

br
ol

iz
um

ab
 a

s 
co

ns
ol

id
at

io
n 

th
er

ap
y 

af
te

r 
A

SC
T

R
/R

 D
L

B
C

L
 o

r 
C

H
L

II
N

C
T

02
36

29
97

Cancer Treat Rev. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ok and Young Page 26

C
la

ss
A

ge
nt

In
te

rv
en

ti
on

C
on

di
ti

on
P

ha
se

C
lin

ic
al

 T
ri

al
 I

D
O

th
er

 t
it

le

Pe
m

br
ol

iz
um

ab
 w

ith
 s

eq
ue

nt
ia

l 
in

tr
an

od
al

 im
m

un
ot

he
ra

py
St

ag
e 

II
I/

IV
 u

nt
re

at
ed

 o
r 

re
la

ps
ed

 F
L

II
N

C
T

02
67

71
55

Pe
m

br
ol

iz
um

ab
 w

ith
 B

V
R

/R
 C

H
L

II
I

N
C

T
02

68
42

92
K

E
Y

N
O

T
E

-2
04

Pe
m

br
ol

iz
um

ab
 w

ith
 p

om
al

id
om

id
e 

an
d 

lo
w

-d
os

e 
de

xa
m

et
ha

so
ne

R
/R

 P
C

M
II

I
N

C
T

02
57

69
77

K
E

Y
N

O
T

E
-1

83

Pe
m

br
ol

iz
um

ab
 w

ith
 le

na
lid

om
id

e 
an

d 
lo

w
-d

os
e 

de
xa

m
et

ha
so

ne
T

re
at

m
en

t n
aï

ve
 P

C
M

II
I

N
C

T
02

57
98

63
K

E
Y

N
O

T
E

-1
85

Pe
m

br
ol

iz
um

ab
 w

ith
 R

-C
H

O
P

Pr
ev

io
us

ly
 u

nt
re

at
ed

 D
L

B
C

L
N

ot
 d

es
cr

ib
ed

N
C

T
02

54
15

65

A
nt

i-
PD

-1
 a

nt
ib

od
y

N
iv

ol
um

ab
Si

ng
le

 th
er

ap
y

R
el

ap
se

d 
he

m
at

ol
og

ic
 m

al
ig

na
nc

ie
s 

af
te

r 
al

lo
ge

ne
ic

 S
C

T
I

N
C

T
01

82
25

09

Si
ng

le
 th

er
ap

y
A

du
lt 

T-
ce

ll 
le

uk
em

ia
/ly

m
ph

om
a

II
N

C
T

02
63

17
46

Si
ng

le
 th

er
ap

y
R

/R
 F

L
II

N
C

T
02

03
89

46
C

he
ck

M
at

e1
40

Si
ng

le
 th

er
ap

y
R

/R
 D

L
B

C
L

 p
at

ie
nt

s 
w

ho
 f

ai
le

d 
A

SC
T

 o
r 

w
er

e 
in

el
ig

ib
le

 f
or

 A
SC

T
II

N
C

T
02

03
89

33
C

he
ck

M
at

e1
39

Si
ng

le
 th

er
ap

y 
or

 g
iv

en
 w

ith
 ip

ili
m

um
ab

/
lir

ilu
m

ab
R

/R
 h

em
at

ol
og

ic
 m

al
ig

na
nc

ie
s

I
N

C
T

01
59

23
70

N
iv

ol
um

ab
 w

ith
 ip

ili
m

um
ab

 a
nd

 B
V

R
/R

 C
H

L
I

N
C

T
01

89
69

99

N
iv

ol
um

ab
 w

ith
 R

R
x-

00
1

A
dv

an
ce

d 
ly

m
ph

om
a 

or
 s

ol
id

 tu
m

or
s

I
N

C
T

02
51

89
58

PR
IM

E
T

IM
E

Si
ng

le
 th

er
ap

y 
or

 w
ith

 ip
ili

m
um

ab
R

/R
 c

an
ce

rs
 in

cl
ud

in
g 

ly
m

ph
oi

d 
ne

op
la

sm
s 

in
 y

ou
ng

 (
12

 m
on

th
s 

to
 3

0 
ye

ar
s)

 p
at

ie
nt

s
I/

II
N

C
T

02
30

44
58

N
iv

ol
um

ab
 w

ith
 ib

ru
tin

ib
SL

L
/C

L
L

, F
L

, a
nd

 D
L

B
C

L
I/

II
N

C
T

02
32

98
47

N
iv

ol
um

ab
 w

ith
 u

re
lu

m
ab

A
dv

an
ce

d 
B

-c
el

l N
H

L
s

I/
II

N
C

T
02

25
39

92

N
iv

ol
um

ab
 w

ith
 I

N
C

B
02

43
60

C
an

ce
rs

 in
cl

ud
in

g 
D

L
B

C
L

 a
nd

 C
H

L
I/

II
N

C
T

02
32

70
78

E
C

H
O

-2
04

N
iv

ol
um

ab
 w

ith
 B

V
R

/R
 C

H
L

 a
ft

er
 f

ai
lu

re
 o

f 
fr

on
tli

ne
 th

er
ap

y
I/

II
N

C
T

02
57

21
67

N
iv

ol
um

ab
 w

ith
 B

V
R

/R
 N

H
L

s 
(D

L
B

C
L

, P
T

C
L

 a
nd

 M
F/

SS
) 

w
ith

 C
D

30
 e

xp
re

ss
io

n
I/

II
N

C
T

02
58

16
31

N
iv

ol
um

ab
 w

ith
 B

M
S-

98
60

16
R

/R
 B

-c
el

l l
ym

ph
om

a
I/

II
N

C
T

02
06

17
61

N
iv

ol
um

ab
 w

ith
 ip

ili
m

um
ab

Ly
m

ph
om

a 
or

 m
ye

lo
m

a 
(i

n 
pa

tie
nt

s 
w

ho
 a

re
 

at
 h

ig
h-

ri
ck

 f
or

 p
os

t-
tr

an
sp

la
nt

 r
ec

ur
re

nc
e 

af
te

r 
A

SC
T

)

I/
II

N
C

T
02

68
13

02
C

PI
T

00
1

N
iv

ol
um

ab
 w

ith
 A

V
D

N
ew

ly
 d

ia
gn

os
ed

 C
H

L
II

N
C

T
02

18
17

38
C

he
ck

M
at

e2
05

 c
oh

or
t D

N
iv

ol
um

ab
 w

ith
 ib

ru
tin

ib
R

/R
 o

r 
hi

gh
-r

is
k 

un
tr

ea
te

d 
C

L
L

/S
L

L
II

N
C

T
02

42
09

12

N
iv

ol
um

ab
 w

ith
 B

V
U

nt
re

at
ed

 C
H

L
 in

 o
ld

er
 (

≥6
0 

ye
ar

s)
 p

at
ie

nt
s

II
N

C
T

02
75

87
17

Cancer Treat Rev. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ok and Young Page 27

C
la

ss
A

ge
nt

In
te

rv
en

ti
on

C
on

di
ti

on
P

ha
se

C
lin

ic
al

 T
ri

al
 I

D
O

th
er

 t
it

le

N
iv

ol
um

ab
, p

om
al

id
om

id
e,

 a
nd

 
de

xa
m

et
ha

so
ne

R
/R

 P
C

M
II

I
N

C
T

02
72

65
81

C
he

ck
M

at
e6

02

A
nt

i-
PD

-1
 a

nt
ib

od
y

A
M

P-
51

4
A

M
P-

51
4 

w
ith

 M
E

D
I-

55
1

R
/R

 a
gg

re
ss

iv
e 

B
-c

el
l l

ym
ph

om
as

 w
ho

 h
av

e 
fa

ile
d 

1–
2 

pr
io

r 
lin

es
 o

f 
th

er
ap

y
Ib

/I
I

N
C

T
02

27
19

45

A
nt

i-
PD

-1
 a

nt
ib

od
y

PF
-0

68
01

59
1

Si
ng

le
 th

er
ap

y
R

/R
 C

H
L

 a
nd

 o
th

er
 s

ol
id

 tu
m

or
s

I
N

C
T

02
57

32
59

A
nt

i-
 P

D
-1

 a
nt

ib
od

y
PD

R
00

1
G

W
N

32
3 

w
ith

 o
r 

w
ith

ou
t P

D
R

00
1

A
dv

an
ce

d 
ly

m
ph

om
a 

or
 s

ol
id

 tu
m

or
s

I
N

C
T

02
74

02
70

A
nt

i-
PD

-1
 a

nt
ib

od
y

R
E

G
N

28
10

Si
ng

le
 th

er
ap

y
Ly

m
ph

om
a

I
N

C
T

02
65

16
62

A
nt

i-
PD

-1
 a

nt
ib

od
y

B
G

B
-A

31
7

B
G

B
-A

31
7 

w
ith

 B
G

B
-3

11
1

B
-c

el
l l

ym
ph

oi
d 

m
al

ig
na

nc
ie

s
I

N
C

T
02

79
51

82

A
nt

i-
PD

-L
1 

an
tib

od
y

A
te

zo
liz

um
ab

Si
ng

le
 th

er
ap

y 
or

 w
ith

 le
na

lid
om

id
e

R
/R

 o
r 

po
st

-A
SC

T
 P

C
M

Ib
N

C
T

02
43

12
08

A
te

zo
liz

um
ab

 w
ith

 o
bi

nu
tu

zu
m

ab
R

/R
 F

L
 o

r 
D

L
B

C
L

I
N

C
T

02
22

08
42

A
te

zo
liz

um
ab

 w
ith

 o
bi

nu
tu

zu
m

ab
 a

nd
 

po
la

tu
zu

m
ab

 v
ed

ot
in

R
/R

 F
L

 o
r 

D
L

B
C

L
Ib

/I
I

N
C

T
02

72
98

96

A
te

zo
liz

um
ab

 w
ith

 o
bi

nu
tu

zu
m

ab
 a

nd
 

le
na

lid
om

id
e

R
/R

 F
L

Ib
/I

I
N

C
T

02
63

15
77

A
te

zo
liz

um
ab

, o
bi

nu
tu

zu
m

ab
 a

nd
 

be
nd

am
us

tin
e 

or
 C

H
O

P
U

nt
re

at
ed

 o
r 

R
/R

 F
L

 o
r 

D
L

B
C

L
Ib

/I
I

N
C

T
02

59
69

71

A
nt

i-
PD

-L
1 

an
tib

od
y

D
ur

va
lu

m
ab

Si
ng

le
 th

er
ap

y
R

/R
 ly

m
ph

om
a,

 s
ol

id
 tu

m
or

, a
nd

 C
N

S 
tu

m
or

s 
in

 P
ed

ia
tr

ic
 (

1 
ye

ar
 to

 1
7 

ye
ar

s)
 

pa
tie

nt
s

I
N

C
T

02
79

34
66

Si
ng

le
 th

er
ap

y 
or

 w
ith

 tr
em

el
im

um
ab

 o
r 

A
Z

D
91

50
R

/R
 D

L
B

C
L

Ib
N

C
T

02
54

96
51

Si
ng

le
 th

er
ap

y 
or

 w
ith

 p
om

al
id

om
id

e 
an

d 
w

ith
 o

r 
w

ith
ou

t l
ow

- 
do

se
 d

ex
am

et
ha

so
ne

R
/R

 P
C

M
Ib

N
C

T
02

61
66

40

D
ur

va
lu

m
ab

 w
ith

 a
nt

i-
C

D
19

 C
A

R
-T

R
/R

 D
L

B
C

L
I

N
C

T
02

70
64

05

D
ur

va
lu

m
ab

 w
ith

 tr
em

el
im

um
ab

 a
nd

 
A

SC
T

PC
M

I
N

C
T

02
71

68
05

D
ur

va
lu

m
ab

 w
ith

 tr
em

el
im

um
ab

 a
nd

 p
ol

y 
IC

L
C

A
dv

an
ce

d 
ca

nc
er

s 
in

cl
ud

in
g 

cu
ta

ne
ou

s 
T-

ce
ll 

ly
m

ph
om

a
I/

II
N

C
T

02
64

33
03

D
ur

va
lu

m
ab

 w
ith

 ib
ru

tin
ib

R
/R

 F
L

 o
r 

D
L

B
C

L
I/

II
N

C
T

02
40

10
48

D
ur

va
lu

m
ab

 w
ith

 le
na

lid
om

id
e 

w
ith

 o
r 

w
ith

ou
t d

ex
am

et
ha

so
ne

N
ew

ly
 d

ia
gn

os
ed

 P
C

M
I/

II
N

C
T

02
68

58
26

D
ur

va
lu

m
ab

 w
ith

 d
ar

at
um

um
ab

R
/R

 P
C

M
I/

II
N

C
T

02
80

74
54

FU
SI

O
N

 M
M

-0
03

D
ur

va
lu

m
ab

, i
br

ut
in

ib
, r

itu
xi

m
ab

, 
be

nd
am

us
tin

e,
 le

na
lid

om
id

e
C

L
L

/S
L

L
 o

r 
ot

he
r 

ly
m

ph
om

a
I/

II
N

C
T

02
73

30
42

FU
SI

O
N

 N
H

L
 0

01

A
nt

i-
PD

-L
1 

an
tib

od
y

A
ve

lu
m

ab
Si

ng
le

 th
er

ap
y

Pr
ev

io
us

ly
 tr

ea
te

d 
ad

va
nc

ed
 s

ta
ge

 C
H

L
I

N
C

T
02

60
34

19
JA

V
E

L
IN

 H
O

D
G

K
IN

S

Cancer Treat Rev. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ok and Young Page 28

C
la

ss
A

ge
nt

In
te

rv
en

ti
on

C
on

di
ti

on
P

ha
se

C
lin

ic
al

 T
ri

al
 I

D
O

th
er

 t
it

le

A
nt

i-
PD

-L
1 

an
tib

od
y

C
A

-1
70

Si
ng

le
 th

er
ap

y
A

dv
an

ce
d 

ly
m

ph
om

a 
or

 s
ol

id
 tu

m
or

s
I

N
C

T
02

81
28

75

D
in

ac
ic

lib
 (

M
K

-7
96

5)
, a

 c
yc

lin
-d

ep
en

de
nt

 k
in

as
e 

in
hi

bi
to

r;
 A

FM
13

, a
 b

i-
sp

ec
if

ic
, t

et
ra

va
le

nt
 c

hi
m

er
ic

 a
nt

ib
od

y 
co

ns
tr

uc
t a

ga
in

st
 C

D
30

 a
nd

 C
D

16
A

; G
10

0,
 a

 p
ot

en
t t

ol
l-

lik
e 

re
ce

pt
or

-4
 a

go
ni

st
; 

IN
C

B
02

43
60

 (
E

pa
ca

do
st

at
),

 a
n 

in
do

le
am

in
e 

2,
3-

di
ox

yg
en

as
e 

1 
in

hi
bi

to
r;

 A
C

P-
19

6 
(A

ca
la

br
ut

in
ib

),
 a

 m
or

e 
se

le
ct

iv
e,

 ir
re

ve
rs

ib
le

 B
ru

to
n’

s 
Ty

ro
si

ne
 k

in
as

e 
in

hi
bi

to
r;

 P
om

al
id

om
id

e,
 a

 d
er

iv
at

iv
e 

of
 

th
al

id
om

id
e;

 U
bi

lit
ux

im
ab

 (
T

G
-1

10
1 

or
 U

T
X

),
 a

 n
ov

el
, c

hi
m

er
ic

 m
on

oc
lo

na
l a

nt
ib

od
y 

ta
rg

et
in

g 
a 

un
iq

ue
 e

pi
to

pe
 o

n 
th

e 
C

D
20

 a
nt

ig
en

; T
G

R
-1

20
2,

 a
 P

I3
K

 δ
 in

hi
bi

to
r;

 I
de

la
lis

ib
, a

 P
I3

K
 δ

 in
hi

bi
to

r;
 

Ib
ru

tin
ib

, a
 B

ru
to

n’
s 

Ty
ro

si
ne

 k
in

as
e 

in
hi

bi
to

r;
 R

itu
xi

m
ab

, a
 m

on
oc

lo
na

l a
nt

ib
od

y 
ag

ai
ns

t t
he

 p
ro

te
in

 C
D

20
; A

SC
T,

 a
ut

ol
og

ou
s 

st
em

 c
el

l t
ra

ns
pl

an
t; 

B
V

 (
B

re
nt

ux
im

ab
 v

ed
ot

in
),

 a
n 

an
tib

od
y-

dr
ug

 c
on

ju
ga

te
 

di
re

ct
ed

 to
 th

e 
pr

ot
ei

n 
C

D
30

; l
en

al
id

om
id

e,
 a

 d
er

iv
at

iv
e 

of
 th

al
id

om
id

e;
 R

-C
H

O
P;

 c
om

bi
na

tio
n 

of
 r

itu
xi

m
ab

, c
yc

lo
ph

os
ph

am
id

e,
 d

ox
or

ub
ic

in
, v

in
cr

is
tin

e 
an

d 
pr

ed
ni

so
ne

; i
pi

lim
um

ab
, a

 m
on

oc
lo

na
l 

an
tib

od
y 

ta
rg

et
in

g 
C

T
L

A
-4

; L
ir

ilu
m

ab
, a

n 
an

ti-
K

IR
 m

on
oc

lo
na

l a
nt

ib
od

y;
 R

R
x-

00
1,

 a
 p

an
-e

pi
ge

ne
tic

 a
nt

ic
an

ce
r 

ag
en

t; 
U

re
lu

m
ab

, a
n 

an
ti-

C
D

13
7 

m
on

oc
lo

na
l a

nt
ib

od
y;

 B
M

S-
98

60
16

, a
n 

an
ti-

L
A

G
-3

 
m

on
oc

lo
na

l a
nt

ib
od

y 
(a

n 
im

m
un

e 
ch

ec
kp

oi
nt

 in
hi

bi
to

r)
; A

V
D

, c
om

bi
na

tio
n 

of
 d

ox
or

ub
ic

in
, v

in
bl

as
tin

e 
an

d 
D

ac
ar

ba
zi

ne
; M

E
D

I-
55

1,
 a

n 
an

ti-
19

 m
on

oc
lo

na
l a

nt
ib

od
y;

 G
W

N
32

3,
 a

n 
an

ti-
G

IT
R

 a
nt

ib
od

y 
(G

IT
R

: g
lu

co
co

rt
ic

oi
d-

in
du

ce
d 

tu
m

or
 n

ec
ro

si
s 

fa
ct

or
 r

ec
ep

to
r)

; B
G

B
-3

11
1,

 a
 B

ru
to

n’
s 

Ty
ro

si
ne

 k
in

as
e 

in
hi

bi
to

r;
 O

bi
nu

tu
zu

m
ab

, a
 h

um
an

iz
ed

 a
nt

i-
C

D
20

 m
on

oc
lo

na
l a

nt
ib

od
y;

 P
ol

at
uz

um
ab

 v
ed

ot
in

, a
n 

an
ti-

C
D

79
b 

an
tib

od
y-

dr
ug

 c
on

ju
ga

te
; T

re
m

el
im

um
ab

, a
n 

an
ti-

C
T

L
A

-4
 a

nt
ib

od
y;

 A
Z

D
91

50
, a

n 
an

ti-
ST

A
T

3 
in

hi
bi

to
r;

 C
A

R
-T

, c
hi

m
er

ic
 a

nt
ig

en
 r

ec
ep

to
r 

T-
ce

ll 
th

er
ap

y;
 P

ol
y 

IC
L

C
, a

 to
ll-

lik
e 

re
ce

pt
or

-3
 

ag
on

is
t; 

D
ar

at
um

um
ab

, a
 m

on
oc

lo
na

l a
nt

i-
C

D
38

 a
nt

ib
od

y;
 H

IV
, h

um
an

 im
m

un
od

ef
ic

ie
nc

y 
vi

ru
s;

 R
/R

, r
el

ap
se

d 
an

d 
re

fr
ac

to
ry

; N
H

L
, n

on
-H

od
gk

in
 ly

m
ph

om
a;

 C
H

L
, c

la
ss

ic
al

 H
od

gk
in

 ly
m

ph
om

a;
 D

L
B

C
L

, 
di

ff
us

e 
la

rg
e 

B
-c

el
l l

ym
ph

om
a;

 F
L

, f
ol

lic
ul

ar
 ly

m
ph

om
a;

 M
C

L
, m

an
tle

 c
el

l l
ym

ph
om

a;
 M

F/
SS

, m
yc

os
is

 f
un

go
id

es
/S

ez
ar

y 
sy

nd
ro

m
e;

 P
M

B
L

, p
ri

m
ar

y 
m

ed
ia

st
in

al
 (

th
ym

ic
) 

la
rg

e 
B

-c
el

l l
ym

ph
om

a;
 P

C
N

SL
, 

pr
im

ar
y 

ce
nt

ra
l n

er
vo

us
 s

ys
te

m
 ly

m
ph

om
a;

 P
T

C
L

, p
er

ip
he

ra
l T

-c
el

l l
ym

ph
om

a;
 P

C
M

, p
la

sm
a 

ce
ll 

m
ye

lo
m

a;
 C

L
L

/S
L

L
, c

hr
on

ic
 ly

m
ph

oc
yt

ic
 le

uk
em

ia
/s

m
al

l l
ym

ph
oc

yt
ic

 ly
m

ph
om

a;
 M

Z
L

, m
ar

gi
na

l z
on

e 
ly

m
ph

om
a;

 S
C

T,
 s

te
m

 c
el

l t
ra

ns
pl

an
t; 

C
N

S,
 c

en
tr

al
 n

er
vo

us
 s

ys
te

m
.

Cancer Treat Rev. Author manuscript; available in PMC 2018 March 01.


	Abstract
	Graphical Abstract
	Introduction
	The structure of PD-1, PD-L1, and PD-L2
	The PD-1 signaling pathway
	Expression of PD-1, PD-L1, and PD-L2 in normal tissue
	Expression of PD-L1 in lymphoid malignancies
	Expression of PD-L2 in lymphoid malignancies
	Expression of PD-1 in the lymphoid malignancy microenvironment
	Anti-PD-1 antibodies
	Pembrolizumab (Keytruda®, MK-3475, SCH 900475, previously lambrolizumab)
	Nivolumab (Opdivo®, BMS-936558, MDX-1106, ONO-4538)
	Other anti-PD-1 antibodies
	Pidilizumab (CT-011, MDV9300, previously CT-AcTibody or BAT)

	Anti-PD-L1 antibodies
	Anti-PD-1/PD-L1 agents in combination with other treatments
	Immune-related adverse events
	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

