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When sample sizes are small, the ability to identify weak (but sci-
entifically interesting) associations between a set of predictors
and a response may be enhanced by pooling existing datasets.
However, variations in acquisition methods and the distribution
of participants or observations between datasets, especially due
to the distributional shifts in some predictors, may obfuscate real
effects when datasets are combined. We present a rigorous statis-
tical treatment of this problem and identify conditions where we
can correct the distributional shift. We also provide an algorithm
for the situation where the correction is identifiable. We analyze
various properties of the framework for testing model fit, con-
structing confidence intervals, and evaluating consistency charac-
teristics. Our technical development is motivated by Alzheimer's
disease (AD) studies, and we present empirical results showing
that our framework enables harmonizing of protein biomark-
ers, even when the assays across sites differ. Our contribution
may, in part, mitigate a bottleneck that researchers face in clini-
cal research when pooling smaller sized datasets and may offer
benefits when the subjects of interest are difficult to recruit or
when resources prohibit large single-site studies.

multisite analysis | meta-analysis | causal model | maximum mean
discrepancy | multisource

any studies that involve human subjects are constrained by

the number of samples that can be obtained when the dis-
ease population of interest is small, when the measurement of
interest is difficult to obtain, or when other logistic or financial
constraints are present that prohibit large-scale studies (1, 2). For
example, in Alzheimer’s disease (AD) research, cerebrospinal
fluid (CSF) measurements from lumbar puncture (LP) may be
limited by participant willingness to undergo LP and institutional
capability to routinely perform the procedure in a research setting.
The assays for amyloid beta 1-42 and tau (the hallmark features
of AD pathology) are known to vary widely between assay product
type and within a specific type of assay from differences in batch
composition (3). Similarly, the expense of imaging examinations
may prohibit large-scale investigations. While the sample sizes
may be sufficient to evaluate the primary hypotheses, researchers
may want to investigate secondary analyses focused on identifying
subtle associations between specific predictors and the response
variable (3, 4). Such secondary analyses may be underpowered
for the given sample sizes. One possible solution is to identify
and pool several similar datasets across multiple sites (5). One
hopes that the larger sample sizes of the pooled dataset will enable
investigating potentially interesting scientific questions that may
not otherwise be possible with smaller single-site cohorts.

In practice, we find that direct pooling of already collected
datasets in a post hoc manner across multiple sites can be prob-
lematic due to differences in the distributions of one or more
measures (or features) (6). In fact, even when data acquisition
is harmonized across sites, we may still need to deal with site-
specific or method-specific effects on the measurements, such as
the above noted example with CSF (7), before the analysis can
proceed (8, 9). For example, as discussed above, in AD stud-
ies, CSF measurements (10) may not be easily pooled in the

www.pnas.org/cgi/doi/10.1073/pnas.1719747115

absence of gold standard reference materials that are common
across assays (or sites) (3). Such issues also arise in combin-
ing cognitive measures or transferring analysis results or models
from one potentially large-sized dataset to another. For exam-
ple, cohort studies may administer different cognitive tests that
assess the same underlying cognitive domain; therefore, thresh-
olds used to categorize individuals into different disease status
groups may not be easily transferred from one site to the other
(5, 11). These issues are not restricted to biomedical studies,
and variously manifest in machine learning and computer vision,
where distinct datasets must be pooled (e.g., for training a statis-
tical model). While the literature on addressing sample selection
bias and compensating for population characteristics differences
is sizable (12, 13), statistical frameworks for resolving distribu-
tional shift to facilitate pooled analysis, essential in various appli-
cations, are less developed in comparison.

Deriving scientific conclusions from a unified analysis span-
ning multiple individual datasets is often accomplished in prac-
tice via so-called meta-analysis approaches. Such an approach
carefully collects research analyses/findings separately per-
formed on the datasets and then aggregates individual analysis
results through statistical models to come up with a final estimate
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How can one efficiently combine experimental and observa-
tional predictive data from different laboratories into a single
predictive model when the laboratories have differently cali-
brated measuring instruments and the study populations have
different demographic distributions? When both differences
exist in the data, important quantities may not be identifiable,
but we provide sufficient conditions for when they are and
practical plans to account for the differences, including sub-
sampling. The methods are applied to two Alzheimer’s disease
studies, where measured cerebral spinal fluid and demographic
data show differences, and we seek to identify associations
with a response variable. We provide tools to add to the arma-
mentarium of the scientific experimenter and data analyst for
efficient combination of information from diverse sources.
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of the parameters (14). However, various assumptions in meta-
analysis schemes may not always hold in practice, and simple
violations can lead to inaccurate scientific conclusions (15, 16).
Alternatively, if access to the actual data from individual stud-
ies is available, some preprocessing to harmonize the data fol-
lowed by statistical analysis of the pooled data may be preferable
in many cases. The preprocessing often uses methods that com-
pensate (or correct) for distributional shift to the extent possible.
For example, ideas related to domain shift in refs. 17 and 18 and
other results describe sophisticated models to improve predic-
tion accuracy by correcting domain shift. What is less developed
is a formal treatment explaining how confident we are that the
shift across datasets has been successfully corrected (and conse-
quently, the analysis can safely proceed), whether the correction
can be improved if we were able to acquire more samples, what
mathematical assumptions are needed, and whether the resid-
ual (say, after a correction step) is due to fewer than necessary
samples or other violations of the underlying assumptions. The
primary goal of this paper is to offer a formal treatment of these
problems and derive the theoretical basis that can guide practical
deployments.

In this paper, we build and extend on our preliminary results
(19), and we present an in-depth theoretical study of distribu-
tional shift correction across datasets. That includes consistency
properties, an identifiability condition, and a hypothesis test to
check model accuracy using a discrepancy measure popular in
the domain adaptation literature (17, 18). We also provide an
analysis based on a subsampling procedure, showing how these
ideas can be modified to deal with the practical situation where
the covariates for different sites (or studies) are not exactly the
same (e.g., age range of cohorts may vary)—toward facilitating
rigorous analysis of pooled datasets. Briefly, we (i) give a pre-
cise condition to evaluate whether a distributional shift correc-
tion is identifiable; (i) derive a subsampling procedure to sepa-
rate distributional shift from other sources of variations, such as
sample selection bias and population characteristics differences;
(iif) propose an algorithm based on a nonparametric quantity:
maximum mean discrepancy (MMD); and (iv) present exper-
iments showing how these ideas can facilitate AD biomarker
research (Fig. 1).

Problem Setting

Let us assume that we have data from two sites S and T, and
the sitewise data correspond to p different features. For presen-
tation purposes, we will assume that the features include eight
CSF protein levels, denoted as X, acquired from each participant
via an LP. Since the absolute values of CSF measurements vary
as a function of the assay instrumentation, we are interested in
correcting the distributional shift to facilitate the analysis of the
pooled dataset. However, notice that there are at least two other
factors that can influence the correction. S and T may have par-
ticipants with age distributions that are not identical. It is known
that age influences protein-level measurements and therefore,
will affect our distributional shift correction. We denote the pop-
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ulation characteristics that cause differences in age distributions
as Ep (also called “transportability” in ref. 13). Similarly, while
site S may include an almost equal split of individuals with and
without disease, healthy individuals may be overrepresented in
site 7. We denote this bias in sample selection between two
datasets as Ep, which also influences X (13). Therefore, the
actual distributions of observed CSF protein levels in the two
datasets, Xs and Xr, are P(Xs|Ep, Eg) and P(Xr|Ep, Ep),
respectively. If we only have access to Xs and X7 but no other
variables related to Ep and Ep, then correcting the distributional
shift between Xg and Xr is difficult. However, the problem is
identifiable when we have age and diagnosis status relevant for
the variables Ep and Ep. In fact, we can specify the condition
when the correction is identifiable. We briefly review some con-
cepts related to graphical causal model and d-separation rules
and then state the identifiability condition.

Graphical Causal Model. A graphical causal model is represented
by a directed acyclic graph (DAG), which consists of three types
of entities: variables (nodes), arrows (edges), and missing arrows.
DAGs are useful visual representations of a domain expert’s
assumptions regarding causal relationships explaining the data
generation process (20). In Fig. 24, we show an example. Arrows
in the graph represent possible direct causal effects between
pairs of variables. For example, the arrow from I to O; means
that I exerts a direct causal influence on O;. The absence of
an arrow represents an assumption of no direct causal effect
between the two variables (20). The missing arrow from [ to J
denotes the absence of a direct causal effect of I on J. Fig. 2B
shows an example for our data analysis task, where the DAGs
depict causal relations between age, sex, CSF, diagnosis status,
and other variables. Here, age, sex, and other endogenous vari-
ables influence the CSF measurements X, which influence the
diagnosis status D. The population characteristic difference Ep
only has a direct causal effect on age, whereas the sample selec-
tion bias Ep is only directly related to diagnosis status D for
each specific study or site. Note that a graphical causal model
is nonparametric and makes no other assumptions about the dis-
tribution of variables, the functional form of direct effects, or the
magnitude of causal effects.

Next, we introduce a useful concept called d-separation (21)

using the model in Fig. 24 as an example. If two variables / and
J are d-separated by a set of variables Z, then they are condition-
ally independent given Z. A path is a sequential set of connected
nodes independent of the directionality of the arrows. A “col-
lider” on a path is a node with two arrows along the path point-
ing into it (Os — O3 < Os in Fig. 24). Otherwise, the node is a
noncollider on the path.
Definition. [d-separation (21)]: A path p between two variables,
I and J is said to be blocked by a set of variables Z if either
(i) p contains a noncollider that is in Z or (i) p contains a col-
lider node that is outside Z and has no descendant in Z. We say
that I and J are d-separated by Z if any path between them is
“blocked” by Z.

Hippocampus Volume

Fig. 1. A shows the distributional shift of AB1_4;
across ADNI and W-ADRC. B shows the distribu-
tional shift of hippocampus volume across ADNI and
W-ADRC.
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Fig. 2. A is an example of a graphical causal model. The colored nodes
are an example of a d-separation rule, where / and J are d-separated by
{04,0,,03}. Bis the graphical causal model for our CSF data analysis exam-
ple. Here, the population characteristics difference Ep only has a direct
causal effect on the age distribution. The sample selection bias Ez is only
directly related to diagnosis status D for each specific study. Nodes denot-
ing age and sex influence the CSF measurements denoted by X, which then
influence the diagnosis status D. The CSF measurements X and the nodes Ep
and Ep are d-separated by diagnosis status D and age.

For example, in Fig. 24, I and J are d-separated by
Z ={04, O, Os}. After including { Oy, Os} in Z, all paths are
blocked due to rule i, except the path p; : <+ Oz« O5 —
Os < Os — O4 — J. The path p; stays unblocked, because (i) no
noncollider on that path is in Z and (i) the only collider O3 on
pi is in Z. Therefore, we can include one of { Oz, Os, Og, O4} on
the path into Z to “block” it.

Identifiability Condition

We can now present a condition describing when distributional
shift correction across sites is identifiable, even with the concur-
rent influence of sample selection bias and population character-
istic differences on the measurements X.

Theorem 1. The distribution shift correction is identifiable if there
exists a known set of variables Z, such that the following three con-
ditions are all concurrently satisfied.

i) Z d-separates X and Ep (sample selection bias) and also d-
separates X and Ep (population characteristic difference).

ii) The conditional probability P(X | Z), after appropriate transfor-
mations on X, is the same across multiple participating sites (S
and 7).

iii) The diztribution of Z has a nontrivial overlap across multiple
sites (S and T), which means that there exists an interval [a, b],
such that P(a < Z < b) > 0.5 for all sites.

The proof is in SI Appendix, S.6. From Fig. 2B and Table 1, we
can check that Z ={D, age} satisfies Theorem 1. Condition i is
satisfied by noticing that Z d-separates X and the nodes Ep and
Ep. If all sites collect samples similarly, P(X | Z) will be the same
[e.g., P(X|D = AD,age=280)]. From Fig. 2B, variations denoted
by Ep and Ep only influence the marginal distributions of D
and age but have no effect on the causal relation/function among
variables [e.g., P(X|Z)]. The distributional shift of X can be cor-
rected after some transformation; therefore, condition ii holds.
Finally, we will see (Table 1) that the disease status and age
distributions have a nontrivial overlap across the two datasets;
therefore, condition iii also holds.

In practice, it is useful to seek a d-separating set of variables Z
with the fewest variables, such that we can sacrifice (or leave out)
the fewest samples to separate distributional shift from the other
variations Fp and Ep. Finding a minimal d-separating set can be
solved as a maximum flow problem (22). In practice, if the causal
model is not too complicated, one may even find a d-separating
set Z manually. Then, it can be transformed into the problem
of “blocking” two nodes in an undirected graph with the fewest
blocks (23) (SI Appendix).

Tests for Correcting Distributional Shift

We now describe an algorithm to correct distributional shift
if it is identifiable (Theorem 1). We start our discussion by
first assuming that the two to-be-pooled datasets, S and T,
only include a distributional shift in the features (e.g., due to
measurement or site-specific nuisance factors) and involve no
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other sampling biases or confounds (i.e., Ep and Ep). Later,
we present a subsampling framework to extend the algorithm
to the case where other variations co-occur and also contribute
to the shift. We calculate the distributional shift correction by
identifying a parametric transformation on the sitewise samples
from S and T. We assume that site S provides ngs samples
Xs = (24,23, ..., 75°) given by a distribution Pg and that T pro-
vides nr samples X7 with a distribution Pr.

Let us denote the transformation on Xs as h*(-) and the trans-
formation on X as g%(-) characterized by the unknown param-
eters A and 6, respectively. For example, if we choose h*(-) to be
an affine transformation with parameters A:= W, it maps any
value = to Wa: that is, A" (-): 2 — Wz. The algorithm seeks
to find a pair of transformations, such that distributions of two
datasets are matched (corrected) after the transformations are
applied. We use MMD as a measure of difference between the
two (transformed) distributions. The MMD is expressed as a
function of two distributions Pg, Pr as

MMD(PSa PT) = HEXNPSIC(Xv ) - EXNPTK:(X? ')”7-0

which is defined using a Reproducing Kernel Hilbert Space with
norm || - ||,, and kernel K. MMD can also be considered as the
mean difference between two distributions after kernel embed-
ding and has several desirable properties (for example, it is
zero if and only if two distributions are identical) (24). One
requirement, however, is that the kernel has to be characteris-
tic, and specific choices may be guided by the application (24).
The empirical version of MMD can be calculated with samples
Xs, X as

— 1 1~
MMD(Xs, Xr) = |-= > Klws,) = 7= 3 K@)l

i=1 j=1

Recall that our algorithm is trying to match the two distributions
after applying the parametric transformations h*(-) and ¢?(-).
Therefore, we estimate parameters A and 6 using the empirical
MMD by searching for a minimum value (e.g., using stochastic
gradient descent):
S Ay . YIVL R 0

(A, 0) = arg Aeﬂril,lgleﬂe MMD(h"(Xs), 9" (X)) [1]
The class of transformations that we will choose for a specific
application should be informed by domain knowledge, but in
general, simpler transformation classes are preferable.

We now show that the estimators \ and  are consistent.

Theorem 2. Under mild assumptions (SI Appendix, S.2), if there is

a Ao, 0o such that h*°(Xs) and g% (Xr) have the same distribu-
tion, then

MMD (R (Xs), ¢° (X7)) =0
(m m)
JAs 0 /AT

the estimators 5\, 0 are consistent.
Remark. In various applications (including our experiments), we

may choose one class of transformations h*(z) to be the iden-
tity transformation and transform samples in the other dataset
to match the reference dataset.

The foregoing discussion and Theorem 2 assume that the two
distributions can be matched via some unknown transformation.
This may not always be true, and it is important, in practice, to

with the rate max - Af Xo, 6o are unique, then

Table 1. Variations of age and diagnosis status across datasets
Description ADNI W-ADRC
Sample size 284 125
Age range (~55-65/~65-75/~75-85yr), %  11/43/46  44/34/22
Diagnosis status (CN/AD), % 60/40 76/24
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identify when the datasets cannot be pooled for the specified
class of transformations. Next, we provide a hypothesis test to
answer this question. Let us define

Hy : There exists A, 0 such that h*(Xs) and g?(X7) match
H.a : There is no A, 0 such that h*(Xs) and g% (X7) match.

The test statistics can be obtained by plugging A, 6 into the empir-
ical MMD calculation as

MMDyest = MMD (R (Xs), ¢° (X1)).

We can show that the hypothesis test is consistent. Additional
details for the small sample size case are in SI Appendix, S.3.

Theorem 3. Under mild assumptions (SI Appendix, S.2), AT/\TDM

converges to zero with the rate max(\/%, \/}TT) when Hy

holds and converges to a positive constant with the rate
V/log(ng) +/log(nr)
n’laX(W7 W) when HA holds.
The test can provide guidance on whether the distributional
shift has been successfully corrected. If the test suggests the alter-
native hypothesis, one may consider adjusting the transforma-

tion class h*(-) and g?(-) or other factors, such as sample selec-
tion bias and population attribute difference, or one may decide
against pooling. Next, we introduce a subsampling scheme to cor-
rect distributional shift when other contributors to the shift coex-
ist, but the correction is still identifiable.

Subsampling Framework. When the test chooses H4, one reason
may be that one or more cohort-specific factors contribute in sig-
nificant ways to the observed distributional shift between Xg and
Xr. Recall that our earlier discussion suggests that the problem
is identifiable if we can find a Z satisfying the conditions in Theo-
rem 1. Then, a subsampling procedure can potentially resolve the
confound. The reason is that

P(X|Ep, E)=Ezpp,5,[P(X|Z, Ep, EB)].

From Theorem 1, we know that P(X|Z, Ep, Ep) =P(X|Z%),
which remains the same across sites after a suitable transforma-
tion. Therefore, simply by adjusting P(Z|Ep, E), the effects of
the other factors on X can be controlled, except distributional
shift. Such a subsampling scheme is widely used in addressing
sample selection bias in other applications (25) (information on
the subsampling scheme for reducing computational burden is
in ref. 26). In our setting, the motivation for using subsampling
is similar, but it is used in the context of correcting distributional
shift—after subsampling. Separately, since subsampling has been
used in bagging to stabilize estimations and reduce variance [e.g.,
for random forests (27)], we can directly obtain stable estimators
and calculate their variance.

Specifics of Subsampling. We divide X into d groups with sam-
1
ple sizes given as (nk,...,nd): ie., Xg=(ai"?, .z

d
:zzéd’n, ey xéd’"s )). Similarly, X is divided into groups with sam-

A AB1-42 B
6e=3 CIADNI (before) 4
CIADNI (after)
W=ADRC
3
_ slope : 4.34 + 0.32
2ed intercept : ~203.35 + 4870 2>
7] p-value : 0.79 ‘0
c @,
3 [}
2e-3 ©
/(‘ S~—— '
0 € o o- .

500 ) 1000 0.0
protein level
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(1,n7)

. . . 1,1
ple sizes given as (nk,...,n%): ie., XT:(a:(T’ ), vty Top S e

d
x(Td’l) z;d’"”). The subsample sizes are (s1, 2, ..., s4), Where
s; < min(n}, n%.) forany j =1, ..., d. Then, we generate subsam-
ples for Xs and X¢ and apply Eq. 1 sequentially. We run sub-
sampling with replacement B times and denote each iteration’s

estimators as A°, #°. Then, our final transformation estimators
are givenas A=+ >"7  Aandd=1L >, 0"

g euey

Infinitesimal Jackknife Confidence Interval. In most scientific stud-
ies, we also want to obtain a confidence interval for the calcu-
lated transformations. In this case, however, there is no closed
form solution, and therefore, we use a bootstrap type method.
Since subsampling already involves bootstrapping, using a sim-
ple bootstrap results in a product of bootstraps. Fortunately, a
similar issue was encountered in bagging, and an infinitesimal
Jackknife (IJ) method (28) was provided for random forests,
which works quite well (27, 29). Inspired by this result, we use the
1J to estimate the variances of estimators A and §. The method
cannot be directly applied here, since it considers subsampling
from one group, whereas we need subsampling from multiple
groups. We, therefore, extend the results to multiple groups
(proof is in SI Appendix, S.7).

Based on the subsampling scheme for Xs and Xr defined
above, the multigroup 1J estimator of variance is given as the
following theorem.

Theorem 4. Define gfz(i’ ) fo be the number of appearances of 2P
in iteration b. Define COV (gu(i.ky, ) = % 3p_1 (A" = X) (g5 (5.) —
24). The IJ estimator of variance for Nis

d n,
VAR (A= > D> > (COV(gugin, ).

uwe{S, T} i=1 k=1
The procedure for 0 is identical.

Algorithm 1. Subsampling MMD Algorithm (SSP).

1: Divide Xs and X7 separately into d groups by Z

2: Decide subsample size (s1, s3, ..., Sq)

3:For b=11to B, do

4 Generate subsamples Xf from d groups of Xs

5: Generate subsamples X2 from d groups of Xr

6:  (\b,6°) = argminyca, oca, MMD((X?), g% (X2)

7 Calculate and record gﬁ(hk) forallu, i, k

8:SetA=1>F_,\andd=]3%_, 0" and calculate VAR,(}) and
VAR()

Applications to AD Study

We show the application of the framework to correct distri-
butional shift between two AD datasets and show how such
a strategy can lead to improved pooled data analysis. The
two datasets come from the Alzheimer’s Disease Neuroimage

ptau/AB_s2

IADNI (before)
CIADNI (after)
W-ADRC

slope : 0.588 + 0.063

intercept : 0.011 + 0.010

p-value : 0.84

Fig. 3. The plots of (A) AB1_4; and (B) p-tau/
AB1_42 show the empirical distributions of W-ADRC
samples (blue), ADNI samples (red), and transformed

0 ADNI samples (brown). W-ADRC samples are nicely
matched with transformed ADNI samples.

Zhou et al.
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Table 2. The performance of thresholds in ADNI and W-ADRC

Dataset ttau  ABi_q  p-talng  Z5EL ﬁ/gfi“_‘j;
W-ADRC
Threshold 568.08 629.39 48.86 0.77 0.07
Sensitivity, % 75.86 89.66 82.75 93.10 93.10
Specificity, % 92.23 69.90 67.96 86.41 79.61
ADNI
Threshold 93.00 192.00 23.00 0.39 0.10
Sensitivity, % 69.6 96.4 67.9 85.7 91.1
Specificity, % 92.3 76.9 73.1 84.6 71.2

The W-ADRC thresholds are derived from corresponding ADNI thresholds
reported in the literature (11) using Algorithm.

Initiative (ADNI) project and the Wisconsin Alzheimer’s Dis-
ease Research Center (W-ADRC). Both studies follow similar
protocols for acquiring CSF samples from participants and mea-
suring protein levels (3). It is known that the CSF protein lev-
els are indicative of neurofibrillary tangles and amyloid plaques,
characteristic of AD pathology. The distributions of the protein
measurements across the two datasets are different due to vari-
ous reasons described in the literature (3), which makes pooled
analysis and/or transferring results from one dataset to the other
problematic. For example, a threshold derived for the ADNI
dataset may not be applicable to the W-ADRC dataset. Both
datasets included eight distinct CSF protein levels measured on
seven proteins (AS1—42 is measured by two methods), where the
distributional shift needs to be corrected. In both W-ADRC and
ADNI, the measured proteins include Af51-38, AB1—40, AB1—42,
p-tauysi, t-tau, NFL, and neurogranin. While the W-ADRC
dataset provides 125 samples, the ADNI includes 284 samples
(Table 1 and SI Appendix). After correcting the distributional
shift, we fit statistical models, which include age, sex, and CSF
proteins as covariates. As a response variable, we use hippocam-
pus volume or diagnosis status. Here, other than correcting the
CSF protein levels across the two datasets, we also correct dis-
tribution shift of hippocampus volumes, since they may be calcu-
lated with different image acquisition characteristics and poten-
tially different software (Freesurfer in ADNI vs. FIRST/FSL
in W-ADRC). Our workflow involves three tasks: (i) correct
distributional shift across the datasets for CSF protein levels,
(ii) transform thresholds in ADNI to W-ADRC, and (iii) pool
the data together to predict the response variable (hippocampus
volume and diagnosis status) within regression or classification.
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Fig. 4.

Correct Distributional Shift of CSF. Table 1 shows that the age
distributions as well as the proportions of participants who are
healthy [control (CN)] and diseased (AD) in the two datasets
are not exactly the same, which makes directly attempting a dis-
tributional shift correction in the CSF measures not very mean-
ingful. However, when other variations (confounders) coexist
together with distributional shift, as discussed earlier, we should
check whether there exists a set of variables Z satistying condi-
tions given in Theorem 1. We previously described how choos-
ing Z ={D,age} satisfies Theorem 1. Such a Z is also the min-
imal d-separating set. To proceed with the analysis, we divide
our samples in d =6 groups based on all possible combina-
tions of diagnosis status (AD/CN) and age ranges (55 ~ 65/65 ~
75/75~85). We can now run the subsampling MMD algo-
rithm (SSP) (see Algorithm 1) with Z={D,age} (iterations
B =2000) to correct the distributional shift in X. We show two
representative results in Fig. 3. For each plot in Fig. 3, depending
on the subsamples randomly collected from 10 iterations, we plot
the distributions of protein levels and a protein ratio measure
(widely used in the aging/AD literature) in ADNI before/after
correction (red/brown) with respect to W-ADRC baseline (blue).
We see that the distributions of raw measures are very different
between ADNI (using the AlzBio3 xMAP assay) and W-ADRC
(using the ELISA INNOTEST assay). After our correction, the
distributions are matched for all eight CSF protein measure-
ments and both protein ratios that are relevant in AD research
(p-tau/ AB1—42 and t-tau/AB1—42). We randomly select one itera-
tion and apply the hypothesis test, which accepts the transforma-
tions with high p-values. We also use the 1J to estimate the SDs
of parameters and report them in Fig. 3.

Transferring Thresholds for Disease Staging Across Datasets. After
performing our correction, CSF protein measurements across
the two datasets can be analyzed together. We can evalu-
ate the effect of using models (or thresholds) derived for the
ADNI dataset on W-ADRC by transferring the criteria directly.
For example, five CSF-based biomarker signatures (thresholds)
developed for AD using ADNI participants (11) can now be
transferred to the W-ADRC dataset. Given a threshold for
any specific CSF protein, we can evaluate a sample in W-
ADRC by comparing the corresponding measurements with
the transformed threshold. The procedure produces sensitiv-
ity and specificity (for detection of AD) for each of eight
CSF protein measurements and the two derived ratios. Our
final thresholds, sensitivities, and specificities based on the
experiments are shown in Table 2. The accuracy estimates

o9)
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A shows the trend of MSPE for hippocampus volume as the sample size increases using 400 bootstraps. The bar plot covers the prediction error

for three types of training set as depicted in the legend, including W-ADRC only (red), W-ADRC plus ADNI (green), and W-ADRC plus transformed ADNI
(blue). The third model continues to perform the best. B shows the trend of classification accuracy with respect to patients with AD (solid lines) and healthy
patients (dotted lines) as sample size increases using 400 bootstraps. An SVM model is used, and three types of training sets are shown in the legend. For
samples with AD, the three methods converge to the same accuracy as the training sample size increases. For healthy CNs, the W-ADRC plus the transformed
ADNI dataset is always better than the other two schemes. It is interesting to see that W-ADRC plus the raw ADNI data also performs better than W-ADRC
alone, possibly because only 25 (24%) subjects from W-ADRC are diagnosed with AD—with few AD samples, even the uncorrected ADNI data nicely inform
the classification model.
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suggest that all derived thresholds work well—we find that
the sensitivity and specificity are competitive with the results
reported for ADNI (11) and show how results/models from
one dataset may be transferable to another dataset using our
proposal.

Pooling and Analyzing the Two Datasets Together. For the final
experiment, we evaluate whether predictors from both datasets
can be pooled for predicting hippocampus volume and diagnosis
status (response variables) within regression and classification.
We build a linear regression model based on age, sex, and CSF
proteins (after distributional shift correction) to identify associa-
tions with hippocampus volume. To evaluate the accuracy of the
model, we randomly choose 25 samples (20%) from W-ADRC
data to serve as the test set. For evaluation purposes, we gen-
erate three different types of training datasets: W-ADRC sam-
ples only, W-ADRC plus raw (uncorrected) ADNI samples, and
W-ADRC plus transformed ADNI samples. Note that the data
used to generate the training set are based on all 284 ADNI
samples and the remaining 100 W-ADRC samples. To obtain
prediction errors for each of the three schemes with respect to
varying training sample sizes, we vary the training sample size by
choosing % samples from each of the two datasets and then
change b from 30 to 90% in 10% increments. To avoid per-
formance variation due to random choice of samples, after the
test set is chosen, we run five bootstraps to select the training
set and fit the model. Finally, we run 80 bootstraps to generate
multiple test sets and evaluate the model performance. In this
way, based on 400 bootstraps, we are able to obtain a more sta-
ble prediction error, and we are able to calculate the SD. The
square root of mean squared prediction error (MSPE) scaled by
a constant is shown in Fig. 44. We can see that the prediction
errors decrease as training sample size increases, while the W-
ADRC plus transformed ADNI data consistently offer the best
performance.

Next, the same setup is used to predict AD status with a sup-
port vector machine (SVM) classifier. Because the ratio of AD
to CN is biased in the test set from W-ADRC, we set a uniform
prior in SVM and separately report the classification accuracy for
participants with AD and without AD in Fig. 4B.
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Discussion

There is growing interest in the design of infrastructure and
platforms that allow scientists across different sites and even
continents to contribute scientific data and explore scientific
hypotheses that cannot be evaluated on smaller datasets. Such
efforts can be facilitated via the availability of theory and algo-
rithms to identify whether pooling is meaningful, how the data
should be harmonized, and later, how statistically meaningful
and reproducible scientific conclusions can be obtained. We
described a statistical framework that addresses some of the
natural issues that arise in this regime, in particular, provid-
ing conditions where distributional shift between datasets can
be corrected. The experimental results suggest promising poten-
tial applications of this idea in aging and AD studies. There
remain several outstanding issues that are not fully addressed
by this work. The procedure does not currently deal with dis-
crete measurements, which are often encountered in some appli-
cations. It will also be interesting to more explicitly use infor-
mation about the response variables—deciding when pooling is
beneficial not only depends on the correction of distributional
shift but may also be influenced by other factors, including sam-
ple size and noise level. On the computational side, special
classes of kernels may lead to more efficient means of estimat-
ing the transformation to align the distributions. Finally, there
are interesting deep learning algorithms for domain/data shift
correction, and impressive empirical results are being report-
ed, even for high-dimensional distributions. The University of
Wisconsin Institutional Review board approved all study proce-
dures and each subject provided signed informed consent before
participation.
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