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IL-2 and Beyond in Cancer Immunotherapy
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The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in
the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s,
oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself,
recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell
carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell
engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven
responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited
by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve
response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical de-
velopment. Administering T cell growth factors in combination with other agents, such as immune checkpoint
pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell
growth factors and highlight current combinatorial approaches based on these reagents.
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IL-2: From Supernatant to Clinical
Grade Therapy

The identification of IL-2 as a therapeutic agent began
unwittingly in the mid-1960s when it was discovered

that supernatants of antigen- or mitogen- activated leukocyte
cultures contained a factor able to stimulate lymphocyte
division (Gordon and MacLean 1965; Kasakura and Low-
enstein 1965). By 1969, the term ‘‘lymphokine’’ had been
coined (Dumonde and others 1969), and much research was
dedicated to understanding the soluble factor or factors re-
sponsible (Dumonde and others 1969; Pick and Turk 1972;
Chen and Di Sabato 1976). In 1976, Gallo and colleagues
demonstrated that conditioned media from human lympho-
cytes contained this factor and could be used to maintain T
cell cultures for over 9 months without the need for repet-
itive antigenic stimulation (Morgan and others 1976). This
technique was quickly adapted to the culture of tumor-
reactive T cells with sustained cytotoxic potential (Gillis
and Smith 1977). These early studies led to the development
of methods for enriching, purifying, and measuring this
soluble factor (Farrar and others 1978; Gillis and others
1978; Shaw and others 1978; Watson and others 1979; Gillis
and Watson 1980; Mier and Gallo 1980; Robb and others
1981; Stadler and others 1982), which would be named IL-

2. Collectively, these advances allowed scientists to study
this lymphocyte growth factor in greater depth.

In mice, both the persistence and antitumor efficacy of
lymphocytes were greatly augmented upon injection of pu-
rified IL-2 (Cheever and others 1982, 1984; Donohue and
others 1984). Furthermore, simply culturing lymphocytes
in vitro with IL-2 could lead to the acquisition of ability to
preferentially lyse tumor cells over healthy cells (Lotze and
others 1981; Grimm and others 1982; Rayner and others
1985b). The effector cells mediating this tumor cytotoxicity
were called lymphokine activated killer (LAK) cells and
showed antitumor efficacy in preclinical models (Mazumder
and Rosenberg 1984). These successes led to the evaluation of
purified IL-2 in cancer and HIV-infected patients (Bindon and
others 1983; Lotze and others 1984; Rayner and others
1985a). Although there was some evidence of biological ac-
tivity, including toxicities, there were no clinical responses in
the small number of patients treated.

In what was a critical milestone, the sequencing of the human
IL-2 gene was reported in 1983 (Taniguchi and others 1983) and
the murine IL-2 gene shortly thereafter (Kashima and others
1985). The cloning of IL-2 allowed the production of large
quantities of purified recombinant IL-2 using Escherichia coli
(Devos and others 1983; Taniguchi and others 1983; Lotze and
others 1984; Wang and others 1984). Rosenberg and colleagues
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demonstrated that administration of recombinant IL-2 to mice
mediated potent antitumor activity with regression of estab-
lished pulmonary metastases and subcutaneous tumors (La-
freniere and Rosenberg 1985). In an initial clinical study
reported in 1985, 20 patients with a variety of malignancies
were treated with recombinant IL-2. This treatment resulted in
the expansion of lymphoid populations but no clinical responses
(Lotze and others 1985). An alternate clinical approach was
suggested by experiments in mice showing that combining
adoptive transfer of LAK cells with recombinant IL-2 was much
more effective against tumor than either agent alone (Mule and
others 1984, 1985, 1986; Lafreniere and Rosenberg 1985).
While LAK cells had been evaluated clinically (Lotze and
others 1980), these cells had never been coadministered to pa-
tients with recombinant IL-2. In the first human experience of
LAK cells and recombinant IL-2 in patients with advanced
cancer, 11 of 25 patients experienced objective responses de-
fined as at least a 50% reduction in tumor volume and this
included patients with metastatic melanoma, renal cell carci-
noma, colon cancer, and lung adenocarcinoma (Rosenberg and
others 1985). Among the responders was a patient with meta-
static melanoma who experienced a complete response and has
been disease free for 29 years (Rosenberg 2014). The conclu-
sion that adding LAK cells improved IL-2 therapy was however
complicated by the fact that a higher dose of IL-2 was used, as
well as differences in the patient population. Therefore, in a
subsequent study, Rosenberg and colleagues evaluated whether
higher doses of IL-2 alone could be effective. In a small study of
10 patients, higher doses of IL-2 mediated clinical responses,
including in 3 of 6 treated patients with metastatic melanoma
(Lotze and others 1986a). These studies demonstrated for the
first time that IL-2 administered as a single agent mediated
antitumor efficacy in human patients with metastatic cancer.

An important remaining question was whether adoptively
transferring LAK cells in addition to IL-2 therapy could im-
prove efficacy. Therefore, Rosenberg and colleagues compared
the administration of high-dose IL-2 alone versus high-dose IL-
2 and LAK cells in metastatic melanoma and renal cell carci-
noma patients. In a clinical trial with 181 patients randomized
to two groups, 16 of 91 patients (18%) with IL-2 alone had
objective responses, while 24 of 90 patients (24%) with IL-2
and LAK cells had objective responses (Rosenberg and others
1993). There was not a statistically significant difference in
overall survival between patients receiving IL-2 versus IL-2
and LAK cells. However, there was a trend toward improved
overall survival in the subset of metastatic melanoma patients
that received IL-2 and LAK cells versus IL-2 alone. These
results did not justify the addition of LAK cells to IL-2 therapy,
particularly as the LAK cells could not be given as an off-the-
shelf reagent. Subsequently, 2 other significant trials evaluated
the efficacy of IL-2 alone. In 1 trial published in 1995, of 255
patients with renal cell carcinoma, roughly 15% of patients
achieved objective responses with about one third of these
being complete responses (Fyfe and others 1995). Similar re-
sponse rates were reported in 1999 in a trial of over 270 patients
with metastatic melanoma (Atkins and others 1999). Com-
pared with other therapies available at the time, responses
obtained with recombinant IL-2 were remarkable in their du-
rability, with some patients achieving complete responses on-
going after 10 years (Rosenberg 2014). Notably, IL-2
administration in patients is associated with increased fre-
quencies and activation of lymphocytes within the tumor
(Cohen and others 1987; Swisher and others 1991). The Food

and Drug Administration (FDA) approved IL-2 for the treat-
ment of renal cell carcinoma in 1992 and metastatic melanoma
in 1998 (Rosenberg 2014).

Receptors in the IL-2 Cytokine Family

IL-2 acts on lymphocytes by binding to the multimeric IL-
2 receptor (IL-2R) and thereby engaging several intracellular
signaling pathways that modulate lymphocyte survival, pro-
liferation, and function (Smith 1988; Theze and others 1996;
Nelson and Willerford 1998; Fehniger and others 2002;
Kovanen and Leonard 2004; Ma and others 2006; Waldmann
2006, 2014, 2015; Boyman and others 2007; Bodnar and
others 2008; D’Cruz and others 2009; Overwijk and Schluns
2009; Rochman and others 2009; Boyman and Sprent 2012;
Carrette and Surh 2012; Liao and others 2013; Rosenberg
2014; Sim and Radvanyi 2014; Pulliam and others 2016). The
heterotrimeric IL-2R is composed of 3 subunits: IL-2Ra
(CD25), IL-2Rb (CD122), and IL-2Rg (CD132). IL-2Rb and
IL-2Rg are essential for intracellular signaling and can form a
functional dimeric receptor in the absence of IL-2Ra. Notably,
IL-2Rg is used as part of the receptors for IL-2, IL-4, IL-7, IL-9,
IL-15, and IL-21, cytokines which can all act on various
lymphocyte populations likely partially dictated by differing
receptor subunit expression. IL-2, IL-7, and IL-15 have re-
ceived the most attention for their ability to act on T cells, and
in the case of IL-2 and IL-15, also on natural killer (NK) and
NK T cells. IL-2 and IL-15 are closely related in that they both
signal through the IL-2Rbg heterodimeric receptor and engage
the JAK/STAT, Ras/MAPK, and PI3K/Akt signaling pathways
(Nelson and Willerford 1998; Bodnar and others 2008; Boy-
man and Sprent 2012; Liao and others 2013; Mishra and others
2014; Waldmann 2014). While not necessary for signaling, IL-
2 and IL-15 also bind private a chains (IL-2Ra and IL-15Ra),
which are structurally related and may have arisen evolution-
arily from gene duplication (Giri and others 1995; Tagaya and
others 1996). These a chains were initially thought to allow for
high affinity receptor binding; however, as will be described
below, it is clear that their functional contribution to cytokine
signaling is more complicated.

While IL-2 and IL-15 both signal through the shared IL-
2Rbg and mediate similar signaling and functional activity
on purified lymphocytes (Willerford and others 1995;
Murakami and others 2002; Ring and others 2012; Arneja
and others 2014), these cytokines have dramatically differ-
ent biological activities in vivo. This is most apparent in a
comparison of knockout mice. IL-2 knockout mice die
prematurely as a result of autoimmune disease (Sadlack and
others 1993), while IL-15 mice are relatively healthy with
reduced numbers of IL-15-dependent cells such as NK cells
and CD8 memory T cells (Kennedy and others 2000). These
and other differential properties of IL-2 and IL-15 are likely
mediated by IL-2 or IL-15 availability and expression of IL-
2Ra and IL-15Ra. In particular, T regulatory cells express
high and constitutive levels of IL-2Ra, a molecule critical
for their survival. Thus, in the absence of IL-2Ra, mature T
regulatory cells are absent and mice die prematurely unless
IL-2Ra-competent T regulatory cells are provided (Will-
erford and others 1995; Almeida and others 2002). A patient
with a mutated IL-2Ra gene, who had extensive lympho-
cytic infiltration of tissues accompanied by atrophy and
inflammation, suggests that a similar process exists in hu-
mans (Sharfe and others 1997).
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How IL-2Ra mediates its unique responsiveness to IL-2
has been the subject of much work. IL-2Ra is not known to
mediate intracellular signaling and was initially character-
ized by its ability to promote high affinity binding of IL-2 to
the IL-2Rbg (Smith 1988; Nelson and Willerford 1998;
Kovanen and Leonard 2004; Ma and others 2006). Inter-
estingly, IL-2Ra can also promote sustained IL-2 signaling
after removal of cytokine, which may be mediated by the
ability of IL-2Ra to facilitate cell surface reservoirs of IL-2
and the ability of IL-2Ra to rescue IL-2 from degradation
(Bergmann and others 1992; Fallon and others 2000; Rao
and others 2004, 2005; Su and others 2015). Thus, in ad-
dition to facilitating high affinity binding of IL-2 to its re-
ceptor, IL-2Ra allows for temporal responsiveness of IL-2
(Su and others 2015). As activated T cells transiently ex-
press high levels of IL-2Ra (Cantrell and Smith 1983;
Leonard and others 1985; Gullberg and Smith 1986; An-
dersson and others 1994; Cousens and others 1995; Obar
and others 2010), these IL-2Ra-dependent mechanisms may
facilitate the ability of effector T cells to function after being
deprived of an IL-2-rich environment or for effector T cells
to preserve access to limited amounts of IL-2. In addition to
cell-intrinsic IL-2Ra signaling, it has been reported that IL-
2Ra may be involved in the trans-presentation of IL-2 to
neighboring cells (Eicher and Waldmann 1998; Kronin and
others 1998; Fukao and Koyasu 2000; Wuest and others
2011). Soluble IL-2Ra may also play an important role in
regulating immune responses (Rubin and others 1985; Baran
and others 1988; Gooding and others 1995; Cabrera and
others 2010; Hannani and others 2015; Li and others 2016).

Like IL-2Ra, IL-15Ra is unique to its cognate cytokine.
IL-15Ra was initially recognized by its ability to facilitate
high affinity IL-15 binding (Lodolce and others 1998;
Fehniger and Caligiuri 2001; Waldmann and others 2001).
However, recent work suggests that the ability of IL-15Ra
to present IL-15 either in membrane or soluble form may be
more critical (Dubois and others 2002; Burkett and others
2003; Koka and others 2004; Kobayashi and others 2005;
Schluns and others 2005; Stonier and others 2008; Castillo
and others 2009; Bergamaschi and others 2012). It is unclear
whether IL-15 actually exists naturally by itself; rather it
may always be associated with either membrane-bound or
soluble IL-15Ra (Bergamaschi and others 2012; Castillo
and Schluns 2012; Cole and Rubinstein 2012). There are
some other notable findings related to IL-15Ra that may be
relevant for its ability to function. There is evidence that IL-
15Ra might engage membrane-bound IL-15 and mediate
reverse signaling (Neely and others 2004; Khawam and
others 2009). Unlike IL-2Ra subunit, IL-15Ra may retain
some ability to mediate intracellular signaling upon IL-15
engagement, although there is not a consensus on the rele-
vant pathways (Stevens and others 1997; Pereno and others
1999, 2000; Ratthe and Girard 2004; Marra and others
2014). Finally, naturally occurring soluble IL-15Ra has
been reported which may impact the activity of IL-15
(Mortier and others 2004; Badoual and others 2008; Ber-
gamaschi and others 2012).

IL-2 Combined with Adoptive Cellular Therapy

While IL-2 has efficacy as a single agent, preclinical work
suggesting that coadministration of LAK cells could yield
improved responses led to the search for other tumor-

reactive lymphocyte populations to combine with IL-2.
Yron and others (1980) reported the isolation and expansion
of T cells from the tumors of mice using conditioned media
containing IL-2. These T cells could kill tumor cells, but did
not kill healthy lymphocytes. With the availability of re-
combinant IL-2, these tumor-infiltrating lymphocytes (TILs)
could be more efficiently grown in vitro. In 1986, Rosenberg
and colleagues reported that upon adoptive transfer in mice,
TILs were 50–100-fold more efficacious than LAK cells in
mediating antitumor immunity (Rosenberg and others 1986;
Muul and others 1987). Importantly, in these experiments,
the activity of TILs was enhanced by the administration of
IL-2. In tandem with their characterization in mice, it was
found that TILs could be generated from many types of
human tumors (Kurnick and others 1986; Topalian and
others 1987; Rosenberg 1992). In 1987, Kurnick and col-
leagues reported the administration of TIL to human patients
with the treatment of 7 patients with metastatic adenocar-
cinoma of the lung (Kradin and others 1987). While there
were no objective responses of at least 50% total reduction
in tumor volume, the authors noted that 5 of 7 patients had
some reduction in tumor volume. During the next 2 years,
Kurnick and colleagues published 2 more studies in human
patients using TIL with the addition of recombinant IL-2
(Kradin and others 1988, 1989). The authors observed par-
tial (objective) responses in 3 of 13 melanoma patients and 2
of 7 renal cell carcinoma patients (Kradin and others 1988,
1989). During this same time, Rosenberg and colleagues
also reported clinical trials using TIL with the addition of
IL-2 administration (Rosenberg and others 1988; Topalian
and others 1988). Based on mouse studies showing that
preconditioning with cyclophosphamide was important for
TIL efficacy (Rosenberg and others 1986), Rosenberg and
colleagues administered cyclophosphamide to patients be-
fore TIL infusion. With the combination of cyclophospha-
mide, TIL, and high-dose IL-2, Rosenberg and colleagues
achieved objective responses in 11 of 20 metastatic mela-
noma patients (Rosenberg and others 1988). Notably, 2
objective responses were observed among 5 patients in
whom IL-2 therapy alone had failed to yield a response.
Although there were limited numbers of patients and vary-
ing treatment protocols, there was great excitement that TIL
therapy administered with IL-2 appeared to allow response
rates much higher than that observed with IL-2 therapy
alone. Importantly, and indicative of TIL’s ability to me-
diate direct antitumor immunity, Griffith and others (1989)
reported that indium-111 labeled TIL preferentially local-
ized to tumor versus normal skin.

Several other reports warrant mention in better under-
standing TIL therapy and the relationship to IL-2. First, to
more accurately define the response rate in a larger cohort of
patients, Rosenberg and colleagues reported results of 86
patients with metastatic melanoma treated with TIL and IL-
2 from May 1987 to December 1992 (Rosenberg and others
1994). The objective response rate from TIL therapy with
IL-2 administration for these patients was 34%, a response
rate much higher than what might have been expected with
IL-2 alone. As part of the study, 59 of 86 patients received a
single dose of cyclophosphamide (25 mg/kg) before TIL
infusion. The response rate in patients without cyclophos-
phamide (31%) was not statistically different than patients
with cyclophosphamide (35%) (Rosenberg and others
1994).
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While a single injection of cyclophosphamide did not ap-
pear to significantly improve response rates of TIL therapy
with IL-2, extensive studies in animals did suggest that lym-
phodepletion (using total body irradiation or chemotherapy)
before adoptive cellular therapy would greatly improve donor
lymphocyte persistence and antitumor efficacy (Glynn and
others 1969; Berendt and North 1980; North 1982; Greenberg
and others 1985, 1988; Rosenberg and others 1986; Muranski
and others 2006; Paulos and others 2007; Wrzesinski and
others 2010). Multiple mechanisms have been reported to
mediate these effects, including the reduction of tumor burden,
the destruction of suppressive cells, increased antigen pre-
senting cells, and the release of lipopolysaccharide (LPS) from
host microflora (Hill and others 1997; Zhang and others 2002;
Brown and others 2004; Klebanoff and others 2005; Gattinoni
and others 2006; Paulos and others 2007; Salem and others
2009; Yao and others 2012). Perhaps most relevant is the
destruction of host lymphocytes which consume T cell growth
factors such as IL-2, IL-7, or IL-15 (Schluns and others 2000;
Tan and others 2001, 2002; Goldrath and others 2002; Gatti-
noni and others 2005; Johnson and others 2015; Martin and
others 2017). The absence of host lymphocytes may also im-
prove the availability of recombinant IL-2 for donor T cells.
Furthermore, as IL-7 and IL-15 are produced by radiation-
resistant cells, lymphodepletion leads to dramatically elevated
IL-7 and IL-15 in mice and humans (Bolotin and others 1999;
Fry and others 2001; Napolitano and others 2001; Miller and
others 2005; Dudley and others 2008; Guimond and others
2009; Bergamaschi and others 2012). A demonstration of
clinical relevance of lymphodepletion was reported in 2002 in
patients with metastatic melanoma treated with TIL therapy and
IL-2. In this trial, a much harsher conditioning regimen was
provided with 2 days of cyclophosphamide (60 mg/kg) and
5 days of fludarabine (25 mg/m2) (Dudley and others 2002).
This enhanced nonmyeloablative lymphodepletion conditioning
regimen given with TIL and IL-2 resulted in objective re-
sponses in 6 of 13 patients. Notably, in this study TIL persisted
at a greater level than in previous studies (Dudley and others
2002). Although the enhanced lymphodepletion regimen was
likely critical, it is relevant that the T cell culture conditions in
this study were different than earlier TIL studies in that a new
rapid expansion protocol with both irradiated feeder cells and
soluble anti-CD3 mAb was used to expand the cells immedi-
ately before infusion (Dudley and others 2002).

The success of lymphodepletion with cyclophosphamide
and fludarabine led to additional interest in whether greater
lymphodepletion might further improve response rates.
Studies in mice suggested that the addition of total body
irradiation to standard lymphodepletion would improve
outcomes (Muranski and others 2006; Paulos and others
2007; Wrzesinski and others 2010). This rationale provided
the framework for evaluating whether the addition of total
body irradiation to standard cyclophosphamide and fludar-
abine would lead to improved clinical response of TIL
therapy with IL-2. In initial studies, Rosenberg and col-
leagues observed higher response rates with the addition of
2 Gy (n = 25) or 12 Gy (n = 25) total body irradiation com-
pared with the standard lymphodepletion nonmyeloablative
conditioning regimen (n = 43) (Dudley and others 2008;
Rosenberg and others 2011). However, another study re-
ported no benefit of the addition of 6 Gy (n = 25) total body
irradiation versus standard cyclophosphamide and fludar-
abine (n = 33) (Dudley and others 2010). To evaluate the

value of total body irradiation, Rosenberg and colleagues
performed a randomized study with (n = 50) or without
(n = 51) 12 Gy total body irradiation in addition to standard
cyclophosphamide and fludarabine (Goff and others 2016).
In both groups, 24% of patients experienced complete re-
sponses, and there were no significant differences in overall
survival (Goff and others 2016). Contrary to expectations,
enhanced lymphodepletion did not improve the response
rate of TIL and IL-2. These results suggest that there may be
a threshold of lymphodepletion that is adequate for optimal
antitumor responses. It is unclear if or how providing IL-2
support after administration of TIL may alter the optimal
level of lymphodepletion.

While the addition of total body irradiation is unnecessary
for the efficacy of TIL therapy, the ability of an enhanced,
nonmyeloablative lymphodepletion regimen to mediate ef-
fective responses when given with TIL and IL-2 has now been
reported by multiple groups (Pilon-Thomas and others 2012;
Radvanyi and others 2012; Besser and others 2013). However,
due to the difficulties in conducting these studies, the changing
patient population, and evolving protocol designs, the optimal
level of lymphodepletion and subsequent IL-2 support for pa-
tients receiving TIL therapy are yet to be determined.

While TIL has received much attention, other endogenous
tumor-reactive T cell populations have been isolated, ex-
panded, and used for cancer therapy (Yee and others 2002;
Wallen and others 2009; Verdegaal and others 2011, 2016;
Chapuis and others 2012, 2013; Yee 2014). In a striking
example demonstrating the benefit of IL-2, Yee and others
(2002) treated metastatic melanoma patients with multiple
infusions of MART-1- and GP100-reactive CD8+ T cell
clones in which patients received no lymphodepleting che-
motherapy. After the first infusion, patients received no IL-2
therapy, but after subsequent infusions, patients received
increasing amounts of low-dose IL-2 given subcutaneously
(0.25, 0.5, and 1.0 · 106 U/m2 twice daily for 14 days) (Yee
and others 2002). The authors found that T cells persisted
much better when IL-2 was administered after adoptive
transfer; however, most donor T cells failed to persist be-
yond 21 days in the blood. There were no objective re-
sponses, although 8 of 10 patients had minor, mixed, or stable
responses for up to 21 months. It is relevant in this study that
the T cells expressed IL-2Ra, which may have facilitated
their responsiveness to low-dose IL-2. In a follow-up study in
11 patients with metastatic melanoma, Chapuis and others
(2012) added cyclophosphamide (4 g/m2) before adoptive
transfer of tumor-reactive T cell clones. Three patients re-
ceived high-dose IL-2; however, this cohort was discontinued
due to toxicity. Eight patients received low-dose IL-2, which
was ‘‘well tolerated and safe’’ (Chapuis and others 2012). In
this study, 4 of 11 patients had T cell persistence beyond
42 days. Furthermore, 1 patient had a complete response, and
5 had stable disease. These results further suggest that the
appropriate balance between lymphodepletion and IL-2
therapy can lead to optimal T cell persistence and clinical
responses.

IL-2 Combined with Genetically Modified T Cells

A significant advance in adoptive cellular therapy (ACT)
was the development of methods to genetically engineer
tumor-reactivity using the transfer of T cell receptor (TCR)
or chimeric antigen receptor (CAR) genes (Gross and others
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1989; Cole and others 1995; Kaplan and others 2003; Res-
tifo and others 2012; Kochenderfer and Rosenberg 2013;
Barrett and others 2014; Jensen and Riddell 2014; Kender-
ian and others 2014; Stromnes and others 2014; Nelson and
Paulos 2015; Debets and others 2016; Sharma and Kranz
2016; Spear and others 2016; Turtle and others 2016; Lim
and June 2017; Wang and Wang 2017). These approaches
offer the possibility of generating tumor-reactive cells in
patients who do not already possess such cells or where they
cannot be isolated. Thus, for example, in metastatic mela-
noma it is estimated that only *27% to 45% of patients are
able to receive TIL therapy due to factors such as inability to
isolate tumor, inability to expand TIL, or patient disease
progression during TIL preparation (Prieto and others 2010;
Rosenberg and others 2011). The therapeutic utility of TCR-
and CAR-modified T cells given with or without IL-2 is
supported by studies in mice (Kessels and others 2001;
Brentjens and others 2003; Chamoto and others 2004; Xue
and others 2005; Chinnasamy and others 2010; Kochenderfer
and others 2010b).

The successful translation of these efforts in humans was
first reported in 2006 by Rosenberg and colleagues who
adoptively transferred TCR-modified T cells into patients
with metastatic melanoma (Morgan and others 2006). In this
study, patients received nonmyeloablative chemotherapy, T
cells genetically modified with a MART-1-reactive TCR, and
high-dose IL-2. There were objective responses in 2 of 15
patients. Notably, these 2 patients had failed previous IL-2
therapy and also had remarkable persistence of their donor
lymphocytes (Morgan and others 2006). Since this first ex-
perience, there have been multiple clinical trials using TCR-
modified T cells, including TCRs reactive against CEA,
MART-1, GP100, NY-ESO-1, MAGE-A3, and MAGE-A4
(Johnson and others 2009; Parkhurst and others 2011; Rob-
bins and others 2011, 2015; Morgan and others 2013; Chodon
and others 2014; Kageyama and others 2015; Rapoport and
others 2015). In most of these studies, high-dose IL-2 was
provided immediately after adoptive T cell transfer. Two
studies of NY-ESO-1-reactive TCR-modified T cells are
notable. Steven Rosenberg and colleagues used NY-ESO-1-
reactive TCR-modified T cells in combination with lym-
phodepletion and high-dose IL-2 to successfully induce
objective responses in 22 of 38 patients with either metastatic
melanoma or synovial cell carcinoma (Robbins and others
2011, 2015). June and colleagues also used NY-ESO-1-
reactive TCR-modified T cells to treat multiple myeloma and
observed clinical responses in 16 of 20 patients, although
without providing IL-2 (Rapoport and others 2015). As there
were many differences between these studies, including the
type of cancer, the methodology by which the T cells were
expanded, and method of lymphodepletion, the value of IL-2
in these protocols is not clear.

While TCR-modified T cells show great promise in the
treatment of solid tumors, the use of CAR-modified T cells
has shown spectacular success in patients with B cell neo-
plasms. These recent successes followed a number of early
clinical trials using CAR-modified T cells that did not result
in clinical benefit (McGuinness and others 1999; Kershaw
and others 2006; Lamers and others 2006; June and others
2014). In 2010 however, initial success was demonstrated
by Kochenderfer and others (2010a) who used T cells
modified with CD19-reactive CAR in combination with IL-
2 to induce a response in a patient with advanced follicular

lymphoma. A follow-up study by the same group in 2012
showed objective responses in 6 of 8 patients with advanced,
progressive B cell malignancies that had failed other ther-
apies (Kochenderfer and others 2012). These patients all
received nonmyeloablative chemotherapy with cyclophos-
phamide and fludarabine followed by CAR-modified T cells
and recombinant IL-2. In 2011, June and colleagues re-
ported another major advance using another CD19-reactive
CAR (Kalos and others 2011). In this case, the intracellular
signaling domain of the CAR was modified with a 4-1BB
signaling domain, and a modified, shorter T cell culture was
used. Three patients with advance chronic lymphoid leu-
kemia were treated with nonmyeloablative chemotherapy
and CAR-modified T cells, but with no IL-2. All 3 patients
had clinical responses, including 2 complete responses
(Kalos and others 2011). June and colleagues, as well as
other groups, have now extensively reported results dem-
onstrating incredible efficacy of CD19-reactive CAR T cells
in patients with a variety of B cell malignancies (Brentjens
and others 2013; Grupp and others 2013; Maude and others
2014; Garfall and others 2015; Kochenderfer and others
2015; Lee and others 2015; Brudno and others 2016; Keb-
riaei and others 2016; Locke and others 2017). It is notable
that for the most part, these studies have not used exogenous
IL-2. Again, as was the case with other T cell therapies, the
potential benefit and importance of IL-2 therapy are not
clear, as between the various studies, there are differences,
including cell culture conditions, lymphodepletion, and the
CAR signaling domains. In the case of CD19-reactive CAR
T cells, it may also be relevant that a large population of
CD19+ nontumor cells might provide stimulation in such a
manner that cytokine therapy is not necessary. However, a
study by Kochenderfer and others (2017) reported an asso-
ciation between clinical response and elevated endogenous
IL-15 (but not IL-2) in the serum, suggesting that IL-2 or IL-
15-based therapy could have value as part of CAR therapy.

Alternatives to IL-2 Therapy

While administration of IL-2 is associated with re-
markable clinical responses in certain patients, dose lim-
iting toxicities make the widespread administration of this
therapy infeasible. Side effects from high-dose IL-2 can be
severe and include fever, chills, hypotension, tachycardia,
oliguria, nausea, vomiting, diarrhea, capillary leak syn-
drome, renal failure, and thrombocytopenia requiring the
use of blood pressure monitoring, volume replacements,
and blood pressure support if needed. These side effects,
however, are manageable when therapy is administered at
experienced centers (Lotze and others 1986b; Rosenstein
and others 1986; Kammula and others 1998; Dutcher and
others 2001; Schwartzentruber 2001).

In addition to toxicity, IL-2 administration for cancer
therapy carries the concern for expansion of T regulatory
cells. T regulatory cells are especially responsive to IL-2
because they constitutively express high levels of the IL-
2Ra subunit, necessary for high affinity IL-2 binding
(Nishikawa and Sakaguchi 2014; Shevach and Thornton
2014; Yuan and others 2014; Waldmann 2015). The im-
portance of IL-2 and T regulatory cells is particularly evi-
dent by the phenotypes of IL-2, IL-2Ra, and IL-2Rb
knockout mice, which all develop fatal autoimmunity (Sa-
dlack and others 1993, 1995; Suzuki and others 1995;
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Willerford and others 1995; Yu and others 2003). Thus,
while recombinant IL-2 can potently augment immune re-
sponses, it paradoxically plays a critical role in expanding a
cell population that can shut down immune responses. The
clinical relevance of this is suggested in patients treated with
recombinant IL-2, where increased frequencies of FOXP3+

T regulatory cells have been reported (Zhang and others
2005; Ahmadzadeh 2006; Yao and others 2012). The ability
of IL-2 to induce regulatory cells has been exploited to treat
autoimmune disease. Thus, low doses of IL-2 have been
given with clinical success to treat patients with chronic
graft-versus-host disease, hepatitis C virus-induced vascu-
litis, and systemic lupus erythematosus (Koreth and others
2011; Saadoun and others 2011; Matsuoka and others 2013;
He and others 2016). In addition to inducing T regulatory-
mediated suppressive pathways (Matsuoka and others 2013;
He and others 2016), low-dose IL-2 has also been shown in
patients to induce the expansion of NK cell populations that
may have antitumor potential (Caligiuri and others 1993).
Thus, the interplay of IL-2-induced expansion of effector
cells and regulatory cells is quite complicated.

One method to improve the utilization of high-dose IL-2
therapy would be to identify biomarkers to predict patients
likely to respond. However, while there has been work to
identify such biomarkers (Royal and others 1996; Bui and
others 2003; Leibovich and others 2003; Atkins and others
2005; Upton and others 2005; Dudek and others 2010;
Foureau and others 2014; Sim and others 2014; Kostner and
others 2015; McDermott and others 2015a; Saraceni and
others 2015; Chow and others 2016; Diller and others 2016;
Kuzman and others 2017), there are no biomarkers that have
been widely adopted to predict patients likely to respond.
Newer methods and approaches for biomarkers have shown
great promise in checkpoint therapy (Gibney and others
2016; Topalian and others 2016; Maleki Vareki and others
2017; Nishino and others 2017), but these methods have had
limited evaluation in the context of IL-2 therapy. Notably,
McDermott and others (2015a) reported that evidence in
renal cell carcinoma that elevated PD-L1 expression in
pretreatment tumors was favorably associated with clinical
response. While being able to select patients likely to re-
spond would be of value, there has been much effort to
identify novel cytokine therapeutics with improved efficacy
and reduced toxicities.

IL-15

The discovery in 1994 of IL-15 (Burton and others 1994;
Grabstein and others 1994), which like IL-2 signals through
the IL-2Rbg subunits, raised the possibility that this novel
cytokine might provide a therapeutic alternative to IL-2.
Studies in mice suggested that toxicity at therapeutic doses
associated with IL-15 might be more favorable than IL-2
(Munger and others 1995; Katsanis and others 1996; Ko-
bayashi and others 2000). Given the similarities and po-
tential advantages relative to IL-2, IL-15 was evaluated
preclinically and showed efficacy in multiple models, in-
cluding induction of antitumor immunity (Munger and
others 1995; Evans and others 1997; Cao and others 1998;
Di Carlo and others 2000; Rubinstein and others 2002;
Kishida and others 2003; Oh and others 2003; Klebanoff
and others 2004; Lasek and others 2004; Roychowdhury and
others 2004; Melchionda and others 2005; Ugen and others

2006; Basak and others 2008; Habibi and others 2009; Liu
and others 2013). Notably, recombinant IL-15 enhances the
efficacy of adoptively transferred tumor-reactive T cells
given concomitantly with vaccination in mice bearing es-
tablished subcutaneous melanoma tumors (Klebanoff and
others 2004). Given a variety of preclinical results, enthu-
siasm for IL-15 led to it being ranked first by the 2007 NCI
immunotherapy agent workshop as the experimental agent
with highest potential for treating cancer (Cheever 2008). In
2015, Waldmann and colleagues reported that they could
safely administer IL-15 to patients and induce biological
activity on NK cells and CD8+ memory T cells (Conlon and
others 2015). Although there were no objective responses,
there was clearance of lung lesions in 2 patients with met-
astatic melanoma (Conlon and others 2015). Waldmann and
colleagues have recently reported a second cohort of pa-
tients treated with recombinant IL-15 and provided a de-
tailed analysis of the response of NK cells to treatment
(Dubois and others 2017).

While IL-15 has shown great promise as an antitumor
agent, in 2006 it was found that the biological activity of IL-
15 could be further improved by preassociation with its
soluble receptor, IL-15Ra (Mortier and others 2006; Ru-
binstein and others 2006; Stoklasek and others 2006; Ber-
gamaschi and others 2008; Dubois and others 2008), thereby
creating IL-15/IL-15Ra complexes. Interestingly, in vitro
association of IL-15 with either a monomeric or dimeric
sIL-15Ra (fused to an Fc) led to greatly improved activity
(Rubinstein and others 2006). These results suggest that
when bound to IL-15Ra, IL-15 might undergo a confor-
mational change into a superagonist (Rubinstein and others
2006). Structural evidence in support of this was subse-
quently reported by Garcia and colleagues (Ring and others
2012). While the activity of these IL-15/sIL-15Ra com-
plexes was notable in vitro, upon infusion, IL-15/sIL-15Ra
complexes mediated more than 50-fold greater activity than
free IL-15 (Rubinstein and others 2006; Stoklasek and
others 2006). As sIL-15Ra-Fc only improved IL-15 activity
about 7-fold in vitro (Rubinstein and others 2006), these
data suggest that there are additional mechanisms leading to
improved biological activity in vivo. Potential mechanisms
accounting for the improved activity in vivo include the
ability of sIL-15Ra-Fc to act as a carrier protein, to redirect
the localization of IL-15, and to protect IL-15 from pro-
teolytic degradation.

The increased biological activity of IL-15/sIL-15Ra-Fc
complexes in vivo is apparent in multiple readouts. IL-15/
sIL-15Ra complexes induce the potent expansion of cell
types important to antitumor immunity (including CD8+

memory T cells, NK cells, and NK T cells) and mediate
potent antitumor immunity in mouse models (Rubinstein
and others 2006; Stoklasek and others 2006; Bergamaschi
and others 2008; Dubois and others 2008; Epardaud and
others 2008; Bessard and others 2009; Desbois and others
2016). Following infection in mice, IL-15/sIL-15Ra-Fc
complexes were also able to effectively augment the number
of responding antigen-specific CD8+ T cells demonstrating
the potential of this reagent to have efficacy with vaccina-
tion approaches (Epardaud and others 2008). In the interest
of clinical translation, several groups have generated IL-15/
sIL-15Ra complexes with or without inclusion of an Fc
(Bouchaud and others 2008; Rowley and others 2009; Han
and others 2011; Stone and others 2012; Tosic and others
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2014). Notably, Wong and colleagues generated IL-15/IL-15Ra
complexes with an amino acid mutation that further improved
biological activity (Han and others 2011). This molecule has
shown potent efficacy in augmenting antitumor responses in
murine tumor models, and also, in inducing the expansion of
lymphocytes in cynomolgus monkeys (Xu and others 2013;
Gomes-Giacoia and others 2014; Rhode and others 2016). This
molecule, which has been designated ALT-803, is currently in
clinical testing. In addition to ALT-803 manufactured by Altor
Bioscience, other IL-15/IL-15Ra complexes are in development
by Novartis (Admune) and Cytune Pharma (Desbois and others
2016; Thaysen-Andersen and others 2016).

IL-7

IL-7 has been reviewed in detail elsewhere (Hofmeister
and others 1999; Fry and Mackall 2002; Jiang and others
2005; Ma and others 2006; Mazzucchelli and Durum 2007;
Overwijk and Schluns 2009; Mackall and others 2011;
Carrette and Surh 2012; Lin and others 2017). IL-7 has
many similarities with IL-2 and IL-15, including utilization
of the shared IL-2Rg subunit. IL-7 and its second receptor
subunit, IL-7Ra, were cloned in the late 1980s (Namen and
others 1988; Goodwin and others 1989, 1990). While IL-
7Ra does not interact with any other IL-2Rg-chain cytokine
members, in conjunction with the thymic stromal lympho-
poietin receptor (TSLPR), IL-7Ra mediates signaling and
biological activity of TSLP in a wide range of immune cells
(Levin and others 1999; Pandey and others 2000; Park and
others 2000; Roan and others 2012; Lo Kuan and Ziegler
2014). The IL-7 receptor, IL-7Ra/IL-2Rg, is expressed on
both developing and mature B cells and T cells. Mice de-
ficient in IL-7, IL-7Ra, or IL-2Rg have a severe combined
immunodeficiency (SCID) phenotype consistent with the
critical role in these cytokines and receptors in lymphocyte
development and survival (Peschon and others 1994; Cao
and others 1995; von Freeden-Jeffry and others 1995). The
lymphopenia of the IL-7Ra KO mouse is slightly more se-
vere than the IL-7 KO mouse, suggesting that TSLP may
play a role in supporting lymphocyte development and
survival (Pandey and others 2000). Studies using IL-7
transgenic mice and administration of recombinant IL-7 into
mice show that exogenous IL-7 can greatly augment the
numbers of both T cells and B cells, although both mature
and immature B cells are expanded (Morrissey and others
1991; Samaridis and others 1991; Damia and others 1992;
Komschlies and others 1994; Fisher and others 1995;
Mertsching and others 1995; Valenzona and others 1996;
Melchionda and others 2005; Nanjappa and others 2008). In
preclinical models, IL-7 administration can promote im-
mune responses against tumor and infectious disease
(Nanjappa and others 2008, 2011; Andersson and others
2009; Cui and others 2009; Pellegrini and others 2011; Tang
and others 2014; Ruan and others 2016). It is noteworthy
that surface expression of IL-7Ra is high on naive and
memory T cells, but reduced upon T cell activation, sug-
gesting that effector T cells may have reduced ability to
respond to IL-7 (Foxwell and others 1992; Schluns and
others 2000; Goldrath and others 2002; Xue and others
2002; Kaech and others 2003; Klonowski and others 2006).
However, depending on the method of T cell activation,
there may be sufficient surface IL-7Ra on effector T cells
for IL-7 responsiveness ( Johnson and others 2015).

The first human trial for the evaluation of IL-7 was reported in
2006 when Rosenberg and others (2006) demonstrated that IL-7
administration to cancer patients could enhance CD8+ and CD4+

T cell counts, with reduced frequencies of T regulatory cells, but
with no objective responses. A number of other clinical studies
have also evaluated IL-7 in human patients, including in cancer
and HIV infection (Sportes and others 2008, 2010; Levy and
others 2009, 2012; Sereti and others 2009; Perales and others
2012; Alstadhaug and others 2014; Gasnault and others 2014;
Tredan and others 2015; Sheikh and others 2016; Thiebaut and
others 2016). It is notable that the pre-B cell expansion observed
in murine models was not apparent in humans, suggesting a
critical difference between mouse and humans (Sportes and
others 2010). Furthermore, unlike IL-2 therapy, IL-7 therapy
does not lead to the expansion of CD4+CD25+ T regulatory cells
(Rosenberg and others 2006; Sereti and others 2009; Sportes and
others 2010).

Novel IL-2 based therapies

The design of mutant IL-2 molecules provides another
option for improving the biological activity of IL-2. Several
groups have designed IL-2 mutants that have reduced binding
to IL-2Ra and in some cases have enhanced binding to IL-
2Rbg (Heaton and others 1993; Levin and others 2012; Car-
menate and others 2013). These molecules have shown im-
proved antitumor efficacy and reduced toxicity in animal
models. An alternative approach has been the generation of IL-
2 mutants with enhanced ability to bind IL-2Rabg relative to
IL-2Rbg. Shanafelt and others (2000) designed an IL-2 mutant
with reduced IL-2Rbg binding with the goal of minimizing
toxicity mediated by IL-2Rbg+ NK cells. This molecule, des-
ignated BAY 50-4798, was tested as a single agent in cancer
patients. While able to induce some clinical responses in cancer
patients, there were not obvious advantages compared with
conventional IL-2 with the treatment protocol (Margolin and
others 2007). In a related approach, other groups have designed
mutant IL-2 molecules with improved binding of IL-2 to IL-
2Ra. Fallon and others (2000) reported an IL-2 analog that may
undergo increased endosomal recycling due to an alteration in
the pH sensitivity between IL-2 and IL-2Ra. In separate
studies, Rao and others also generated IL-2 mutants with im-
proved affinity for IL-2Ra (Rao and others 2003, 2005). Unlike
wild-type IL-2, these mutants could persist on the cell surface
and mediate durable cell signaling as has been reported for
IL-15 (Dubois and others 2002). Whether these mutant IL-2
molecules have clinical efficacy, and under what circum-
stances, remains to be determined.

While there has been much effort to augment or tailor IL-2
signaling, there are also mutants of IL-2 designed to inhibit
signaling (Liu and others 2009; Mitra and others 2015). For
example, Liu and others (2009) designed an IL-2 antagonist by
selecting for high affinity binding to IL-2Ra and loss of binding
to IL-2Rbg. These molecules may selectively block high af-
finity IL-2 signaling and, for example, could suppress T regu-
latory responses. While mutant IL-2 molecules have promise, it
is also worth mention that Tsytsikov and others (1996) reported
natural variants of IL-2, generated by alternative splicing, that
may competitively inhibit full length IL-2.

In addition to modifying the specificity of IL-2, other ap-
proaches seek to improve the half-life and biological activity
of IL-2. Pegylation of recombinant molecules can improve
half-life and biological activity (Pasut and Veronese 2009;
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Milla and others 2012; Turecek and others 2016), and pe-
gylated IL-2 (PEG-IL-2) molecules have been generated with
improved biological activity, half-life, and antitumor activity
versus nonpegylated IL-2 (Katre and others 1987; Knauf and
others 1988; Zimmerman and others 1989; Katre 1990; Yang
and others 1991; Charych and others 2016). Administration
of PEG-IL-2 to patients with metastatic melanoma and renal
cell carcinoma was associated with objective responses
(Meyers and others 1991; Yang and others 1995). Another
benefit of this approach is that the pegylation process may
alter the IL-2 to redirect its target cell specificity. NKTR-214
is IL-2 that has been pegylated in a way to reduce or mask its
ability to engage to IL-2Ra, thereby making it more like IL-
15 (Charych and others 2016). NKTR-214, which is produced
by Nektar, is in clinical testing. Other methods for improving
the half-life of IL-2 include the generation of fusion proteins,
including the linkage of IL-2 with the Fc region of an anti-
body or albumin (Zheng and others 1999; Yao and others
2004; Melder and others 2005).

IL-2 therapy using antibody/cytokine complexes

Another method to increase the biological activity of IL-2
is by preassociation with anti-IL-2 mAb, to generate IL-2/
mAb complexes, before infusion. IL-2/mAb complexes were
first reported in 1993 and showed greatly enhanced antitumor
efficacy versus free IL-2 (Sato and others 1993; Courtney and
others 1994). The enhancement of activity was associated
with improved IL-2 persistence in vivo. There are a number
of potential enhancing mechanisms that may be responsible
for this improved activity, including improved half-life,
protection from degradation, and altered localization. Inter-
estingly, despite these early studies demonstrating that anti-
bodies could enhance the biological activity of IL-2, the
administration of anticytokine monoclonal antibodies to re-
duce IL-2 responses was routine. In fact, it was thought that
administration of anti-IL-2 mAb would block IL-2 and thus
reduce T regulatory cell activity resulting in improved pro-
liferation of CD8+ memory-phenotype T cells. However, in
2006, Boyman and others (2006) demonstrated that instead of
blocking IL-2, anti-IL-2 mAb promoted the biological activ-
ity of endogenous IL-2, thus directly stimulating CD8+

memory-phenotype T cells. Furthermore, injection of pre-
formed IL-2/mAb complexes exhibited potent biological ac-
tivity on CD8+ memory-phenotype T cells and NK cells.

Another important property of IL-2/mAb complexes is
that target cell specificity can be altered compared with
native IL-2 (Boyman and others 2006). Thus, depending on
the choice of anti-IL-2 mAb, IL-2 can be redirected either in
favor of IL-2Rahi T cells or independent of IL-2Ra ex-
pression. The ability to redirect IL-2 target cell specificity
may relate to the ability of anti-IL-2 mAb to block the IL-2
interaction with certain cytokine receptor subunits or may
conformationally stabilize certain interactions (Spangler and
others 2015).

IL-2/mAb complexes have now shown efficacy in aug-
menting immune responses in a wide range of preclinical
models, including antitumor immunity ( Jin and others 2008;
Mostbock and others 2008; Wilson and others 2008; Molloy
and others 2009; Tomala and others 2009; Webster and others
2009; Hamilton and others 2010; Krieg and others 2010; Liu
and others 2010; Smith and others 2011; Lee and others 2012;
Kim and others 2013, 2015). In addition to antibody cytokine

complexes generated with IL-2, it is relevant that cytokine
complexes have also been reported with IL-4, IL-7, and IL-15
with potent biological activity, including on lymphocytes
(Finkelman and others 1993; Boyman and others 2008;
Phelan and others 2008; Rubinstein and others 2008; Morris
and others 2009; Finch and others 2011).

Combination Therapies with IL-2

While IL-2 has shown remarkable efficacy, most patients
do not achieve a clinical response. If IL-2 or related cyto-
kines are to benefit a broader group of cancer patients,
combinational therapies will likely be necessary. One ad-
vantage of IL-2-type therapies is the ability to integrate into
almost any other form of immune- or nonimmune therapy.
Thus, in any situation where T cells or NK cells participate
in mediating immune responses, IL-2 therapy could mediate
improved responses. Two therapies in particular warrant
discussion and may benefit from the addition of IL-2 ther-
apy: antibody-based therapies targeting tumor cells and
immune-checkpoint therapies.

Antibody therapies can target tumor associated antigens
and initiate antibody dependent cell-mediated cytotoxicity or
complement-mediated lysis. IL-2 or IL-15-based therapies
can expand and activate Fc+ lymphocytes such as NK cells
that may directly improve the efficacy of such antibody-
mediated therapeutics. A number of preclinical studies show
synergy of IL-2 or IL-15 with such antibody-based therapies,
and furthermore, depletion of NK cells can abrogate this ef-
fect (Eisenbeis and others 2004; Abes and others 2010; Tzeng
and others 2015; Zhu and others 2015; Rosario and others
2016). These efforts have led to a number of clinical studies
combining IL-2 therapy with rituximab (anti-CD20 mAb) or
herceptin (anti-Her2/neu mAb) (Eisenbeis and others 2004;
Khan and others 2006; Mani and others 2009; Poire and
others 2010). An ongoing clinical trial involves combining
ALT-803 (IL-15/IL-15Ra complexes) with rituximab for the
treatment of non-Hodgkin’s lymphoma (NCT02384954).
This combinatorial approach may also have promise in the
treatment of infectious diseases where antibodies are cur-
rently being evaluated.

Immune checkpoint therapy has shown efficacy in a
growing number of cancers, including metastatic melanoma
and renal cell carcinoma (Hodi and others 2010; Topalian and
others 2012; Hamid and others 2013; Wolchok and others
2013; McDermott and others 2015b; Motzer and others
2015; Schadendorf and others 2015; Sharma and Allison
2015), but likely act in mechanistically distinct ways from
IL-2-mediated therapy, thereby suggesting value for com-
binatorial therapy. Most simply, immune checkpoint thera-
pies may overcome negative regulatory pathways, while
cytokine therapies may expand and activate newly available
tumor-specific T cell populations. In support of the potential
synergy of these approaches, preclinical studies using tumor
models and chronic viral infection have shown that IL-2-
and IL-15-based therapies synergize with both anti-PD-1
and anti-CTLA-4 mAbs (Yu and others 2010; John and
others 2013; West and others 2013; Desbois and others
2016; Mathios and others 2016), and other preclinical
mechanistic studies also support the use of these combina-
tions (Shi and others 2016; Asano and others 2017). In
humans, there has been only 1 published report of a clinical
trial directly combining immune checkpoint therapy with
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either IL-2 or IL-15. Rosenberg and others described treat-
ing 36 patients with metastatic melanoma with anti-CTLA-
4 mAb (ipilimumab) and high-dose IL-2. The authors re-
ported 3 (8%) complete responses in the initial analysis and
6 (17%) complete responses in the longer follow-up (Maker
and others 2005; Prieto and others 2012). Although only a
small number of patients were enrolled in this study, these
results provide clinical support for combining checkpoint
therapy with common g-chain agonist cytokines. Notably,
a follow-up study of high-dose IL-2 and ipilimumab is
ongoing (NCT02203604). There are several other relevant
trials ongoing, including the combination of IL-15/IL-15Ra
complexes (ALT-803, NCT02523469), pegylated IL-2
(NKTR-214, NCT02983045, and NCT03138889), and high-
and low-dose IL-2 (NCT02964078, NCT02989714, and
NCT03111901) with anti-PD-1 mAbs (nivolumab and pem-
brolizumab) and anti-PD-L1 mAb (atezolizumab). While not
concomitant therapy, also of interest is a case report of patient
with metastatic renal cell carcinoma who did not respond to
anti-PD-1 mAb, but did achieve a near complete response to
subsequent IL-2 therapy (Brayer and Fishman 2014).

Conclusion

Immunotherapy is now commonplace for multiple ma-
lignancies, and in many ways, the use of IL-2 pioneered the
introduction of this therapeutic modality into oncologic
practice. While the use of high-dose IL-2 has remained a
therapy only available at specialized centers, this therapy
has given proof of principle for an alternate and potentially
curative paradigm. While much has been learned about the
IL-2 and related cytokines since their initial discovery, this
area of research remains intensely active with multiple
pharmaceutical companies aggressively pursuing clinical
investigation of novel and safer IL-2 related reagents. Future
directions will likely include combinatorial strategies that
take advantage of the broad activity mediated by IL-2 and
related cytokine therapeutics.
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