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Abstract

Several probiotic-marketed formulations available for the consumers contain live lactic acid

bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has

been used for treating various gastro-intestinal disorders. However, like many other prod-

ucts, the bacterial strains present in VSL#3 have only been characterized to a limited extent

and their efficacy as well as their predicted mode of action remain unclear, preventing further

applications or comparative studies. In this work, the genomes of all eight bacterial strains

present in VSL#3 were sequenced and characterized, to advance insights into the possible

mode of action of this product and also to serve as a basis for future work and trials. Phylo-

genetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3

product as specified by the manufacturer. The 8 strains present belong to the species Strep-

tococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus

plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis

(two distinct strains). Comparative genomics revealed that the draft genomes of the S. ther-

mophilus and L. helveticus strains were predicted to encode most of the defence systems

such as restriction modification and CRISPR-Cas systems. Genes associated with a variety

of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp.,

gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host

interaction and intestinal barrier integrity, and to impact host cell development. Various rep-

ertoires of putative signalling proteins were predicted to be encoded by the genomes of the

Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-

dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken alto-

gether, the individual genomic characterization of the strains present in the VSL#3 product

confirmed the product specifications, determined its coding capacity as well as identified

potential probiotic functions.
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Introduction

There has been a steady interest in functional food products consisting of live lactic acid bacte-

ria (LAB) and bifidobacteria that are marketed as probiotics, defined as ‘live microorganisms

that, when administered in adequate amounts, confer a health benefit on the host’ [1]. The

majority of these products consist of single strains of LAB or bifidobacteria, and have been

supported by research with a varying level of sophistication. In some cases, probiotic-marketed

products are poorly characterized and insight in their mechanisms of action is lacking, based

on only animal studies, or on human studies without appropriate controls. This impedes fur-

ther applications in improving the quality of life or treating diseases. Moreover, the absence of

appropriate characterization limits comparative analysis and prevents predicting the product

efficacy.

The limited knowledge of many marketed probiotics contrasts with the fact that several

strains of Lactobacillus and Bifidobacterium spp. have been extensively characterized and used

in numerous well-performed trials. When the number of publications is taken as an indicator,

Lactobacillus rhamnosus GG is the most studied strain marketed as a probiotic. The L. rhamno-
sus GG genome has been characterized and used for comparative genomics studies with other

isolates, resulting in the identification of mucus-binding sortase-dependent pili [2–4]. These

long protruding protein polymers (pili) not only bind to the host mucosa and outcompete

potential pathogens, but also affect immune stimulation via interaction with dendritic cells

[5,6]. Similarly, another LAB, L. acidophilus NCFM has been well-characterized for its genome

and functional properties, including the S-layer protein and associated proteins that have been

found to interact with the DC-SIGN receptor of dendritic cells [7–9]. L. plantarum WCFS1

has been the first Lactobacillus strain to be genomically characterized and served as paradigm

for several studies aiming to understand the interaction with the host [10–13]. The widely mar-

keted strain Bifidobacterium animalis subsp. lactis BB-12 has also been genomically character-

ized and compared to other Bifidobacterium species [14–16]. A specific set of Tad pili and

sortase-dependent pili has been discovered in B. breve that are involved in intestinal persis-

tence and the host-microbe dialogue [17,18]. Surface exopolysaccharides in B. breve UCC2003

were also shown to be involved in host-microbe cross-talk [19].

Genomic characterizations have been instrumental in discovering the molecular basis of

the host-interaction of industrial strains as well as providing an overview of their future capaci-

ties [20,21]. Moreover, genome-based analysis has been used for investigating the stability of

industrial strains in the laboratory and products [22]. This approach has shown that some

widely commercialized strains of L. casei or B. animalis share a recent common ancestor

[15,23]. These studies were all performed with single strains but several products also contain

multiple strains of lactic acid bacteria or bifidobacteria. This includes the multispecies product

VSL#3 that is used for treating various gastro-intestinal disorders, such as ulcerative colitis,

pouchitis, and irritable bowel syndrome [24–26]. Several trials have shown the effectiveness of

VSL#3 that originally was reported to include bacteria of the species Streptococcus salivarius
subsp. thermophilus (now known as S. thermophilus), L. acidophilus, L. casei, L. plantarum, L.

helveticus (first described as L. bulgaricus subsp. delbrueckii), and three strains of bifidobacter-

ial species [27,28]. Based on 16S rRNA sequences, the bifidobacterial strains were suggested to

belong to B. breve, B. longum and B. infantis [29]. However, in the meantime B. longum and B.

infantis have reported to be a single species and mislabelling of bifidobacteria in commercial

products has been reported to occur often [30]. Genome-based approaches can be used to

identify bacterial strains notably by comparison with genomically characterized type strains,

which is highly relevant for regulatory and scientific purposes [31].
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In contrast to conventional marketed products that are consumed in a daily dose of approx-

imately 109 bacterial cells per dose, the multispecies VSL#3 product is typically used in treat-

ments at doses of 450–900 109 cells per day. Significant improvement by VSL#3 of disease

symptoms were observed in the treatment of ulcerative colitis and pouchitis, an inflammation

of the ileal pouch in colectomy patients [24,32]. Moreover, the VSL#3 product was found to

reduce the disease severity and hospitalization period of patients with liver cirrhosis and

hepatic encephalopathy, improved non-alcoholic fatty liver disease in obese children possibly

via increasing GLP-1 production, and correcting the inflammatory status of obese adults [33–

35]. These clinical trials have been paralleled by a variety of in vitro studies that supported the

therapeutic effects and have shown the capacity of the VSL#3 product to affect the immune

function associated with specific transcriptional response [36–38]. However, the effector mole-

cules produced by VSL#3 that could contribute to these effects have not been identified yet. To

further comprehend the mode of action of VSL#3 and generate a basis for future work, the

genomes of all 8 bacterial strains present in this multispecies product were sequenced, used to

assess their taxonomic position and predict their function, and compared to other well-charac-

terized single industrial bacterial strains.

Materials and methods

Bacterial strains and growth conditions

All eight bacterial strains that make up the VSL#3 product were individually provided by the

manufacturer (courtesy of Actial Farmaceutical SRL, Rome, Italy), coded and cultivated as

listed in S1 Table. Five ml of overnight-grown cultures were then further used for genomic

DNA isolation. Cells were lyzed using lysozyme (20mg/ml), mutanolysin (10U/ml), 1% w/v

SDS, 50 μg/ml RNase and 300 μg/ml proteinase K followed by an incubation of 30 min at 37
oC. Genomic DNA was then isolated from cell lysates with a RSC Blood DNA kit AS1400

according to the manufacturer’s protocol on a Promega Maxwell RCS instrument (Promega,

Madison, WI, USA). DNA was quantified using Quanti-iT™ Pico Green dsDNA Assay (Invi-

trogen, San Diego, CA, USA).

Evaluation of minimal inhibitory concentration (MIC) of antibiotics

against VSL#3 strains

Minimum inhibitory concentration (MIC) was determined using the standard microdilution

method for drug susceptibility testing [39,40]. Data are reported as the average of two indepen-

dent assays. The MICs were evaluated in LSMa (ISO-Sensitest broth, Oxoid supplemented

with 10% v/v M17 Difco) for S. thermophilus, in LSMb (ISO-Sensitest broth, Oxoid supple-

mented with 10% v/v MRS Difco) for lactobacilli, and in LSMc (ISO-Sensitest broth, Oxoid

supplemented with 10% v/v MRS Difco supplemented with 0.05% L-Cys) for bifidobacteria.

The reference strain L. paracasei LMG12586 (ATCC334) reported in the ISO10932/IDF233

2010 document [41] was included for comparisons and interlaboratory range analysis.

Genome sequencing, assembly and annotation

Purified genomic DNA was sent for paired end (150 nt, insert of 300 bp) whole genome

sequencing using the next-generation sequencing platform (HiSeq2500, Illumina) at BaseClear

(The Netherlands) with an expected coverage of 150x and an output of approximatively 100

contigs. The quality of the FASTQ sequences was enhanced by trimming off low-quality bases

using the “Trim sequences” option of the CLC Genomics Workbench version 9.5.1. The qual-

ity filtered sequence reads were assembled to contigs using the “De novo assembly” option of
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the CLC Genomics Workbench version 9.5.1 (Qiagen). Mis-assemblies and nucleotide dis-

agreement between the Illumina data and the contig sequences were corrected with Pilon ver-

sion 1.20 [42]. Subsequently, the contigs were linked and placed into scaffolds, where the

orientation, order and distance between them were estimated using the insert size between the

paired-end reads. The analysis was performed using the SSPACE Premium Scaffolder version

2.3 [43]. The gapped regions within the scaffolds were (partially) closed in an automated man-

ner using GapFiller version 1.10 [44]. Genome annotation was then performed on the assem-

bled contig or scaffold sequences using the BaseClear annotation pipeline, which is based on

the Prokka Prokaryotic Genome Annotation System (version 1.6) [45]. The pipeline includes a

number of features, including Prokaryote gene prediction by Prodigal v2 [46], rRNA using

barrnap v0.2 (Victorian Bioinformatics Consortium, http://www.vicbioinformatics.com/

software.barrnap.shtml), tRNA prediction by Aragorn v1.2.36 [47], and pCDS physical-chemi-

cal properties using an in-house script. On the inferred proteins, the following downstream

analyses were performed: prediction of EC number, CAZY number and function annotation

from UniProt BLAST best hit, Signal peptide prediction and cellular localization using SignalP

v4 [48], and conserved domains by hmmer-3 [49].

Species assignment and phylogenetic analysis

Two different methods were used to determine the species of the sequenced strains. First, 16S

rRNA gene sequences were compared using the blast option of the greengenes database (http://

greengenes.lbl.gov/) [50]. Secondly, proteome comparisons were performed by a BLASTp of a

random set of 500 protein sequences of each genome against the collection of reference and rep-

resentative genomes from the NCBI genome database (February 2017). BLASTp was run using

standard settings, picking the hit with the lowest e-value for each of the 500 proteins (best hit),

where a random subset of 500 proteins was searched against the refseq database of complete

genomes. Species calling was determined based on the species with best hits among the 500 pro-

tein sequences.

For the phylogenetic (core genome) tree, the genomes of the strains from the product were

compared to a set of relevant reference and representative genomes (NCBI genome database

sept 25th 2017) using OrthoMCL [51]. The amino acids differences in the core (conserved)

proteome set were aligned and a tree was generated as previously described [52].

Bioinformatic analyses

The annotated genome sequence of all eight bacterial strains were analyzed for the presence

of antibiotic resistance genes using the resfams database [53] and was performed with HMM-

er3 [49] using the HMMs provided by resfams and the thresholds for detection as stated by

resfams and provided within the HMM. The protein sequences were compared with a recently

downloaded version (November 2016) of the Virulence Data base (VFDB) [54] using blast

[55]. The output results were subsequently filtered for relevance based on the following criteria

(E-value < 0.01; >50% amino acid sequence identity; >250 alignment length). The CRISPR-

Cas loci were first identified based on the initial genome prediction and further analyzed using

CRISPRFinder [56], CRISPR Target [57] and BLAST analysis [55] adjusted for short query

sequences. Mobilome genes, i.e. insertion elements, transposases and phages, were detected

using keyword searches against the genome annotation. LPXTG proteins were initially identi-

fied using the method as previously described by Boekhorst and colleagues [58], followed by

an additional verification using CW-PRED [59], to remove any possible false-positive or

ambiguous hits.
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Genome sequence accession numbers

The genome sequences of all eight strains present in the multispecies product VSL#3 were

deposited in NCBI’s Sequence Read Archive (SRA) under the following biosample accession

numbers (SAMN07187782, SAMN07187783, SAMN07187784, SAMN07187785, SAMN0

7187786, SAMN07187787, SAMN07187788 and SAMN07187789) and under the following

genome accession numbers (NIGX00000000, NIGW00000000, NIGV00000000, NIGU000

00000, NIGT00000000, NIGS00000000, NIGR00000000 and NIGQ00000000).

Results and discussion

Overview of genome sequences and species classification

Total DNA of the eight VSL#3 strains, which were obtained from the manufacturer, was iso-

lated and used to obtain draft genome sequences that had a coverage ranging from 264x to

462x with a relatively low amount of scaffolds (in between 13–47), except for Lactobacillus hel-
veticus BT08, which had 132 scaffolds possibly due to a large number of transposons in the

genome (S3 Table). The strains were taxonomically assigned to a species based on their 16S

rRNA gene sequences and this analysis identified 6 out of 8 strains (BT01, BA05, BP06, BP07,

BL03 and BI04) to the species level, as they showed identical 16S rRNA sequences to other

identified strains. The two remaining strains (BD08 and BB02) were identified as L. helveticus
and B. breve using comparison of their proteomes as described in the Materials and Methods

section, thereby confirming the species identification for all 8 strains (S4 Table). In line with

previous work by Barrangou et al. that showed the lack of genetic polymorphism among B.

animalis subsp. lactis strains [60], the genomes of B. animalis subsp. lactis strains BL03 and

BI04 appeared to differ only by few SNPs and InDels to each other, indicating that both strains

share a recent and clonal ancestor.

Subsequently, the predicted core proteomes of the 8 VSL#3 strains were compared to a set

of relevant reference and clearly positioned in the phylogenetic tree next to the genome of the

same species (Fig 1). This final genome-based identification of the 8 VSL#3 strains confirmed

the composition of the multispecies product VSL#3 as initially specified by the manufacturer

(see S1 and S3 Tables). Further analysis of the genomes and their annotation provided insight

in the genome size, GC content, predicted number of genes, including that for rRNAs and

tRNAs (Table 1). It is noteworthy that the genome sequence of S. thermophilus had fewer

tRNAs genes compared to other draft genomes sequences. This is, however, possibly due to

the genome assembly based on gene context and comparison with the strain S. thermophilus
JIM8232 [61].

Mobilome of the multispecies probiotic-marketed product VSL#3

Bacteria are known to harbor various mobile elements within their genomes, such as insertion

sequence elements, transposases, plasmids or prophages [62], which impact on the genome

plasticity and stability, as previously shown in some LAB [22]. Mobilome analysis may offer

insights into the ecological niche and its inhabitants, from which a particular strain has been

isolated, i.e. exposure to bacteriophage and other foreign mobile DNA elements. An accurate

determination of the mobilome is not possible, since we annotated draft genomes that are in

several contigs (see S3 Table) and therefore the number of transposases and insertion sequence

(IS) elements may be under/overestimated, as a result of the assembly process. However, our

current data provides a preliminary overview on the actual mobilome of each strain analyzed

in the present study. Whereas most Bifidobacterium strains and Lactobacillus strains of the

VSL#3 product were predicted to have a relative low number of transposons, Streptococcus

Genomics of the VSL#3 product
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Fig 1. Phylogenetic position of the strains from the VSL#3 product. This phylogenetic tree was generated based on

the genome-predicted core proteome shared between the strains from the VSL#3 product and that of a set of relevant

reference and representative strains. The position of the eight strains used for the formulation of the VSL#3 product

are shaded in blue.

https://doi.org/10.1371/journal.pone.0192452.g001

Table 1. General predicted genomic features of bacterial strains from VSL#3 product.

Bacterial strain Genome size (Mbp) Number of genes Number of tRNA Number of rRNA Predicted plasmids

Lactobacillus helveticus BD08 1.82 1932 60 3 1

Lactobacillus paracasei BP07 2.87 2718 50 2 0

Lactobacillus plantarum BP06 3.21 2995 62 3 0

Lactobacillus acidophilus BA05 1.97 1852 59 3 0

Streptococcus thermophilus BT01 1.81 1894 37 3 2

Bifidobacterium breve BB02 2.32 1972 59 3 0

Bifidobacterium animalis subsp. lactis BL03 1.92 1552 54 3 0

Bifidobacterium animalis subsp. lactis BI04 1.92 1554 54 3 0

https://doi.org/10.1371/journal.pone.0192452.t001
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thermophilus strain BT01 and Lactobacillus helveticus strain BD08, in contrast, were estimated

to harbor the most, respectively 27 and 24 IS transposons (S1 Fig). IS elements are known to

be involved in chromosomal deletions and/or rearrangements, thus playing a role in ecological

adaptation and species diversification [22,63–65]. Prophage-associated genes were also

observed in some of the strains, including Lactobacillus paracasei BP07, Lactobacillus helveticus
BBP06 and Bifidobacterium breve BB02. It has been hypothesized that prophages may be

involved in lateral gene transfer, by embarking extra-chromosomal elements into their genome

[66].

Detailed analysis of the genomic data also suggested the presence of plasmids in Streptococ-
cus thermophilus strain BT01 and Lactobacillus helveticus strain BD08, consisting of contigs

with coverage higher than 1,000-fold. Specifically, a 33-kb contig found in Lactobacillus helveti-
cus strain BD08 is predicted to be of plasmid origin and harbors 24 genes, including genes

associated with lactose transport (lacF), peptidase activity and also carbohydrate, metal and

amino acid transport (a detailed listing of predicted genes present in the plasmid contig from

L. helveticus BD08 is shown in S5 Table). In Streptococcus thermophilus strain BT01, two con-

tigs with a respective size of 3.3 and 4.5 kb were also predicted to be of plasmid origin and

were virtually identical to two plasmids present in S. thermophilus strain LMD-9 [67]. Among

the genes present the two S. thermophilus plasmids, some were associated with plasmid replica-

tion (NicK), glycosyl-transferases and stress response (acid stress) (S6 Table).

Defense mechanisms against foreign mobile DNA elements: CRISPR-Cas

and R/M systems

Streptococci, lactobacilli and bifidobacteria are known to be prone to phage infections notably

during industrial dairy and other food fermentations as well as in the gut environment [68–

70]. Genome annotation revealed that 6 out of the 8 strains harbored at least one CRISPR-Cas

locus (Fig 2). Interestingly, Lactobacillus acidophilus BP05 and Bifidobacterium breve BB02

Fig 2. Defense systems of the multi-species probiotic product VSL#3. Number of predicted restriction/modification enzymes (blue) and CRISPR-Cas spacers

(green). Strains devoid of CRISPR-Cas loci have a number of spacers equal to zero.

https://doi.org/10.1371/journal.pone.0192452.g002
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were devoid of CRISPR-Cas locus. Remarkably, Streptococcus thermophilus BT01 harbored

three distinct CRISPR-Cas loci (Fig 3). All eight strains also had genes encoding for restriction

modification (R/M) systems, i.e. restriction endonucleases and methyltransferases (Fig 2).

There are a variety of defense mechanisms that protect bacteria against foreign mobile

DNA elements, such as plasmids or bacteriophage DNAs. S. thermophilus BT01 and L. helveti-
cus BD08 appeared to have acquired diverse and multiple mechanisms to protect themselves

from their environment and were predicted to contain CRISPR-Cas loci and R/M systems.

This indicates that they may originate from complex ecological habitats co-existing within

Fig 3. CRISPR-Cas loci identified in the strains of the VSL#3 product. The CRISPR-Cas loci were identified using CRISPRFinder [56] and their gene order and

predicted annotations are depicted along with their juxtaposing array of spacers. Legend: �, split gene.

https://doi.org/10.1371/journal.pone.0192452.g003
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diverse bacterial and phage communities. Detailed comparative sequence analysis of the

CRISPR-Cas spacers revealed homologies with sequences from various known phages or plas-

mids (S7 Table). In some cases, i.e. L. helveticus BD08, only few spacers showed homology to

known sequences, suggesting that the potential target of these spacers is yet to be characterized.

We also studied the whole repertoire of spacers for all 8 strains and compared this with that of

other sequenced bacterial strains. Thus, the three repertoires of S. thermophilus BT01 spacers

were similar to the ones found in the well-studied yoghurt starter strain S. thermophilus LMD-

9 (also called ATCC BAA-491), which is naturally competent [67]. This supports the phyloge-

netic relatedness and shared origin of these two strains and indicates that S. thermophilus BT01

may be naturally competent. The spacers found in L. paracasei BP07 CRISPR-Cas locus were

similar to some from several well-studied strains, including the probiotic strain L. casei BD-II

[71] and L. casei strain W56 [72] that belong to clade A of the L. casei group [73]. Similar

observations were made with L. plantarum BP06 and L. plantarum CLP-0611 isolated from

kimchi [74] as well as Bifidobacterium animalis subsp. lactis BI03 or BL04 with B. animalis
subsp. lactis strain BF052, a fecal isolate from healthy infants [75]. Blast analysis of the 32

spacer regions of L. helveticus BD08 gave significant hits with sequenced L. helveticus, L. amylo-
vorus and L. gallinarum strains (10) and, some known L. helveticus plasmids and phages (3)

but the majority (19) could not be matched against the tested phage or plasmid databases, sug-

gesting that the strain derives from a poorly characterized habitat but has encountered some

shared environmental DNAs with other lactobacilli.

While some of the strains harbor only few genes encoding the R/M system, others such as

S. thermophilus BT01 and L. helveticus BD08 were predicted to harbor up to 11 and 8 R/M sys-

tems in their respective genome. Interestingly, these two particular strains had CRISPR-Cas loci

with a relatively wide repertoire of spacers (32 and 27, respectively). The co-existence of R/M

and CRISPR-Cas systems was shown to provide an increased resistance to phages (additive pro-

tection) [76] and also to prevent plasmid transfer, as reported in Enterococcus faecalis [77].

Resistome: Putative antibiotic resistance genes and virulence factors

Using the resfams database [53], genome sequences were examined for the presence of genes

associated with antibiotic resistance. In all strains, potential antibiotic resistance genes were

identified but these were mostly transport systems, potentially functioning as antibiotic efflux

pumps, as illustrated in the genome annotation (S3 Table). Five potentially transferable genes

associated with a resistance to aminoglycosides, β-lactams and tetracyclin were specifically

examined in the genomes of the Bifidobacterium spp. and L. acidophilus. The tetW gene identi-

fied in the Bifidobacterium genomes (BB02, BL03 and BI04) and a potential aminoglycoside

aminotransferase gene in strain BI04 were located in the vicinity of a putative transposon gene

cassette. The presence of tetW gene, associated with a putative transposon, is generally found

in other bifidobacteria, such as the widely-consumed Bifidobacterium animalis subsp. lactis
BB-12 [14] and other isolates, but has so far not found to be transferable [78]. Two genes

(APH3 and AAC3) associated with the breakdown of aminoglycosides were also identified in

the genomes of L. acidophilus BA05 and B. animalis subsp. lactis BL04 and BI04. The AAC3 of

L. acidophilus BA05 was annotated as being of prophage origin and was also present with com-

plete identity in the genome of the widely consumed strain L. acidophilus NCFM [7]. Similarly,

aminoglycoside phosphotransferases present in B. animalis subsp. lactis BL04 and BI04 could

be also found in Bifidobacterium animalis subsp. lactis BB-12 [14]. The gene coding for class-A

β-lactamase in L. plantarum BP06 similar to the one in L. plantarum WCFS1 (99% homology)

[10]. The class-B β-lactamase gene present in L. plantarum BP06 was also found in many other

L. plantarum genomes based on blast searches, but not in L. plantarum WCFS1.
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To better address the safety of VSL#3 strains, the antibiotic sensitivity was performed

according to the recommendations of the European Food Safety Agency (EFSA) using a

micro-dilution method [40]. The data obtained, reported in Table 2, show that all the strains

exhibits antibiotic sensitivities within the recommended cut-off values. In only few cases, for

kanamycin and chloramphenicol, the MICs measured were higher than the cut-off values for

L. paracasei BP07, L. acidophilus BA05 and L. helveticus BD08 used by EFSA [40]. However,

while the latter MICs were formally above the recommended cut-off, these fall within the inter-

laboratory variation of MICs that have been reported for non-enterococcal lactic acid bacteria

[41], as illustrated in S2 Table. Hence, we conclude that all the VSL#3 strains respected the

safety recommendations of EFSA [40].

Summarizing, the present comparative analysis revealed that some potential antibiotic-

associated genes found in the strains of the multispecies probiotic product VSL#3 were also

present in widely-marketed probiotic strains or well-characterized LAB and bifidobacteria.

However, the possible transfer of these potential antibiotic resistance genes to other species

remains to be demonstrated.

Our initial analysis also predicted the presence of putative virulence genes in the different

genomes by comparative analysis with the VFDB. However, the VFDB is rather broad database

and also includes genes that may have an indirect role in virulence. Further inspection of these

virulence gene candidates showed that they were related to stress response (clpC, clpE) or cell

wall/CPS biosynthesis (cps genes, galE). In addition, only single genes were found in specific

strains, indicating that the complete pathway required for biosynthesis was absent or at least

different from the ones found in pathogenic strains.

Table 2. Evaluation of minimal inhibitory concentration (MIC) of antibiotics against VSL#3 strains. The values in bold represent those MICs showing higher values

compared to EFSA cut-off (in parenthesis) [40]. n.d. not determined as not required by EFSA since these species show a high level of natural resistance [40].

Bacterial strain Antibiotic MIC (μg/ml)

Ampicillin Vancomycin Gentamycin Kanamycin Streptomycin Erythromycin Clindamycin Tetracycline Chloramphenicol

Lactobacillus helveticus
BD08

0.25 0.5 4 32 8 0.25 0.25 1 2

(1) (2) (16) (16) (16) (1) (1) (4) (4)

Lactobacillus paracasei
BP07

1 n.d. 1 128 32 0.25 0.25 4 8

(4) (32) (64) (64) (1) (1) (4) (4)

Lactobacillus plantarum
BP06

0.25 n.d. 4 64 n.d. 0.5 0.5 16 1

(2) (16) (64) (1) (2) (32) (8)

Lactobacillus acidophilus
BA05

1 1 8 128 16 0.25 0.5 4 8

(1) (2) (16) (64) (16) (1) (1) (4) (4)

Streptococcus thermophilus
BT01

0.25 0.5 2 64 32 0.25 0.25 0.5 4

(2) (4) (32) (64) (64) (2) (2) (4) (4)

Bifidobacterium breve
BB02

1 1 8 n.d. 8 0.25 0.25 2 2

(2) (2) (64) (128) (1) (1) (8) (4)

Bifidobacterium animalis
subsp. lactis BL03

0.25 1 32 n.d. 64 0.25 0.25 8 2

(2) (2) (64) (128) (1) (1) (8) (4)

Bifidobacterium animalis
subsp. lactis BI04

0.25 1 32 n.d. 128 0.25 0.25 8 2

(2) (2) (64) (128) (1) (1) (8) (4)

https://doi.org/10.1371/journal.pone.0192452.t002
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Host adhesion and interaction

Gut-adapted bacteria have established various strategies to colonize, interact and signal the

host [2,17,79–81]. Genes coding for these surface components were found in the genomes of

the strains present in the VSL#3 multispecies product (S3 Table). In addition, some bacteria

are decorated with long extra-cellular structures, called pili or fimbriae that have the properties

to adhere to the intestinal epithelium [2,17]. In some cases, pili have also been associated with

protein secretion and conjugation [82]. Two main types of pili can be found in LAB and bifi-

dobacteria: the Tad pili (also called tight adherence pili, type IVb) and the sortase-dependent

pili. In pathogenic bacteria, the tight adherence pili are pivotal in adherence, colonization and

also pathogenesis [83]. In B. breve BB02, B. animalis subsp. lactis BL03 and BI04, gene clusters

coding the Tad pili were found (Fig 4). The Tad pilus gene cluster of B. breve BB02 is highly

conserved with the Tad pili of B. breve UCC2003 that was reported to be involved with gut col-

onization in mice [17].

Cell-surface associated proteins harboring LPXTG motifs are sortase substrates and many,

often large ones, with predicted sizes of up to 3,515 amino acid residues, were found to be

encoded by all strains with L. paracasei BP07, L. plantarum BP06,and L. acidophilus BA05 hav-

ing the highest number of LPXTG proteins (20, 16 and 11, respectively). All predicted LPXTG

proteins were compared in details with those of other LAB or bifidobacteria since many have

been studied in details for their host interaction capabilities (S8 Table). A number of genes

Fig 4. Pilus gene clusters identified in the multispecies product VSL#3. Both Tad pilus and sortase-dependent pilus

gene clusters are shown along with a corresponding pilus gene cluster previously characterized [17]. The percentage

indicates the degree of amino acid sequence conservation between the different genes.

https://doi.org/10.1371/journal.pone.0192452.g004
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encoding fibronectin binding domain proteins, collagen adhesins, outer membrane proteins,

fimbriae or pili were identified in L. helveticus BD08, L. plantarum BP06, L. acidophilus BA05

and B. animalis subsp. lactis BL03 and BI04 with potential roles in host adherence among oth-

ers [84]. The LPXTG-proteins of L. helveticus BD08 and S. thermophilus BT01 were found in

all related strains of these species. Similarly, most predicted LPXTG proteins of L. paracasei
BP07 were also found to be encoded by the genome of the dairy strain L. casei LC2W which

belongs to the clade A of the L. casei group [73]. Its genome shares the highest identity with

that of L. paracasei BP07 and was used as genomic template [85] (see S3 Table). Apart from a

small putative collagen adhesion (BP071_02691), two other predicted LPXTG proteins are not

encoded by the L. casei LC2W genome, including the 1269-residue BP071_02238 that is anno-

tated as an adhesin found in many other LAB, and the 1216-residue BP071_01279, which is

annotated as a levanase or β-fructosidase and part of the sucrose phosphotransferase system

(PTS) gene cluster. Recently, we have shown that homologous genes in an Asian L. plantarum
strain are involved in inuline degradation, suggesting that L. paracasei BP07 may also degrade

this fructose polymer [86].

Along the same lines, all sortase-substrates of L. plantarum BP06 were also present in the

well-studied L. plantarum WCFS1 and included the large mucus-binding protein with locus

tag Lp_1643 that is O-glycosylated by N-acetyl- hexosamine [87]. Its gene contains the KxYK

xGKxW peptide in its signal peptide as also two other LPXTG containing genes of L. plan-
tarum BP06, indicating that these are all secreted via the SecA2-SecY2 system in a glycosylated

form and hence may have host-signalling functions [81]. A sortase-dependent pilus produc-

tion system was found in both Bifidobacterium animalis subsp. lactis BL03 and BI04, consisting

of two genes encoding pilin subunits (termed FimB and FimP) and one sortase gene. However,

in B. breve BB02 these pili genes were also detected but no sortase gene was found. A very

recent study showed these sortase-dependent pili to be ubiquitous in Bifidobacterium spp. and

some coded for FimB subunits that were able to bind starch, xylan and pectin, indicative of a

luminal location, while others showed interaction with the host [18,88].

One sortase-dependent pilus gene cluster (PGC) was also found in L. paracasei BP07 and is

highly conserved with the well-characterized spaCBA-srtC1 pilus gene cluster from L. rhamno-
sus GG [2] that has the ability to bind intestinal mucus [2], form biofilms in vitro and signal

the host [6,89]. However, the region upstream the spaCBA-srtC1 PGC is not flanked with an

insertion element as observed in L. rhamnosus GG. In the latter, the IS element contains a con-

stitutive promoter. Therefore, the expression of spaCBA-srtC1 in L. paracasei BP07, if any, may

be controlled and induced by some unknown signaling. A second pilus gene cluster was pres-

ent in L. paracasei BP07 with an identical gene order, i.e. three pilin genes and one sortase

gene. Interestingly, the second PGC was highly related to the spaFED-srtC2PGC present in

L. rhamnosus GG (Fig 4).

Genes coding for S-layer proteins were also found in the genomes of L. helveticus BD08 and

L. paracasei BP07 and possibly play a similar role as in other LAB, i.e. signaling dendritic cells

and T-cell functions, bacterial adherence or enzymatic functions [8,90]. In L. acidophilus BA05

and L. helveticus BD08 for example, S-layer associated proteins PrtX and SlpA respectively

may be involved in bacteria-host interactions and stimulation of the immune response, as pre-

viously described in L. acidophilus NCFM and L. helveticus MIMLh5 [91,92]. A complete ure-

ase operon was identified in S. thermophilus BT01 genome showing high identity with ure
operons identified in S. thermophilus strains and available in the GenBank database. Although

urease is associated with the pathogenesis of several bacteria, the human gut microbiota urease

is considered a health-related factor [93] by modulating the nitrogen availability of gut micro-

biota and host [94]. Moreover, urease activity is present in other well characterized probiotic
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strains such as Lactobacillus reuteri [95] and S. salivarius [96]. An active urease should be

therefore considered a peculiar probiotic trait of the multispecies product VSL#3.

Concluding remarks

In recent years, the globally-marketed multispecies product VSL#3 has been subject to numer-

ous clinical trials and studies that demonstrated its health beneficial properties for the human

host. The lack of genomic information relating to the strains composing the VSL#3 product,

however, limited a further understanding of its mode of action and efficacy in the human gut.

In the present work, we genomically characterized the 8 different strains present in VSL#3.

Our results confirmed and extended the species designation as specified previously and pro-

vided a rational basis for future studies of probiotic functions, safety, and ecological fitness.

The genome sequences will be instrumental in understanding the mechanisms by which the

different strains may interact with each other, other intestinal bacteria and the human host.

Several candidate genes involved in these processes have been identified and discussed here,

such as Tad pili, sortase-dependent pili, mucus binding proteins, some even glycosylated, and

S-layer proteins that were previously studied in related organisms. It is of interest that some of

the strains analyzed in this work showed high genomic similarities with well-characterized

industrial strains or model strains where particular probiotic traits or modes of action towards

the host have been investigated in detail. In most cases, these studies were conducted on single

species, and hence the original and unique combination of Lactobacillus, Streptococcus and

Bifidobacterium spp. in the VSL#3 product suggests possible complementary and synergistic

effects in the gut that will need to be further investigated using both functional genomic

approaches and experimental studies.
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