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β-Barrel membrane proteins (βMPs) play important roles, but
knowledge of their structures is limited. We have developed a
method to predict their 3D structures. We predict strand registers
and construct transmembrane (TM) domains of βMPs accurately,
including proteins for which no prediction has been attempted
before. Our method also accurately predicts structures from pro-
tein families with a limited number of sequences and proteins
with novel folds. An average main-chain rmsd of 3.48 Å is
achieved between predicted and experimentally resolved struc-
tures of TM domains, which is a significant improvement (>3 Å)
over a recent study. For βMPs with NMR structures, the deviation
between predictions and experimentally solved structures is simi-
lar to the difference among the NMR structures, indicating excel-
lent prediction accuracy. Moreover, we can now accurately model
the extended β-barrels and loops in non-TM domains, increas-
ing the overall coverage of structure prediction by >30%. Our
method is general and can be applied to genome-wide structural
prediction of βMPs.

structure prediction | β-barrel membrane proteins | strand register |
Covariation | loop prediction

The outer membrane proteins are found in the gram-negative
bacteria, mitochondria, and chloroplast (1). They form

β-barrels, so are also known as β-barrel membrane proteins
(βMPs). βMPs are involved in outer membrane biogenesis,
membrane anchoring, pore formation, translocation of virulence
factors, and enzyme activities (2–5). Recent progress in engineer-
ing protein nanopores using βMPs for protein profiling (6–8),
DNA sequencing (9, 10), small molecule detection (11), and tar-
geted drug delivery for cancer therapy (12) has increased the sig-
nificance of understanding the organizing principles of βMPs.

A major obstacle in studies of βMPs is the limited availability
of structural data. Only ∼320 βMP structures, of which ∼59 are
nonhomologous, have been deposited in the Protein Data Bank
(PDB) that contains >135,000 protein structures (13). Compu-
tational studies have contributed to expand our knowledge of
βMPs by successfully predicting βMP sequences at a genome-
wide scale (14, 15), identifying transmembrane (TM) segments
(16, 17) and uncovering sequence and spatial motifs (18, 19). The
stability, oligomerization state, protein–protein interaction inter-
faces, and the transfer free energy of residues in the TM regions
of βMPs can also be accurately computed (20–26).

Template-based methods for structure prediction have been
successfully applied in studies of globular proteins (27). They
have also been used to predict 3D structures of βMPs but have
achieved limited success with novel folds like the ones found in
VDAC, FimD, PapC, and LptD proteins (28) due to the limited
availability of templates for βMPs. General purpose template-
free structure prediction methods do not generate accurate
structures of βMPs, as these proteins can be large, with the num-
ber of residues reaching 800.

A recently published βMP-specific method that combines
sequence covariation for contact prediction with a machine-
learning–based method achieved limited progress, with a main-
chain rmsd of 6.66 Å for predicted structures of TM regions,

before it was adjusted to a better published value of 4.45 Å
when only a subset of residues were aligned instead of all TM
residues (29). Another template-free βMP-specific method, 3D-
SPoT (3D structure predictor of transmembrane β-barrels), can
predict the TM regions of βMPs with an average main-chain
rmsd of 4.14 Å (30). Despite such progress, further improvement
in prediction methods to generate accurate structural models is
required to bridge the gap between identified βMP sequences
and resolved βMP structures, so that modeled structures can be
used directly for applications such as nanopore engineering and
drug design/delivery.

In this study, we describe a template-free method for predict-
ing 3D structures of βMPs, which provides significant improve-
ment over previous methods. Our approach, named 3D beta-
barrel membrane protein predictor (3D-BMPP), is based on a
statistical mechanical model (31) that incorporates sequence
covariation information and is built upon a parametric structural
model of intertwined zigzag coils. In a blind test of 51 nonho-
mologous βMPs, our prediction generates accurate 3D structures
of TM regions with an average main-chain rmsd of 3.48 Å. This
represents a significant improvement of ∼3.1 Å compared with
a recent study (29) over a much bigger dataset (51 proteins vs.
17 proteins). In addition, predictions are expanded to include
non-TM regions, including both extended β-sheets and loops,
resulting in significant increase in the coverage of residues com-
pared with previous methods. Furthermore, our method can be
applied to model structures of βMPs with novel folds, including
those from mitochondria of eukaryotes, as evidenced by the accu-
rately modeled structures of VDAC and FimD. Our method is
general and can be applied to genome-wide structural prediction
of βMPs.

Significance

β-Barrel membrane proteins (βMPs) are drawing increasing
attention because of their promising potential in bionan-
otechnology. However, their structures are notoriously hard
to determine experimentally. Here we develop a method to
achieve accurate prediction of βMP structures, including those
for which no prediction has been attempted before. The
method is general and can be applied to genome-wide struc-
tural prediction of βMPs, which will enable research into bio-
nanotechnology and drugability of βMPs.
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Results
βMPs have strong thermal and chemical resistance due to the
well-knit hydrogen bond network (32), in which each residue in
the TM strand is hydrogen bonded to residues on the adjacent
TM strands (SI Appendix, Fig. S1). We use a physical model that
accounts for strong hydrogen bonds, weak hydrogen bonds, and
side-chain interactions between adjacent strands in the barrel
domain (20, 31, 33, 34). In addition, we incorporate interstrand
loop entropy, right-handedness of theβMP, and medium-to-long–
range contacts predicted from sequence covariation information.
Details of our model can be found in SI Appendix, section 3.

To predict structures of βMPs, we proceed in three steps: pre-
dicting strand registers (interstrand hydrogen bond contacts),
predicting 3D coordinates of TM residues, and modeling non-
TM residues (Fig. 1).

Predicting Strand Registers
Predicting strand registers of adjacent strands. We use a discrete
model of reduced states to represent the conformational space
of the strands, in which the relative position between a pair of
adjacent strands can adopt L1 +L2 − 1 different registers, where
L1 and L2 are the lengths of the two strands (Fig. 1 and SI
Appendix, Fig. S1) (20). For each adjacent strand pair, we gen-
erate all possible conformations in the discrete state space, each
with a different register of hydrogen bonds with its next sequen-
tially adjacent strand (Fig. 1). Every conformation is evaluated by
summing up the contribution from terms representing different
strand-interaction types (strong hydrogen bonds, weak hydrogen
bonds, and side-chain interactions), a term for the loop entropy,
a term for bias toward right-handedness, and a term for sequence
covariation. Sequence covariation is calculated using the sparse
inverse covariation estimation method of protein sparse inverse
covariance (PSICOV) (35). For a pair of strands, the register is
predicted to be the one with the lowest score.

The results of strand register prediction for 51 βMPs show that
overall 655 of 771 registers are predicted correctly, representing
an accuracy of ∼85% (see SI Appendix, Table S4 for details).
This is a significant improvement over previous βMP register
prediction methods of Jackups and Liang (∼46%) (31), Randall
et al. (∼48%) (28), Naveed et al. (∼73%) (30), and Hayat et al.
(∼44%) (29). It is also important to note that the dataset used
is much larger than those used in the previous studies (Table
1). For eight βMPs (OpA60, autotransporter Hbp, TodX, EstA,
FhuA, FecA, FptA, and HasR that contain 8, 12, 14, 12, 22, 22,
22, and 22 strands, respectively), we are able to predict all of the
strand registers correctly.

To assess the contribution of the sequence covariation infor-
mation and the patterns of hydrogen bonds and side-chain inter-
actions (HSC), we predicted the strand registers using sequence
covariation data and a reduced state space (SC+RSS). The
strand register prediction accuracy with SC+RSS was found to
be 52%, representing significant deterioration from the accu-
racy of 69% (30) using HSC+RSS. This result indicates that pat-
terns of hydrogen bonds and side-chain interactions derived from
structural data can predict local strand registers more accurately
than sequence covariation information. This conclusion is con-
sistent with that of Hayat et al. (29), in which machine learning
and sequence covariation were used to predict the strand register
at an accuracy of 44%.

The side-chain orientation of the TM residues is an impor-
tant determinant of the structure of βMPs. A residue can be
either lipid facing or pore facing, with consecutive residues
in the TM region taking alternating orientations. Pore-facing
residues are predominantly responsible for protein function
(e.g., flux control of metabolites and ion sensing), while lipid-
facing residues are mostly responsible for protein insertion and
stability. Residues on adjacent strands have the same side-chain
orientation when they share strong hydrogen bonds or side-chain

Fig. 1. The flowchart of βMP structure prediction method 3D-BMPP. The strand registers are predicted using a combination of empirical energy function
and sequence covariation information. Global shear optimization is then performed upon the predicted register candidates. The 3D coordinates of Cα atoms
of TM and non-TM residues are then predicted using a parametric structural model. We also predict ensembles of loop conformations.
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Table 1. Comparison of different methods for strand register and 3D structure prediction for
TM regions of βMPs

Strand register Average main-chain Average all-atom
Method No. βMPs No. strands accuracy, % TM-rmsd, Å TM-rmsd, Å

Jackups and Liang (31) 19 256 46 — —
TMBpro-server (28) 14 214 48 — 7.3
3D-SPoT (30) 23 324 73 4.12 5.6
EVfold bb (29) 17 265 44 6.66 —
3D-BMPP (this study) 51 771 85 3.48 4.26

3D-BMPP can predict strand registers with an accuracy of ∼85% and 3D structures of TM regions with an
average main-chain rmsd of 3.48 Å and average all-atom rmsd of 4.26 Å for a much bigger dataset (51 βMPs
vs. 14–23 βMPs).

interactions. Incorrect strand register can lead to erroneous side-
chain orientation prediction. The correct prediction of strand
register is therefore an important requirement in structure pre-
diction of βMPs and is well recognized in the literature (28). Our
method can predict strand register at 85% accuracy. In contrast,
the criteria were relaxed to allow +1 or −1 difference in strand
register in a previous study (29). While this relaxation made the
register prediction results more presentable (65% after relax-
ation vs. 44% before relaxation), it is problematic, as it would
lead to prediction of TM residues to adopt erroneous orienta-
tion opposite to that of the native structures. Such incorrect TM
residue orientations would imply completely different properties
of the barrel interior and exterior. Here we report correct pre-
diction only when we are able to exactly match the register with
the experimentally resolved structure.

Predicting side-chain orientations. We use the reduced state space
and a single body potential (20) calculated from the updated
dataset to predict the side-chain orientation of each strand.
Since the side-chain orientations of a strand follow an alterna-
tive lipid-facing–pore-facing pattern, only the orientation of the
first residue of each strand needs to be predicted. The accu-
racy of our prediction is 98% (see SI Appendix, section 3.4 for
details).

Optimizing protein shear. We next optimize the shear number
which characterizes the global hydrogen bond pattern of a βMP.
The shear number is the displacement of the relative positions in

the TM strands if one starts to follow the strong hydrogen bond
or side-chain interaction between strands, beginning from one
strand and returning after a full circle to the same strand (SI
Appendix, Fig. S5). The predicted shear number of a βMP can
be calculated as the sum of the predicted strand registers.

In the step of register prediction, we keep the register with
the lowest score and the one with the second lowest score as
candidates for each strand pair. They are then evaluated against
the predicted side-chain orientations of the strand, based on the
fact that residues sharing a strong hydrogen bond or side-chain
interaction have the same side-chain orientation. One of the two
registers is then selected so that the predicted shear number is
as close as possible to the most common shear number of the
βMPs of the same strand number (SI Appendix, Table S3), while
keeping the sum of the strand register scores as small as possible
(see SI Appendix, section 3.5 for technical details). After opti-
mization, the error in predicted shear numbers is decreased from
−0.69± 3.63 to 0.12± 1.34. The improved global shear accu-
racy will lead to overall more accurate 3D structure prediction
of βMPs.

Predicting 3D Structures of TM Regions of βMPs
Parametric model for 3D structures of the TM regions. Parametric
models have had recent successes in modeling and designing
structures of α-helical proteins (36, 37). We have developed a
parametric structural model, named the intertwined zigzag coil
model, to generate 3D structures of βMPs from predicted strand
registers (SI Appendix, Fig. S4). Following previous studies (30,

A B

Fig. 2. Structure prediction of TM regions. (A) Predicted structures of the TM regions (green) superimposed on experimentally determined structures (cyan):
OmpA (1bxw), TodX (3bs0), Porin (1prn), BamA (4n75), OpdO (3szv), and HasR (3csl). (B) Predicted structures of the TM regions of proteins with novel folds
(green) superimposed on experimentally determined structures (cyan): VDAC (3emn), FimD (3rfz), PapC (2vqi), and LptD (4q35). PapC and LptD are shown
in top view.
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Table 2. Flexibility of TM regions of βMPs and the accuracy of
the prediction of 3D-BMPP

PDB ID DTM
nmr,nmr DTM

nmr,X-ray DTM
pred,nmr DTM

pred,X-ray

1bxw 1.41 ± 0.42 1.99 ± 0.31 1.83 ± 0.15 1.36
1qj8 2.50 ± 0.74 2.48 ± 0.80 3.11 ± 0.46 2.65
1thq 1.99 ± 0.58 4.53 ± 0.38 5.30 ± 0.42 3.32
2f1c 2.42 ± 0.37 2.80 ± 0.21 3.93 ± 0.21 3.06
2f1t 2.13 ± 0.35 4.30 ± 0.11 4.08 ± 0.14 3.12
2lhf 0.82 ± 0.22 No X-ray 1.60 ± 0.08 1.48∗

2mlh 1.48 ± 0.28 No X-ray 1.49 ± 0.14 1.44∗

Mean 2.11 ± 0.79 3.18 ± 1.16 3.09 ± 1.39 2.35 ± 0.82

DTM
s1,s2

is the average of the mutual Cα-rmsd between structures s1 and s2.
∗As no X-ray structures for these proteins are available, we used the first
model of the NMR data.

38), we model the overall shape of the β-barrel as an ideal
cylinder. The Cα trace of each strand is described as a
coiled zigzag wrapping around the hypothetical cylinder (see SI
Appendix, section 4.1 for details). This model captures the zigzag
nature of a polypeptide in the βMP and the varied distance
between Cα atoms on adjacent strands (SI Appendix, Fig. S3),
which improves positioning of Cα atoms.

Predicting 3D atomic structures. We then use these Cα atoms to
construct the main-chain atoms using Gront et al.’s (39) algo-
rithm. The side-chain atoms are then added using side-chains
with a rotamer library 4 (Scwrl4) (40).

Fig. 2A depicts the predicted structures (green) of the TM
regions of proteins OmpA, TodX, Porin, BamA, OpdO, and
HasR, which are shown superimposed on experimentally deter-
mined structures (cyan). The rmsds of the main-chain atoms
between the computed and experimentally resolved structures
are 1.39 Å, 1.30 Å, 2.44 Å, 3.44 Å, 3.20 Å, and 2.71 Å for OmpA,
TodX, Porin, BamA, OpdO, and HasR, respectively. The struc-
tures of the TM regions of 51 βMPs are predicted with an aver-
age rmsd of 3.48 Å for main-chain atoms and 4.26 Å for all atoms
(see SI Appendix, Table S4 and Fig. S7 for details). The accu-
racy of predicted structures is maintained for large proteins such
as Iron(III) dicitrate transport protein FecA protein (237 TM
residues). This is in contrast to other prediction methods, where
there is considerable deterioration in the quality of predicted
structures (SI Appendix, Table S5 and Fig. S6). The average TM
scores of our predicted structures also compare favorably with
those of a recent study (0.73 vs. 0.54) (29). Furthermore, our
results are over a much bigger dataset (51 proteins vs. 17 pro-
teins). Thus, these results represent a very significant improve-
ment. Moreover, the parametric structural model of intertwined
zigzag coils improves accuracy of side chains, as the all-atom
rmsd has improved by more than 1.30 Å (4.26 Å vs. 5.60 Å) com-
pared with a previous study (30).

TM regions of βMPs have considerable intrinsic flexibility:
The NMR structures have an average mutual Cα-rmsd of 2.11±
0.79 Å for the seven βMPs with known NMR data (Table 2, col-
umn 2). The difference between the NMR and X-ray structures
is more pronounced, with an average Cα-rmsd of 3.18± 1.16
Å (Table 2, column 3). In contrast, the average Cα-rmsds of
our predicted structures against NMR and X-ray structures are
3.09± 1.39 and 2.35± 0.82, respectively (Table 2, columns 4 and
5). These differences are similar to the structural differences
originating from the intrinsic flexibility of the proteins, suggest-
ing that our prediction of TM regions of βMPs has excellent
accuracy comparable to NMR structures.

Predicting structures of βMPs with novel folds. It is challenging
to predict the structures of βMPs with novel folds. βMPs were

considered to have even numbers of strands from 8 to 22 (41).
A βMP is considered to have a novel fold when its number of
strands has not been observed in other experimentally deter-
mined structures. For example, VDAC in mitochondria has an
odd number (19) of strands (42); PapC, FimD, and LptD all have
more than 22 strands (24, 24, and 26, respectively). Predicting
structures of a number of βMPs including VDAC, FimD, and
LptD with reasonable accuracy was not possible in a recent study
(29), likely due to inaccurate residue contact predictions and
limitations in the machine-learning–based procedure. Template-
based prediction methods either fail to build any model or gen-
erate very poor structures. With the improved modeling proce-
dure of 3D-BMPP, we are able to model the TM regions of the
VDAC, FimD, PapC, and LptD proteins with a main-chain rmsd
of 3.53 Å, 4.74 Å, 6.06 Å, and 7.25 Å, respectively (Fig. 2B).
While the structure of VDAC was previously predicted with an
accuracy of 3.9 Å (30) and 7.41 Å (29), to the best of our knowl-
edge the structures of FimD, PapC, and LptD have not been
successfully predicted before this study. The large rmsds of pre-
dicted structures of PapC and LptD show that our current ide-
alized cylindrical structural model cannot yet model deformed
barrels effectively.

Predicting Structure of non-TM Regions of βMPs
Predicting structures of extended β-sheets. We also model the
structures of the non-TM regions of βMPs, including the
extended β-sheets (extended barrels) and loops connecting adja-
cent strands. The extended barrels have overall similar structures
to those of the TM barrels. Including the extended barrel in our
prediction increases the coverage of the modeled structures by
20% when measured by the average number of residues mod-
eled in the 51 structures (159 in TM regions vs. 191 in whole-
barrel regions, with the largest modeled barrel structure con-
taining 350 residues), with little deterioration in the average
main-chain rmsd (3.48 Å vs. 3.80 Å).

Predicting structures of loops. Loops are the most flexible regions
of βMPs and are important for their functions (43). NMR struc-
tures of βMPs show that these loops adopt multiple conforma-
tions (44, 45), which likely contribute to the challenges in predict-
ing binding affinity of βMP–ligand interactions (46). We model
loops by investigating a large ensemble of loop conformations
generated using an improved version of the multi-loop distance-
guided sequential chain-growth Monte Carlo (m-DiSGro) algo-
rithm (47) that guarantees clash-free conformations of the sam-
pled loops. For each of the seven βMPs with available NMR
structures, once the structure of the barrel domain is predicted,
we sample 3× 104–3× 105 multiloop conformations, with the
specific number of conformations dictated by the number and
the lengths of loops. We then perform clustering to generate
an ensemble of ∼400 multiloop conformations as a prediction

A B C

Fig. 3. Structure prediction of loop regions. (A) Ensemble of predicted loop
structures of OmpX (1qj8). (B and C) Examples of predicted loops on the
extracellular side (B, green) and on the periplasmic side (C, green) super-
imposed on the corresponding NMR structure (cyan) (49). The black arrow-
heads indicate the big fluctuations in the barrel region.
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Table 3. Comparison of the accuracy of loop prediction for βMPs

PDB id Dbarrel
nmr,nmr ∆Dloop

nmr,nmr Dbarrel
nmr,pred ∆Dloop

nmr,pred

1bxw 2.78 ± 0.72 3.83 ± 1.25 3.35 ± 0.51 3.00 ± 0.55
1qj8 3.31 ± 0.80 0.61 ± 0.26 4.14 ± 0.57 0.67 ± 0.27
1thq 1.99 ± 0.58 0.79 ± 0.35 5.30 ± 0.42 0.52 ± 0.21
2f1c 3.33 ± 0.61 3.76 ± 0.94 5.29 ± 0.50 2.78 ± 0.48
2f1t 2.58 ± 0.54 1.01 ± 0.55 4.35 ± 0.15 0.45 ± 0.20
2lhf 0.85 ± 0.24 1.94 ± 0.60 1.63 ± 0.09 2.05 ± 0.27
2mlh 1.48 ± 0.28 1.51 ± 0.64 1.49 ± 0.14 0.99 ± 0.26
Mean 3.65 ± 1.21 1.03 ± 0.89 3.64 ± 1.46 1.12 ± 0.89

We are able to sample most of the loop conformations seen in the NMR
structures with <3 Å deterioration in Cα-rmsd.

for each protein. The predicted loop conformations are diverse
(Fig. 3A) and represent the broad conformational space that is
accessible to loops (48). Examples of predicted loops are shown
in Fig. 3.

To assess the quality of the predicted loop conformations, we
define a metric ∆D

loop
s1,s2 that measures how Cα-rmsd between

structures s1 and s2 is changed upon incorporation of the loop
regions: ∆D

loop
s1,s2 =Dwhole

s1,s2 −Dbarrel
s1,s2 , where Dwhole

s1,s2 is the Cα-rmsd
between the structures s1 and s2 including both the barrel and
loop regions, and Dbarrel

s1,s2 is the Cα-rmsd between the barrel
domains only. Since the number M of available NMR struc-
tures for each protein is limited compared with our predictions
(∼10–20 vs. ∼400), we selected M predicted conformations
closest to the NMR structures by ∆D

loop
nmr,pred from the mod-

eled ensemble for each protein. The resulting ∆D
loop
nmr,preds cal-

culated using these structures are <3 Å, with an average of
1.12± 0.89 (Table 3, column 5), which is on par with the values
of ∆D

loop
nmr,nmr (Table 3, column 3), suggesting that we are able to

sample the loop conformations observed in the NMR structures
accurately.

Discussion
Due to the difficulties in experimental determination of mem-
brane protein structures, there are a limited number of structures
of nonhomologous βMPs. However, it is estimated that there are
15,000 βMPs across 600 different gram-negative chromosomes
(50). Computational modeling has the promise to provide work-
ing 3D models for these sequences, enabling novel applications
in nanopore engineering and drug design/delivery, as well as fur-
thering understanding of the structural basis of the function and
mechanism of these βMPs. We have developed a method for
predicting structures of βMPs, which combines a statistical
mechanical model, sequence covariation information, and global
register optimization with a parametric structural model of inter-
twined zigzag coils. The results show that we can accurately pre-
dict structures of βMPs with a significantly expanded coverage of
extended β-sheets and loops.

The incorporation of global register optimization increases the
accuracy of the predicted structures by 0.24 Å on average, sug-
gesting that the global hydrogen bond network cannot be approx-
imated accurately using local strand register alone. As an exam-
ple, for the βMPs OmpA (PDB ID: 1bxw), hypothetical protein
HB27 (PDB ID: 3dzm), and PagL (PDB ID: 2erv), the strand
registers were predicted correctly for six of eight strands before
global register optimization, with an error in shear number of −4,
−6, and −6, respectively. After global register optimization, the
strand register was predicted correctly for eight, six, four strands,
respectively, and the error in shear number becomes 0 in all three
cases. Moreover, the main-chain rmsd of these predicted struc-
tures is improved by 2.7 Å, 2.5 Å, and 1.5 Å, respectively.

Our parametric model of intertwined zigzag coils captures the
zigzag nature of a polypeptide and the varied distance between
Cα atoms of two adjacent strands, which depends on whether
the respective residues share a main-chain hydrogen bond. This
results in significant improvement in rmsd for all atoms in gen-
eral and side-chain atoms in particular. When we constructed
structures of all 51 βMPs using our parametric model with true
registers, the average main-chain rmsd of these structures was
2.5 Å. Given our prediction accuracy of 3.48Å in this study, only
∼1 Å error on average is due to incorrect register prediction,
while the 2.5-Å error is due to the structural deviation of βMPs
from the ideal cylindrical shape.

Currently this ideal cylindrical model cannot capture elliptic-
ity, twist, and curvature of local surface of the deformed bar-
rel domains such as those observed in PapC and LptD (Fig.
2B), and alternative hyperboloid models have been discussed in
the literature (51, 52). However, as current understanding of
the physical factors determining these geometric properties is
incomplete, further investigation of the heterogeneity of inter-
actions in the TM region is required to develop a more accu-
rate geometric model that can account for the deformed barrel
domain.

In a recent study, structures for only 17 proteins (compared
with 51 proteins in this study) were predicted (29), as the number
of sequences available for the remaining proteins was insufficient
to analyze sequence covariation. Here, we show that this limita-
tion can be removed by combining patterns of hydrogen bond
and side-chain interactions derived from experimentally deter-
mined 3D structures with the sequence covariation information
(SI Appendix, Fig. S8). Our method predicts the 3D structures of
51 βMPs with an average rmsd of 3.48 Å, which compares favor-
ably with the recent study that has an average rmsd of 6.66 Å
(29). Detailed technical issues comparing the two methods are
discussed in SI Appendix, section 6.

Our method revealed basic organizational principles of βMPs
and requires no template structures. In addition, TM regions of
βMPs with a novel fold can also be modeled effectively, as evi-
denced by the predicted structures of VDAC and FimD. Fur-
thermore, non-TM regions including both extended β-sheets and
loops can be predicted accurately. Overall, our method opens the
possibility of structural studies of many βMPs, including those in
eukaryotic mitochondria and chloroplasts.

Materials and Methods
We use 59 βMPs with known structures as our dataset. The mutual sequence
similarity is below 30%. Predictions are made only for 51 βMPs, after exclud-
ing multichain β-barrels to avoid overestimation of repeated interaction
types. Leave-one-out cross-validation is performed to assess the accuracy of
the predictions.

Here, we describe our methods briefly. More details of the methods can
be found in SI Appendix, sections 2–5. We take the canonical model of TM
strands based on the physical interactions between strands described in refs.
31 and 33. The energetic contributions incorporate interactions with adja-
cent strands, interstrand loop entropy, a penalty for left-handedness, and
sequence covariation. For each pair of adjacent strands, we enumerate all
possible registers in a reduced conformational space and predict the regis-
ters. This is followed by the global shear optimization. We use a parametric
structural model of intertwined zigzag coils to calculate the positions of
Cα atoms. Main-chain atoms and side chains are added using Gront et al.’s
(39) algorithm and Scwrl4 (40). We then use an improved version of the
m-DiSGro algorithm (47) to sample loop ensembles.

The 3D-BMPP code and the corresponding data are available at sts.bioe.
uic.edu/3dbmpp/.
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