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The mechanics of biological fluids is an important topic in biomechanics, often requiring
the use of computational tools to analyze problems with realistic geometries and material
properties. This study describes the formulation and implementation of a finite element
framework for computational fluid dynamics (CFD) in FEBIO, a free software designed to
meet the computational needs of the biomechanics and biophysics communities. This for-
mulation models nearly incompressible flow with a compressible isothermal formulation
that uses a physically realistic value for the fluid bulk modulus. It employs fluid velocity
and dilatation as essential variables: The virtual work integral enforces the balance of
linear momentum and the kinematic constraint between fluid velocity and dilatation,
while fluid density varies with dilatation as prescribed by the axiom of mass balance.
Using this approach, equal-order interpolations may be used for both essential variables
over each element, contrary to traditional mixed formulations that must explicitly satisfy
the inf-sup condition. The formulation accommodates Newtonian and non-Newtonian vis-
cous responses as well as inviscid fluids. The efficiency of numerical solutions is
enhanced using Broyden’s quasi-Newton method. The results of finite element simulations
were verified using well-documented benchmark problems as well as comparisons with
other free and commercial codes. These analyses demonstrated that the novel formulation
introduced in FEBIO could successfully reproduce the results of other codes. The analogy
between this CFD formulation and standard finite element formulations for solid mechan-
ics makes it suitable for future extension to fluid–structure interactions (FSIs).
[DOI: 10.1115/1.4038716]

1 Introduction

The mechanics of biological fluids is an important topic in bio-
mechanics, most notably for the study of blood flow through the
cardiovascular system and related biomedical devices, cerebrospi-
nal fluid flow, airflow through the respiratory system, biotribology
by fluid film lubrication, and flow through microfluidic biomedical
devices. Therefore, the application domain of multiphysics com-
putational frameworks geared toward biomechanics and biophy-
sics, such as the free finite element software FEBIO,1 can be
expanded by incorporating solvers for computational fluid dynam-
ics (CFD). Biological fluids are generally modeled as incompres-
sible materials, though compressible flow may be needed to
analyze wave propagation, for example, in acoustics (airflow
through vocal folds) and the analysis of ultrasound propagation
for imaging blood flow.

Many open-source CFD codes are currently available in the
public domain, though few are geared specifically for applications
in biomechanics. OpenFOAM

2 has many solvers applicable to a very
broad range of fluid analyses, using the finite volume method.
Other open-source CFD codes are typically more specialized:
SU23 is geared toward aerospace design, FLUIDITY

4 is well suited
for geophysical fluid dynamics, and REEF3D

5 is focused on marine
applications. Some CFD codes explore alternative solution meth-
ods: PALABOS

6 uses the lattice Boltzmann method, LIGGGHTS
7 uses a

discrete-element method particle simulation, the GERRIS FLOW

SOLVER
8 uses an octree finite volume discretization, and COOLFLUID

9

uses either a spectral finite difference solver or a finite element
solver. Currently, the CFD code most relevant to biomechanics is
SIMVASCULAR, a finite element code specifically designed for cardi-
ovascular fluid mechanics, “providing a complete pipeline from
medical image data segmentation to patient-specific blood flow
simulation and analysis.”10 This open-source code [1] is based on
the original work of Taylor [2]; it uses the flow solver from the
PHASTA project11 [3].

In contrast, FEBIO was originally developed with a focus on the
biomechanics of soft tissues, providing the ability to model non-
linear anisotropic tissue responses under finite deformation. It
accommodates hyperelastic, viscoelastic, biphasic (poroelastic), and
multiphasic material responses which can combine solid mechanics
and mass (solvent and solute) transport, with a wide range of constitu-
tive models relevant to biological tissues and cells [4–6]. It also pro-
vides robust algorithms to model tied or sliding contact under large
deformations between elastic, biphasic, or multiphasic materials [7,8].
More recently, FEBIO has incorporated reactive mechanisms, including
chemical reactions in multiphasic media, growth mechanics, reactive
viscoelasticity, and reactive damage mechanics [9–11]. Many of these
features are specifically geared toward applications in biomechanics,
including growth and remodeling and mechanobiology.

Our medium-term goal is to expand the capabilities of FEBIO by
including robust fluid–structure interactions (FSIs). Such interac-
tions occur commonly in biomechanics and biophysics, most nota-
bly in cardiovascular mechanics where blood flows through the
deforming heart and vasculature [12–14], diarthrodial joint lubri-
cation where pressurized synovial fluid flows between deforming
articular layers [15], cerebrospinal mechanics where fluid flow
through ventricular cavities may cause significant deformation of
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surrounding soft tissues [16–18], vocal fold and upper airway
mechanics [19,20], viscous flow over endothelial cells [21,22],
canalicular and lacunar flow around osteocytes resulting from
bone deformation [23–25], and many applications in biomedical
device design [26–28]. Some FSI capabilities already exist in sev-
eral of the open-source CFD codes referenced previously; these
implementations were developed as addendums to sophisticated
fluid analyses, often employing a limited range of solid material
responses, such as small strain analyses of linear isotropic elastic
solids. By formulating a CFD code in FEBIO, we expect to capital-
ize on the much broader library of solid and multiphasic material
models already available in that framework to considerably
expand the range of FSI analyses in biomechanics. Our long-term
goal is to expand these FSI features to incorporate chemical
reactions within the fluid and at the fluid–solid interface, growth,
and remodeling of the solid matrix of multiphasic domains inter-
faced with the fluid, active transport of solutes across cell mem-
branes as triggered by mechanical, electrical, or chemical signals
at fluid–membrane interfaces, cellular and muscle contraction
mechanisms, and a host of other mechanisms relevant to biome-
chanics, biophysics, and mechanobiology, complementing many
of the similar features already implemented in FEBIO’s elastic,
biphasic, and multiphasic domain frameworks. The FEBIO CFD
formulation proposed in this study represents a significant mile-
stone toward that long-term goal.

Since FEBIO uses the finite element method, this study formu-
lates a finite element CFD code. Finite element analyses of incom-
pressible flow typically enforce the incompressibility condition
using either mixed formulations [29], which solve for the fluid
pressure by enforcing zero divergence of the velocity, or the pen-
alty method [30,31], where the fluid pressure is proportional to the
divergence of the fluid velocity via a penalty factor [32]. The
mixed formulation results in a coefficient matrix that must pass
the inf-sup condition to produce accurate results, using a finite ele-
ment interpolation of the fluid pressure with a lower order than
that of the fluid velocity [32–34].

The most broadly adopted CFD schemes today rely on stabili-
zation methods, such as streamline-upwind/Petrov–Galerkin
(SUPG), pressure-stabilizing/Petrov–Galerkin and Galerkin/least-
squares [35–39]. These schemes have three principal benefits:
They stabilize the flow and produce smooth results even on coarse
meshes; they allow the use of equal interpolation for the velocity
and pressure; and the resulting equations are amenable to iterative
solving, with suitable preconditioning. They also have some draw-
backs: The finite element formulation is more complex because it
requires additional terms to supplement the standard Galerkin
residual; these terms involve second-order spatial derivatives,
which may be neglected in linear elements [40] but must be
included in higher-order interpolations [39,41,42]; and they
require the careful formulation of a weight factor, called the stabi-
lization parameter s, whose value depends on the local Reynolds
number, some characteristic element length along the streamline
direction, and some special considerations for the element shape
and interpolation order [41,42]; this parameter critically controls
the effectiveness of this stabilization scheme.

In this study, we overcame the constraint of the inf-sup condi-
tion by employing a novel approach to analyze isothermal com-
pressible flow using fluid dilatation (the relative change in fluid
volume) as an essential variable, instead of fluid pressure or
density. This approach also allowed us to forgo the application of
stabilization methods, reducing the complexity of the implementa-
tion and avoiding the need to formulate and use a stabilization
parameter suitable for various element types and orders. Just like
fluid velocity, dilatation is a kinematic quantity that may further
serve as a state variable in the formulation of functions of state
(such as viscous stress and elastic pressure). Another benefit of
this approach is that the dependence of density on dilatation is
obtained by analytically integrating the mass balance equation, as
conventionally done in finite elasticity. In effect, we adapted an
approach from finite deformation elasticity to describe the elastic

compressibility of the fluid, using the dilatation as the only
required component of the strain tensor, since fluids are isotropic
and cannot sustain shear stresses under steady shear strains. In this
approach, fluid velocity and dilatation may be obtained by satisfy-
ing the momentum balance equation as well as the fundamental
kinematic relation between the material time derivative of the dil-
atation and the divergence of the velocity. The finite element
implementation, using a standard Galerkin residual formulation,
produces accurate numerical solutions even when using equal-
order interpolation for the velocity and dilatation.

2 Finite Element Implementation

2.1 Governing Equations. In a spatial (Eulerian) frame, the
momentum balance equation for a continuum is

qa ¼ div rþ qb (2.1)

where q is the density, r is the Cauchy stress, b is the body force
per mass, and a is the acceleration, given by the material time
derivative of the velocity v in the spatial frame

a ¼ _v ¼ @v

@t
þ L � v (2.2)

where L ¼ grad v is the spatial velocity gradient. The mass bal-
ance equation is

_q þ q div v ¼ 0 (2.3)

where the material time derivative of the density in the spatial
frame is

_q ¼ @q
@t
þ grad q � v (2.4)

Let F denote the deformation gradient (the gradient of the motion
with respect to the material coordinate). The material time deriva-
tive of F is related to L via

_F ¼ L � F (2.5)

Let J ¼ det F denote the Jacobian of the motion (the volume ratio,
or ratio of current to referential volume, J> 0); then, the dilatation
(relative change in volume between current and reference configu-
rations) is given by e ¼ J � 1. Using the chain rule, J’s material
time derivative is _J ¼ JF�T : _F which, when combined with Eq.
(2.5), produces a kinematic constraint between _J and div v

_J ¼ J div v (2.6)

Substituting this relation into the mass balance, Eq. (2.3), pro-
duces _qJ ¼ 0, which may be integrated directly to yield

q ¼ qr=J (2.7)

where qr is the density in the reference configuration (when
J ¼ 1). Since qr is obtained by integrating the above-mentioned
material time derivative of qJ, it is an intrinsic material property
that must be invariant in time and space.

The Cauchy stress is given by

r ¼ �pIþ s (2.8)

where I is the identity tensor, s is the viscous stress, p is the pres-
sure arising from the elastic response

p ¼ � dWr Jð Þ
dJ

(2.9)
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and Wr is the free energy density of the fluid (free energy per vol-
ume of the continuum in the reference configuration). The axiom
of entropy inequality dictates that Wr cannot be a function of the
rate of deformation D ¼ ðLþ LTÞ=2. In contrast, the viscous
stress s is generally a function of J and D.

Boundary conditions may be derived by satisfying mass and
momentum balance across a moving interface C. Let C divide the
material domain V into subdomains Vþ and V� and let the outward
normal to Vþ on C be denoted by n. The jump condition across C
derived from the axiom of mass balance requires that

½½quC�� � n ¼ 0 (2.10)

where uC � v� vC on C and vC is the velocity of the interface C.
Thus, uC represents the velocity of the fluid relative to C. The
double bracket notation denotes ½½f �� ¼ fþ � f�, where fþ and f�
represent the value of f on C in Vþ and V�, respectively. This jump
condition implies that the mass flux normal to C must be continu-
ous. In particular, if Vþ is a fluid domain and V� is a solid
domain, and C denotes the solid boundary (e.g., a wall), we use
qþ ¼ q; vþ ¼ v for the fluid, and v� ¼ vC for the solid, such that
Eq. (2.10) reduces to qðv� vCÞ � n ¼ 0. The jump condition
derived from the axiom of linear momentum balance similarly
requires that

½½r� quC � uC�� � n ¼ 0 (2.11)

This condition implies that the jump in the traction r � n across C
must be balanced by the jump in momentum flux normal to C. In
addition to jump conditions dictated by axioms of conservation,
viscous fluids require the satisfaction of the no-slip condition

ðI� n� nÞ � ½½uC�� ¼ 0 (2.12)

which implies that the velocity component tangential to C is con-
tinuous across that interface.

In our finite element treatment, we use v and J as nodal varia-
bles, implying that our formulation automatically enforces conti-
nuity of these variables across element boundaries, thus
½½v�� ¼ ½½uC�� ¼ 0 and ½½J�� ¼ 0. Based on Eqs. (2.7) and (2.9), it
follows that the density and elastic pressure are continuous across
element boundaries in this formulation, ½½q�� ¼ 0 and ½½p�� ¼ 0.
Thus, the mass jump in Eq. (2.10) is automatically satisfied, and
the momentum jump in Eq. (2.11) reduces to ½½r�� � n ¼ 0, requir-
ing continuity of the traction, or more specifically according to
Eq. (2.8), the continuity of the viscous traction s � n, since p is
automatically continuous.

2.2 Virtual Work and Weak Form. The nodal unknowns in
this formulation are v and J (or e), which may be solved using the
momentum balance in Eq. (2.1) and the kinematic constraint
between J and v given in Eq. (2.6). The virtual work integral for a
Galerkin finite element formulation [43] is given by

dW ¼
ð

X
dv � div rþ q b� að Þð Þdv

þ
ð

X
dJ

_J

J
� div v

� �
dv (2.13)

where dv is a virtual velocity and dJ is a virtual energy density, X
is the fluid finite element domain, and dv is a differential volume
in X. This virtual work statement may be directly related to the
axiom of energy balance, specialized to conditions of isothermal
flow of viscous compressible fluids (see Appendix). Using the
divergence theorem, we may rewrite the weak form of this inte-
gral as the difference between external and internal virtual work,
dW ¼ dWext � dWint, where

dWint ¼
ð

X
s : grad dv dvþ

ð
X
dv � grad pþ qað Þ dv

�
ð

X
dJ

_J

J
þ grad dJ � v

� �
dv (2.14)

and

dWext ¼
ð
@X

dv � ts daþ
ð

X
dv � qb dv�

ð
@X

dJ vn da (2.15)

Here, @X is the boundary of X and da is a differential area on
@X; ts ¼ s � n is the viscous component of the traction t, and vn ¼
v � n is the velocity normal to the boundary @X, with n represent-
ing the outward normal on @X. From these expressions, it
becomes evident that essential (Dirichlet) boundary conditions
may be prescribed on v and J, while natural (Neumann) boundary
conditions may be prescribed on ts and vn. The appearance of
velocity in both essential and natural boundary conditions may
seem surprising at first. To better understand the nature of these
boundary conditions, it is convenient to separate the velocity into
its normal and tangential components, v ¼ vnnþ vt, where
vt ¼ ðI� n� nÞ � v. In particular, for inviscid flow, the viscous
stress s and its corresponding traction ts are both zero, leaving vn

as the sole natural boundary condition; similarly, J becomes the
only essential boundary condition in such flows, since vt is
unknown a priori on a frictionless boundary and must be obtained
from the solution of the analysis.

In general, prescribing J is equivalent to prescribing the elastic
fluid pressure, since p is only a function of J. On a boundary
where no conditions are prescribed explicitly, we conclude that
vn ¼ 0 and ts ¼ 0, which represents a frictionless wall. Con-
versely, it is possible to prescribe vn and ts on a boundary to pro-
duce a desired inflow or outflow while simultaneously stabilizing
the flow conditions by prescribing a suitable viscous traction. Pre-
scribing essential boundary conditions vt and J determines the tan-
gential velocity on a boundary as well as the elastic fluid pressure
p, leaving the option to also prescribe the normal component of
the viscous traction, tsn ¼ ts � n, to completely determine the nor-
mal traction tn ¼ t � n (or else tsn naturally equals zero). Mixed
boundary conditions represent common physical features: Pre-
scribing vn and vt completely determines the velocity v on a
boundary; prescribing ts and J completely determines the traction
t ¼ r � n on a boundary. Note that vn and J are mutually exclusive
boundary conditions, and the same holds for vt and the tangential
component of the viscous traction, tst ¼ ðI� n� nÞ � ts.

2.3 Temporal Discretization and Linearization. The time
derivatives, @v=@t which appears in the expression for a in Eq.
(2.2), and @J=@t which similarly appears in _J , may be discretized
upon the choice of a time integration scheme, such as the general-
ized-a method [44] (Appendix). The solution of the nonlinear
equation dW ¼ 0 is obtained by linearizing this relation as

dW þ DdW½Dv� þ DdW½DJ� � 0 (2.16)

where the operator DdW½�� represents the directional derivative of
dW at ðv; JÞ along an increment Dv of v, or DJ of J [43]. Using the
split form of dW between external and internal work contribu-
tions, this relation may be expanded as

DdWint½Dv� þ DdWint½DJ� � DdWext½Dv�
�DdWext½DJ� � dWext � dWint (2.17)

In this framework, the finite element mesh is defined on the spa-
tial domain X, which is fixed (time-invariant) in conventional
CFD treatments. Thus, we can linearize dWint along increments
Dv in the velocity and DJ in the volume ratio, by simply bringing
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the directional derivative operator into the integrals of Eqs. (2.14)
and (2.15). The linearization of @v=@t and @J=@t is given by

D
@v

dt

� �
Dv½ � ¼ n

Dv

Dt
(2.18)

D
@J

@t

� �
Dv½ � ¼ n

DJ

Dt
(2.19)

Here, Dt is the current time increment and n is a parameter chosen
as described in Ref. [44]; for example, n ¼ 1 yields the backward
Euler scheme, in which case @v=@t � ðv� v�DtÞ=Dt and
@J=@t � ðJ � J�DtÞ=Dt, where v�Dt and J�Dt are the velocity and
volume ratio, respectively, at the previous time t� Dt. More gen-
erally, n is evaluated from the spectral radius for an infinite time-
step, q1 (see Appendix).

The linearization of dWint along an increment Dv is then

D dWintð Þ Dv½ � ¼
ð

X
grad dv : Cs : grad Dv dv

þ
ð

X
dv � q nI

Dt
þ L

� �
� Dvþ grad Dv � v

� �
dv

�
ð

X

dJ

J
grad J þ grad dJ

� �
� Dv dv (2.20)

where we have introduced the fourth-order tensor Cs representing
the tangent of the viscous stress with respect to the rate of
deformation

Cs ¼ @s

@D
(2.21)

Note that Cs exhibits minor symmetries because of the symmetries
of s and D; in Cartesian components, we have Csijkl ¼ Cs

jikl and

Cs
ijkl ¼ Cs

ijlk. In general, Cs does not exhibit major symmetry

(Cs
ijkl 6¼ Csklij), though the common constitutive relations adopted in

fluid mechanics produce such symmetry as shown below.
The linearization of dWint along an increment DJ is

D dWintð Þ DJ½ � ¼
ð

b

DJ s0J : grad dv dv�
ð

X
dv � DJ

q
J

a dv

þ
ð

X
dv � p0 grad DJ þ DJ p00 grad J

� �
dv

�
ð

X

dJ

J

n
Dt
�

_J

J

� �
DJ þ grad DJ � v

� �
dv

(2.22)

where we have used DJ½DJ� ¼ DJ; p0 and p00, respectively, repre-
sent the first and second derivatives of pðJÞ. We have also defined
s0J as the tangent of the viscous stress s with respect to J

s0J ¼
@s

@J
(2.23)

For the external work, when ts; b, and vn are prescribed, these
linearizations simplify to

DðdWextÞ½Dv� ¼ 0 (2.24)

and

D dWextð Þ DJ½ � ¼ �
ð

b

dv � DJ
q
J

b dv (2.25)

We may define the fluid dilatation e ¼ J � 1 as an alternative
essential variable, since initial and boundary conditions e ¼ 0 are
more convenient to handle in a numerical scheme than J ¼ 1. It

follows that grad J ¼ grad e and @J=@t ¼ @e=@t. Therefore, the
changes to the above-mentioned equations are minimal, simply
requiring the substitution J ¼ 1þ e and DJ ¼ De. Steady-state
analyses may be obtained by setting the terms involving Dt�1 to
zero in Eqs. (2.18)–(2.20), and (2.22).

2.4 Constitutive Relations. The most common family of
constitutive relations employed for viscous fluids, including New-
tonian fluids, is given by

s J;Dð Þ ¼ j� 2

3
l

� �
tr Dð Þ Iþ 2l D (2.26)

where l and j are, respectively, the dynamic shear and bulk vis-
cosity coefficients (both positive), which may generally depend
on J and, for non-Newtonian fluids, on invariants of D. In practice,
most constitutive models for non-Newtonian viscous fluids only
use a dependence on _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

, since it is the only nonzero
invariant in viscometric flows [45]. In this case, substituting Eq.
(2.26) into Eq. (2.21) produces

Cs ¼ j� 2

3
l

� �
I� Iþ 2=_c

@j
@ _c
� 2

3

@l
@ _c

� �
tr Dð ÞI� D

þ2 2= _c
@l
@ _c

D� Dþ l I� I

� �
(2.27)

The term containing I� D is the only one that does not exhibit
major symmetry. In Newtonian fluids, l and j are independent of
D; in incompressible fluids, they are independent of J (since J ¼ 1
remains constant and tr D ¼ 0). Thus, for both of these cases the
term containing I� D drops out and Cs exhibits major symmetry.

Similarly, using Eq. (2.26), the tangent s0J in Eq. (2.23) reduces
to

s0J ¼
@j
@J
� 2

3

@l
@J

� �
tr Dð Þ Iþ 2

@l
@J

D (2.28)

Explicit forms for the dependence of l or j on J are not illustrated
here, since viscosity generally shows negligible dependence on
pressure (thus J) over typical ranges of pressures in fluids, hence
s0J � 0 in most analyses.

Many fluid mechanics textbooks employ Stoke’s condition
(j ¼ 0) for the purpose of equating the elastic pressure p with the
mean normal stress �1=3 tr r [46]; in FEBIO, j is kept as a user-
defined material property, which may be set to zero if desired.
Several constitutive models for non-Newtonian viscous fluids
have been implemented in FEBIO to date, including the Carreau,
Carreau–Yasuda, Powell-Eyring, and Cross models [47]. Their
implementation is achieved using a Cþþ class that provides func-
tions to return l and j as functions of ðJ; _cÞ, and others functions
that return Cs, evaluated as shown in Eq. (2.27), and s0J as shown
in Eq. (2.28). For example, the Carreau model, where
s ¼ 2lð _cÞD, is a special case of Eq. (2.26), with j ¼ 2l=3 and

l ¼ l1 þ ðl0 � l1Þð1þ ðk _cÞ2Þðn�1Þ=2
(2.29)

where k is a time constant, n is a parameter governing the power-
law response, l0 is the viscosity when _c ¼ 0 and l1 is the viscos-
ity as _c !1.

For nearly incompressible fluids, a simple constitutive relation
may be adopted for the pressure

pðJÞ ¼ Kð1� JÞ (2.30)

where K is the bulk modulus of the fluid in the limit when J ¼ 1;
it is a physical property that may be measured or looked up in a
handbook. It follows that p0ðJÞ ¼ �K and p00ðJÞ ¼ 0 in Eq. (2.22).
This constitutive relation is adopted for nearly incompressible
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CFD analyses in FEBIO, though alternative formulations may be
easily implemented. For example, for an ideal gas, the equation of
state for its absolute pressure is pa ¼ Rhq=M, where R is the uni-
versal gas constant, h is the absolute temperature, and M is the gas
molar mass. The ambient pressure pr may be obtained from this
formula when the gas is at some reference density qr . Thus, using
Eq. (2.7), the gauge pressure p ¼ pa � pr is given by

p Jð Þ ¼ Rhqr

M

1

J
� 1

� �
(2.31)

By definition, the effective bulk modulus of a fluid is Ke ¼ �J p0,
and K is the value of Ke evaluated at J ¼ 1. Thus, for an ideal gas
we have K ¼ Rhqr=M, which is the absolute pressure in the refer-
ence state.

2.5 Spatial Discretization. The velocity vðx; tÞ and Jacobian
Jðx; tÞ are spatially interpolated over the domain X using the same
interpolation functions NaðxÞ, with a ¼ 1 to n where n is the num-
ber of nodes in an element)

vðx; tÞ ¼
Xn

a¼1

NaðxÞva ; Jðx; tÞ ¼
Xn

a¼1

NaðxÞJa (2.32)

Here, va and Ja are nodal values of v and J that evolve with time.
In contrast to classical mixed formulations for incompressible
flow [32], which solve for the pressure p using div v ¼ 0 instead
of Eq. (2.6), equal-order interpolation is acceptable in this formu-
lation since the governing equations for v and J involve spatial
derivatives of both variables ( grad v and grad J). The expressions
of Eq. (2.32) may be used to evaluate L; div v; a; grad J, _J , etc.
Similar interpolations are used for virtual increments dv and dJ,
as well as real increments Dv and DJ.

When substituted into Eq. (2.14), we find that the discretized
form of dWint may be written as

dWint ¼
X

a

dva � ðfr
a þ fq

aÞ þ f J
a dJa (2.33)

where

fr
a ¼

ð
X

s � grad Na þ Na grad pð Þ dv

fq
a ¼

ð
X

Naqa dv

f J
a ¼

ð
X
� Na

_J

J
þ grad Na � v

� �
dv

(2.34)

Similarly, the discretized form of DdWint½Dv� in Eq. (2.20)
becomes

DðdWintÞ½Dv� ¼
X

a

dva �
X

b

ðKvv
ab þMvv

abÞ � Dvb

þ
X

a

dJa

X
b

kJv
ab � Dvb (2.35)

where

Kvv
ab ¼

ð
X

grad Na � Cv � grad Nb dv

Mvv
ab ¼

ð
X

Naq Nb
n
Dt

Iþ grad v

� �
þ grad Nb � vð ÞI

� �
dv

kJv
ab ¼

ð
X
� Na

J
grad J þ grad Na

� �
Nb dv

(2.36)

whereas that of DdWint½DJ� in Eq. (2.22) becomes

DðdWintÞ½DJ� ¼
X

a

dva �
X

b

ðkvJ
ab þmvJ

abÞDJb

þ
X

a

dJa

X
b

kJJ
ab DJb (2.37)

where

kvJ
ab ¼

ð
X

Nbs
0
J � grad Na þ Na p0 grad Nb þ Nbp00 grad J

� �� �
dv

mvJ
ab ¼

ð
X
� NaNb

q
J

a dv

kJJ
ab ¼

ð
X
� Na

J

n
Dt
�

_J

J

� �
Nb þ grad Nb � v

� �
dv (2.38)

For the external work in Eq. (2.15), its discretized form is

dWext ¼
X

a

dva � ðf t
a þ fb

aÞ þ dJaf v
a (2.39)

where

f t
a ¼

ð
@X

Nats da

fb
a ¼

ð
X

Naqb dv

f v
a ¼

ð
X
� Navn da

(2.40)

The discretized form of DðdWextÞ½DJ� in Eq. (2.25) is

DðdWextÞ½DJ� ¼
X

a

dva �
X

b

kb
ab DJb (2.41)

where

kb
ab ¼

ð
X
� NaNb

q
J

b dv (2.42)

2.6 Condition Number. The nonsymmetric tangent stiffness
matrix ½Kint� resulting from the linearization of the internal work
may be constructed from Eqs. (2.35)–(2.41)

½Kint� ¼
Kvv

ab þMvv
ab kvJ

ab þmvJ
ab

kJv
ab kJJ

ab

" #
(2.43)

The effective fluid bulk modulus Ke only appears within kvJ
ab, as a

linear term, as may be construed from Eqs. (2.38) and (2.23). Fur-
thermore, kJJ

ab is not zero in general, as may be noted from Eq.
(2.38). For this matrix structure, it can be shown that the condition
number becomes proportional to the bulk modulus as Ke !1.
Nevertheless, similar to the argument presented by Ryzhakov
et al. [48], the stabilization provided by the nonzero kJJ

ab submatrix
is sufficient to produce a well-behaved solution even for very
large values of Ke.

In contrast, mixed formulations solve for the velocity v and
pressure p using the momentum balance, Eq. (2.1), supplemented
by the mass balance div v ¼ 0 for incompressible flow. The
resulting tangent matrix has a zero entry in lieu of kJJ

ab, and this
type of matrix must pass the inf-sup condition to prevent an over-
constrained system of equations [32–34]. Stabilization methods
such as the SUPG method, which have been introduced to mini-
mize spurious velocity oscillations on coarse meshes [35], popu-
late this matrix entry [2,36], allowing the use of equal-order
interpolations for velocity and pressure. The characteristic-based
split algorithm presented by Zienkiewicz and Codina similarly
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produces a nonzero entry for arbitrary velocity and pressure inter-
polations, when using a suitable dual time-stepping scheme
[49,50]. Indeed, these and other investigators have solved for the
pressure p using the relation _p ¼ �Ke div v [48–50], which may
be reproduced from our treatment by evaluating _p ¼ p0 _J (valid at
constant temperature), substituting _J from Eq. (2.6), and using the
definition of Ke above. However, it should be noted that these
prior studies [48–50] used this relation with _p ¼ @p=@t, which is
only appropriate in a material description, whereas the above-
mentioned derivations show that _p ¼ @p=@tþ grad p � v should be
evaluated in a spatial description for consistency.

2.7 Special Boundary Conditions

2.7.1 Backflow Stabilization. For arterial blood flow, back-
flow stabilization has been proposed previously to deal with trun-
cated domains where the entire artery is not modeled explicitly
[51,52]; for these types of problems, letting t ¼ 0 or prescribing a
constant pressure at the outflow boundary may not prevent flow
reversals that compromise convergence of an analysis. Instead,
these authors proposed a velocity-dependent traction boundary
condition, t ¼ bqðv� vÞ � n with a tensile normal component,
that counters the backflow (only when vn < 0). Here, b is a nondi-
mensional user-defined parameter; a value of b ¼ 0 turns off this
feature, while a value of b¼ 1 generally shows good numerical
performance. We adapt this previously proposed formulation by
letting the normal component of the viscous traction be given by

tsn ¼
bqrv

2
n vn < 0

0 vn � 0

(
(2.44)

The choice of qr in lieu of q is for convenience, to avoid the
dependence of q on J (which is negligible for nearly incompressi-
ble flow). Then, the contribution of this traction to the virtual
external work dWext is

dG ¼
ð
@X

dv � tsnn da (2.45)

The linearization of dG along an increment Dv in the velocity is
given by

DdG½Dv� ¼
ð
@X

dv �Kn � Dv da (2.46)

where

Kn ¼
2bqrvnðn� nÞ vn < 0

0 vn � 0

(
(2.47)

The discretized form of dG is

dG ¼
X

a

dva � fn
a ; fn

a ¼
ð
@X

Natsnn da (2.48)

whereas the discretized form of DdG½Dv� is

DdG½Dv� ¼
X

a

dva �
X

b

Kn
ab � Dvb ; Kn

ab ¼
ð
@X

NaNbKn da

(2.49)

A (viscous) tangential traction is implemented as a separate flow
stabilization method in Sec. 2.7.2, applicable to inlet or outlet
surfaces, without a conditional requirement based on the sign of
vn.

2.7.2 Tangential Flow Stabilization. For certain outlet condi-
tions, using the natural boundary condition tst ¼ 0 may lead to

flow instabilities. It is possible to minimize these effects by pre-
scribing a tangential viscous traction onto the boundary surface,
which opposes this tangential flow. Optionally, this condition may
be combined with the backflow stabilization described previously.

Similar to Sec. 2.7.1, we introduce a nondimensional parameter
b, with the tangential traction given by

tst ¼ �bqrjvtjvt (2.50)

This form shows that tst opposes tangential flow. The external vir-
tual work for this traction is

dG ¼
ð
@X

dv � tst da (2.51)

Its linearization along an increment Dv is

DdG½Dv� ¼
ð
@X

dv �Kt � Dv da (2.52)

where it can be shown that

Kt ¼ �bqrjvtj I� n� nþ vt

jvtj
� vt

jvtj

� �
(2.53)

The discretized form of dG is

dG ¼
X

a

dva � fs
a ; fs

a ¼
ð
@X

Natst da (2.54)

The discretized form of DdG½Dv� is

DdG½Dv� ¼
X

a

dva �
X

b

Kt
ab � Dvb ; Kt

ab ¼
ð
@X

NaNbKt da

(2.55)

2.7.3 Flow Resistance. Flow resistance is typically imple-
mented when modeling arterial flow, where the finite element
domain only describes a portion of an arterial network [53]. A
flow resistance may be imposed on downstream boundaries to
simulate the resistance produced by the vascular network with its
branches and bifurcations. The resistance is equivalent to a mean
pressure which is proportional to the volumetric flow rate Q

p ¼ RQ ; Q ¼
ð
@X

vn da

where R is the resistance. Using the pressure–dilatation relation
Eq. (2.30), equivalent to p ¼ �K � e, this pressure may be pre-
scribed as an essential boundary condition on the dilatation e.

2.8 Solver. The numerical solution of the nonlinear system of
equations is performed using Newton’s method for the first itera-
tion of a time point, followed by Broyden quasi-Newton updates
[54], until convergence is achieved at that time-step. The stiffness
matrix is thus evaluated only once for that time-step. Optionally,
the stiffness matrix evaluation and Newton update may be post-
poned at the start of subsequent time-steps until Broyden updates
exceed a user-defined value (e.g., 50 updates); this approach
offers considerable numerical efficiency as illustrated in the
results later. Relative convergence is achieved at each discrete
time tn when the vector DUðkÞ of nodal degree-of-freedom (DOF)
increments (consisting of Dv or DJ values at all unconstrained
nodes) at the kth iteration satisfies kDUðkÞk 	 erkDUð1Þk, where er

represents the relative tolerance criterion (er ¼ 10�3 for both
Dv and DJ in the problems analyzed later, unless specified other-
wise). An absolute convergence criterion is also set based on the
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magnitude of the residual vector. For Newton updates, FEBIO uses
a variety of linear equation solvers, among which the most effi-
cient is the PARDISO parallel direct sparse solver for the solution
of a linear system of equations with nonsymmetric coefficient
matrix [55].12 Results reported later employ the Intel Math Kernel
Library implementation of PARDISO.13

3 Verifications and Validations

In the sections below, we report the results of standard bench-
mark problems for computational fluid dynamics, followed by
some comparisons of FEBIO simulations with SIMVASCULAR and the
commercial code ANSYS FLUENT.14 All analyses use a Newtonian
fluid with j ¼ 0; similarly, all analyses use the backward Euler
time integration scheme unless specified. Additional analyses are
described in the Supplementary Materials section, which is avail-
able under “Supplemental Data” tab for this paper on the ASME
Digital Collection, including two-dimensional (2D) flow past a
cylinder at Re¼ 100 (Sec. S3 of the Supplementary Materials sec-
tion, which is available under “Supplemental Data” tab for this
paper on the ASME Digital Collection.), exhibiting the character-
istic K�arm�an vortex street and fluctuations in drag and lift coeffi-
cients, and flow in a model of an ascending and descending aorta,
illustrating flow resistance, backflow stabilization, and tangential
stabilization.

3.1 Lid-Driven Cavity Flow. This is a benchmark 2D steady
flow problem, defined over a square region with boundary condi-
tions described in Fig. 1. In the current implementation, it was
necessary to set the dilatation e to zero at the top corners, as they
represent singularity points where e would otherwise blow up in a
numerical analysis (since @v1=@x1 !1 at those points). The
Reynolds number for this problem, Re ¼ qVL=l, is based on the
length L of the square sides, and the velocity V of the lid. FEBIO

results are shown for Re ¼ 400 and Re ¼ 5000 (with q ¼ 1,
V ¼ 1; L ¼ 1), using an unstructured mesh of linear (four-node)
tetrahedral elements with mesh refinement near the boundaries
(96,318 elements, 26,838 nodes), as well as a biased mesh of lin-
ear (eight-node) hexahedral elements (128
 128 elements, 33,282
nodes). All analyses used a bulk modulus K ¼ 109. Transient
analyses were performed using increasing time increments up to
time 103, at which point a steady response was observed. Repre-
sentative vorticity contours are shown in Fig. 1. A comparison of
steady-state horizontal and vertical velocity profiles across the
midsections of the domain is provided against the benchmark
numerical solution of Ghia et al. [56] in Fig. 2. The results show

Fig. 1 Lid-driven cavity flow: Unstructured tetrahedral mesh
(left column) and structured hexahedral mesh (right column).
Vorticity contours are shown for Re 5 400 (middle row) and
Re 5 5000 (bottom row).

Fig. 2 Velocity profiles in lid-driven cavity flow, for hexahedral
and tetrahedral meshes, compared to Ghia et al. [56]: (a) v1 ver-
sus x2 along vertical centerline (x1 5 0:5); and (b) v2 versus x1

along horizontal centerline (x2 5 0:5)

12www.pardiso-project.org
13software.intel.com/en-us/intel-mkl/
14www.ansys.com
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equally good velocity agreement for structured hexahedral and
unstructured tetrahedral meshes, though contour plots of pressure
and vorticity are evidently smoother when using the structured
mesh.

3.2 Flow Past a Backward Facing Step. This benchmark 2D
flow problem, described in Ref. [50], may be compared to experi-
mental measurements of fluid velocity [57], thus serving as a code
validation problem. The domain dimensions in the x1 � x2 plane
and mesh are shown in Fig. 3, with a step height L ¼ 1; the
unstructured mesh consisted of 27,008 four-node tetrahedral ele-
ments (28,872 nodes) with a thickness 0.1 along x3. The fluid
properties were K ¼ 109; qr ¼ 1, and l ¼ 1 and the prescribed
inlet velocity v1 varied along x2 according to experimental data,
with a mean value V producing Re ¼ qrVL=l ¼ 229. A steady-
state analysis was performed in FEBIO, producing velocity and
pressure contours as shown in Fig. 3. Velocity profiles were com-
pared to experimental results in Fig. 4, showing very good
agreement.

3.3 Inviscid Flow One-Dimensional Wave Propagation. A
one-dimensional (1D) analysis of inviscid flow was analyzed to
investigate the different time integration schemes. A rectangular
domain of width 1, height 0.1 and depth 0.05 was meshed uni-
formly with 2000 eight-node hexahedral elements along its length
(�0:5 	 x 	 0:5). The viscosity l was set to zero. Assuming SI
units, its bulk modulus was evaluated from the properties of air
under ambient condition (qr ¼ 1:225, K ¼ 101 325). The normal

velocity was naturally zero (vn ¼ 0) on all boundaries, except the
leftmost face where the velocity was prescribed as vn ¼
�1=2ð1� cos 2pt=TÞ for 0 	 t 	 T, with T ¼ 3
 10�4. The
analysis was run for 1200 uniform time-steps, to a final time
6
 10�3, using a relative convergence criterion er ¼ 10�5. Euler
time integration was used in one case; three additional analyses
were performed using generalized a-integration with q1 ¼ 0,
1=2, and 1. In all cases, a pressure wave was produced at the left-
most face, which propagated over time to the rightmost face, then
reflected back (Fig. 5(a)). For Euler integration, the pressure wave
markedly decreased in height and increased in width as the wave
propagated to the right, then reflected back in the leftward direc-
tion; for q1 ¼ 1 the pressure wave profile showed much more
subtle changes. To quantify numerical damping caused by the
integration scheme, the total internal and kinetic energy EðtÞ at
time t was evaluated from the results using

E ¼
ð

V

q wþ 1

2
v � v

� �
dV (3.1)

where qw ¼ J�1Wr; Wr ¼ K=2ðJ � 1Þ2, and V is the spatial
domain volume. A plot of the total energy (Fig. 5(b)) shows that
the Euler scheme caused considerable damping in this analysis,
with EðtÞ decreasing by 65% of its peak value, whereas q1 ¼ 1
(the midpoint rule) produced zero dissipation (no damping, within
six significant digits), as would be expected from theory. More-
over, q1 ¼ 0 produced only a small amount of energy dissipation
over the duration of this analysis (less than two percent), whereas
q1 ¼ 1=2 produced less than 0.1% loss. In contrast, Euler’s method
required only 2978 iterations for the entire analysis (averaging 2.48
iterations for solving the nonlinear system of equations at each time-
step); for the remaining analyses, the total number of iterations was
3645forq1¼0, 5964forq1¼1=2, and 5985forq1¼1.

3.4 Flow Past Block in a Narrow Channel. This 2D flow
problem examined the effectiveness of backflow and tangential
stabilization. A channel of length L ¼ 10 and height H ¼ 2:5 was
used, with a 1
 1 block placed at the channel bottom, a distance
D¼ 3 from the inflow boundary; the dimensions and mesh
(3292 eight-node hexahedral elements and eight 6-node pentahe-
dral elements, with 6880 nodes) are shown in Fig. 6, along
with boundary conditions. The fluid properties were K ¼ 109,
qr ¼ 1; and l ¼ 0:0025. A uniform horizontal velocity V was
prescribed at the inflow boundary, ramping up linearly from 0 to
1 from t ¼ 0 to t ¼ 1, and then maintained constant up to t ¼ 200,
producing Re ¼ 400 based on the block size. Time increments

Fig. 3 Flow past backward facing step with Re 5 229. Top panel shows the geometry, tetrahedral mesh, and boundary condi-
tions. Middle panel shows contours of horizontal velocity component v1; bottom panel shows pressure contours.

Fig. 4 Velocity profiles v1(x1;x2) in the flow past a backward
facing step. Solid curves represent the finite element solution
and symbols represent experimental data [57].
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Dt ¼ 0:1 were used for this transient flow analysis. Both backflow
stabilization (b¼ 1) and tangential stabilization (b¼ 1) were pre-
scribed at the outlet boundary. Using Euler integration, significant
vortex shedding was observed until t � 30, after which the flow
settled into a metastable state until t � 140, then transitioned
toward the steady-state response, achieved at t � 190. Using gen-
eralized a-integration, the solution never achieved a steady-state;
instead, it settled into a periodic response around t � 30, with a
Strouhal number of 0.153. This periodic response was character-
ized by vortices alternatively shedding from the block and top
boundary, producing periodic flow reversals across the top and
bottom halves of the outlet (Fig. 6). Without backflow and tangen-
tial stabilization, the solution failed to converge beyond t � 23
with Euler integration, and t � 11 for generalized a-integration,
soon after flow reversal began to develop at the outlet boundary.

3.5 Carotid Bifurcation. A bifurcated carotid artery model
was obtained from the GrabCAD online community,15 converted
to the length unit of meter, imported into SIMVASCULAR

10 and
meshed to include a boundary layer refinement, using four-node
tetrahedral elements. Four meshes were created as listed in Table
1, with two of these meshes (“coarse” and “finer”) shown in Fig.
7(a). Finite element models with identical meshes, boundary con-
ditions, material properties (qr ¼ 1060 kg=m3; l ¼ 0:004 Pa � s,
K ¼ 2
 109 Pa), and time increments (250 increments of
Dt ¼ 2 ms), were created in FEBIO, SIMVASCULAR (version
2.0.20624), and ANSYS FLUENT (Version 16.2). The inlet has a

diameter of 6.28 mm and the two outlets have respective diame-
ters of 4.26 mm and 3.04 mm. An inlet velocity v ¼ vnn was pre-
scribed with a parabolic spatial profile, and an average value v0ðtÞ
whose time history is shown in Fig. 7(b), ranging from a minimum
of 0:10 m=s to a maximum of 0:48 m=s (Re ¼ 165� 800). A
constant pressure p0 ¼ 13:3 kPa was prescribed at the outlet boun-
daries, as well as on the rim of the inlet boundary. SIMVASCULAR

solutions were obtained using the default solver (svLS-NS) with
q1 ¼ 0:5, residual criteria of 0.001 (as recommended by the Sim-
Vascular Simulation Guide), and step construction consisting of a
minimum of three and a maximum of twelve nonlinear iteration
sequences. The FLUENT solutions used the pressure-based solver
and SIMPLE scheme with least squares cell based gradient,
second-order pressure, and second-order upwind momentum; the
transient formulation was first-order implicit; absolute conver-
gence criteria were used, with values of 10�4 for “continuity” and
10�5 for velocity components; iterations per time-step were set to
a maximum of 20. All models were solved on the same desktop
computer, using either a single processor or eight processors. For
this problem, no noticeable differences were observed in the FEBIO

responses when comparing Euler integration with q1 ¼ 0 or
q1 ¼ 0:5, beyond the first 22 ms; similarly, no noticeable differ-
ences could be observed in the SIMVASCULAR responses with Euler
integration, q1 ¼ 0 or q1 ¼ 0:5 beyond the first 14 ms.

Solution times for all models are reported in Table 1. A repre-
sentative FEBIO solution for the coarse mesh is presented in Fig. 8,
displaying the wall shear stress (WSS) and flow velocity field at
time t ¼ 0:2 s (when WSS has peaked). For each mesh, a compar-
ison of the FEBIO, SIMVASCULAR and FLUENT responses (wall shear
stress, pressure and velocity magnitude) was performed at six dis-
tinct locations. The pressure and WSS results for two of these
points (P1 and P2 in Fig. 7(a)) are reported here. An examination
of the FEBIO results for the fluid pressure p at point P1 shows that
all four meshes produce nearly identical responses (Fig. 9(a)). A
comparison of FEBIO with SIMVASCULAR and FLUENT, using the finer
mesh, shows near identical responses as well (Fig. 9(b)). The
value of WSS at P1 also shows good agreement among the three
software programs (Fig. 9(c)). At P2, FLUENT showed the least var-
iation in the WSS response with increasing mesh density, fol-
lowed by FEBIO, then SIMVASCULAR (Fig. 10(a)–10(c)). However, a
comparison of the three software programs, using the finer mesh,
demonstrated better agreement between FEBIO and SIMVASCULAR,
with FLUENT producing lower values of WSS (Fig. 10(d)). The
Courant–Friedrichs–Lewy (CFL) number was evaluated for all
elements in the coarse and finer meshes, at the instant when the
input velocity peaked. The maximum CFL number among all ele-
ments was 7.0 for the coarsest mesh and 9.8 for the finer mesh. In
both models, the median CFL number for all elements was 1.1.

3.6 Idealized Model of Arterial Stenosis. An experimental
study by Seeley and Young explored the pressure loss across an
idealized model of arterial stenosis [58]. These authors simulated
a stenosis by placing a cylindrical plug of length L and outer
diameter D0, with a hole of diameter D1, inside a long tube of
inner diameter D0. Using water and water–glycerol mixtures, they
related the Euler number, Eu ¼ Dp=qU2

0, to the Reynolds number,
Re ¼ qU0D0=l, between two locations, 0.3 m upstream of the
plug and 0.61 m downstream of it. In the expression for Eu; Dp is
the pressure drop between the pressure ports in the presence of the
plug, minus the pressure drop over the same distance in the
absence of a plug (Poiseuille flow); U0 is the mean flow velocity
upstream and downstream of the plug. An additional length
of pipe, 1.5 m long, extended upstream of the first pressure port,
to ensure fully developed flow at that location. Detailed experi-
mental results for Eu versus Re were provided for the specific
case of a concentric hole, where D0 ¼ 1:27 cm; D1 ¼ D0=4, and
L=D0 ¼ 2, which are reproduced here (Fig. 11).

This experimental configuration was modeled in FEBIO by
including the entire length of pipe for which dimensions were

Fig. 5 1D wave propagation in an inviscid fluid: (a) pressure
profile p(x ; t) as wave propagates rightward starting from
x 5 20:5, reflects at right wall (x 5 0:5), and reverses direction;
finite element result using Euler integration is shown in orange,
generalized a-method with q‘ 5 1 is shown in blue and (b) fluid
internal 1 kinetic energy E(t), evaluated over entire domain
20:5 £ x £ 0:5, as it varies with time t, using Euler method and
generalized a-method with various values of q‘.

15grabcad.com/library/carotid-bifurcation
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provided in that paper [58] (the actual experimental setup had an
additional length of pipe and a valve downstream of the second
pressure port, for which dimensions were not provided, pouring
into a reservoir at ambient pressure). An axisymmetric analysis
was simulated in 3D by only modeling a wedge of the circular
domain, spanning a 6 deg angle. This type of axisymmetric analy-
sis took advantage of the natural boundary condition vn ¼ 0 avail-
able in our formulation, which allowed frictionless flow along,
and prevented flow normal to, the planar wedge faces. The geom-
etry and mesh (linear hexahedral elements) were created using
CUBIT version 13.2,16 with strong mesh biases in the radial direc-
tion along the entire length of the pipe, and in the axial direction
at the junctures of the plug hole and upstream and downstream
pipes (Fig. S9 in Supplementary Materials which are available

under “Supplemental Data” tab for this paper on the ASME Digi-
tal Collection). The no-slip condition was prescribed on all cylin-
drical walls and plug upstream and downstream faces. Zero
dilatation was prescribed on the outlet (downstream) face, along
with backflow and tangential stabilization (b¼ 1 for both). Zero
dilatation was prescribed on the rim of the inlet (upstream) face; a
uniform outward normal velocity vn was also prescribed on that
face, varying smoothly with time from 0 to�U0 according to

vn ¼
�U0

2
1� cos pt=t0ð Þð Þ 0 	 t 	 t0

�U0 t > t0

8<
:

For these analyses we used U0 ¼ 1; t0 ¼ 0:05; q ¼ 1, and varied
l to achieve the desired values of Re. The bulk modulus was set
to K ¼ 2:2
 109. A total of 500 time-steps were used, with

Fig. 6 Flow past block in a narrow channel. Top panel shows geometry, mesh, and boundary
conditions. Remaining panels show vorticity contour plots and velocity vector plots (q‘ 5 1)
at four time points within a cycle of the periodic response achieved after t � 30.

16cubit.sandia.gov
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uniform time increments Dt ¼ 5
 10�4, and convergence settings
were identical to the carotid bifurcation analysis; Euler integration
was employed, as it proved to be the most efficient and reliable
scheme, and results are presented here for the steady-state
response. (Additional results are available in Sec. S5 of the Sup-
plementary Materials section which is available under
“Supplemental Data” tab for this paper on the ASME Digital Col-
lection) Six mesh refinements were examined to verify mesh con-
vergence for the parameter Eu, spanning from 3126 to 33,250
elements (25,440–267,248 degrees-of-freedom), analyzing the
case Re¼ 1000. Results of the mesh convergence analysis are pre-
sented in Fig. S10 of Supplementary Materials, which is available
under “Supplemental Data” tab for this paper on the ASME Digi-
tal Collection, showing that the highest two mesh refinements pro-
duced nearly indistinguishable results. All subsequent analyses
were performed with the penultimate mesh (17,990 elements,
144,892 degrees-of-freedom), each requiring 15 min of wall clock
time or less on a vintage 2011 desktop computer (eight threads) or
7 min on a higher end, vintage 2017 machine (12 threads).

The results of the FEBIO analyses (minus the pressure drop eval-
uated from Poiseuille flow) are plotted with the experimental data
of Seeley and Young [58] in Fig. 11, showing good overall agree-
ment with experimental trends and very good accuracy for
Re�400. With increasing Re, FEBIO results tended to moderately
overestimate the experimental data, though the lack of measure-
ment uncertainty ranges in the experimental study precluded a
definitive assessment of agreement in this higher range of Re. To

Table 1 Bifurcated carotid artery mesh parameters. All elements are four-node tetrahedra. Solution times are based on single-
processor and eight-processor computations for all three software programs. SIMVASCULAR times include the solution time 1 time to
convert results to viewable plot files, whereas FEBIO and FLUENT automatically produce viewable plot/data files.

Solution time, 1 thread (min) Solution time, 8 threads (min)

Mesh Elements Nodes FEBIO SIMVASCULAR FLUENT FEBIO SIMVASCULAR FLUENT

Coarse 120,383 21,671 16 31þ 3¼ 34 31 8 15þ 3¼ 18 19
Medium 233,899 41,218 38 62þ 7¼ 69 73 19 28þ 6¼ 34 35
Fine 396,341 68,843 78 115þ 12¼ 127 114 41 49þ 10¼ 59 54
Finer 498,196 86,124 108 142þ 19¼ 161 153 56 62þ 13¼ 75 68

Fig. 7 (a) Model of bifurcated carotid artery using coarse mesh (top) and finer mesh (bottom) of four-node tetrahedral ele-
ments. Boundary conditions are shown on the coarse mesh; in addition, v 5 0 on the arterial wall. The prescribed inlet velocity
has a parabolic profile, with average value v0 and (b) time history of the average inlet velocity v0

Fig. 8 FEBIO solution for bifurcated carotid artery model (coarse
mesh) at time t 5 0.2 s, showing the WSS distribution (top) and
the velocity vector field in a sectioned transparent model (bot-
tom); the largest velocity magnitude at this time point was 1.05
m/s.
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further examine whether this small overestimation might result
from the specific finite element formulation developed in this
study, we used the same mesh to perform a 2D axisymmetric anal-
ysis in FLUENT, with the solver settings described in the carotid
bifurcation analysis. Though the prescribed tolerances could not
be met exactly, even when allowing up to 4000 iterations, FLUENT

was nevertheless able to produce solutions similar to those of
FEBIO (Fig. 11). These findings suggest that the small deviation
between CFD and experimental results in the higher range of Re
are not peculiar to one type of CFD solver; they may be attributed
to measurement or modeling uncertainties, perhaps associated
with the length of pipe and valve downstream of the second pres-
sure transducer, which were not modeled in these CFD analyses.
More detailed results are presented in Sec. S5 of the Supplemen-
tary Materials, which is available under “Supplemental Data” tab
for this paper on the ASME Digital Collection.

4 Discussion

The objective of this study was to implement a computational
fluid dynamics solver in FEBIO, with the long-term objective of
modeling fluid–structure interactions, including flow alterations
driven by active contractile elements in the solid domain, chemi-
cal reactions in fluid and solid or multiphasic domains and at their
interfaces, as well as growth and remodeling of the solid matrix
triggered by signals transduced by fluid flow, relevant to biome-
chanics, biophysics, and mechanobiology. A novel CFD finite ele-
ment formulation was developed, using a thermodynamically
exact formulation of isothermal compressible flow, which

produced a stable numerical scheme without explicitly appealing
to stabilization methods.

The code was successfully verified and validated against stand-
ard benchmark solutions, including the lid-driven cavity flow
(Figs. 1 and 2), flow past a backward-facing step (Figs. 3 and 4),
2D flow past a cylinder (Figs. S3 and S4 in Supplementary Mate-
rials which are available under “Supplemental Data” tab for this
paper on the ASME Digital Collection), along with comparisons
of arterial flow against other open-source and commercial soft-
ware (Table 1, Figs. 7–10, and Figs. S5 and S6 which are avail-
able under “Supplemental Data” tab for this paper on the ASME
Digital Collection). We also validated our code against an experi-
mental study of a simulated stenosis [58] (Fig. 11); to the best of
our knowledge, this is the first reported CFD investigation of that
experimental study. Features employed in vascular flow simula-
tions, such as backflow stabilization [51,52] and flow resistance
[53], were adapted to the current formulation. Backflow and tan-
gential stabilization were shown to be effective for stabilizing out-
let conditions when strong fluctuations were observed (Fig. 6).

As reviewed earlier, many solution methods have been pro-
posed previously for CFD analyses of nearly incompressible flu-
ids, which typically require special handling to produce stable
numerical solutions [2,32,35,36,48–50,59]. In this study, we
developed a novel Galerkin-based finite element formulation that
uses velocity and dilatation degrees-of-freedom, instead of the
velocity–pressure formulations employed traditionally. For this
purpose, we specialized the equations of mass, momentum and
energy balance to the case of isothermal conditions (Appendix),
which allowed us to limit our state variables to J and D (i.e.,
excluding temperature); in particular, we used the integrated form

Fig. 9 Bifurcated carotid artery results at point P1: (a) FEBIO mesh convergence analysis for fluid pressure p. Comparison of
SIMVASCULAR, FLUENT and FEBIO results for (b) p and (c) WSS, using finite element model with finer mesh
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of the mass balance to solve for the density q ¼ qr=J in terms of
the referential (invariant) density qr . To solve for v and J we
employed the linear momentum balance, Eq. (2.1), and the kine-
matic constraint between J and v, Eq. (2.6). This kinematic con-
straint is typically derived in solid mechanics using a material
frame, starting from the definition of F. Few investigators appear
to avail themselves of the validity of Eq. (2.6) in the spatial frame
(i.e., using the spatial descriptions of J and v and applying the
material time derivative of J in the spatial frame). Thus, both gov-
erning equations involve spatial gradients of v and J, producing a
well-conditioned, fully populated stiffness matrix, Eq. (2.43). We
used a function of state, Eq. (2.9), to relate the fluid pressure p to
the volume ratio J, which naturally introduced the bulk modulus
K (a physical property of the fluid) into our formulation, Eq.
(2.30). In standard penalty methods [30], the introduction of a
similar parameter compromises the stiffness matrix conditioning,
the accuracy of the inverted stiffness matrix and thus the conver-
gence of the nonlinear solver [60]. In contrast, varying K in our
formulation from 106 to 1012 had no effect on the nonlinear con-
vergence behavior, as evidenced by analyses of the convergence
rate presented in Sec. S2 of Supplementary Materials which is
available under “Supplemental Data” tab for this paper on the
ASME Digital Collection.

From a theoretical perspective, it should be noted that our adop-
tion of J as a nodal degree-of-freedom implies that we enforce
continuity of fluid strain across element boundaries. Since v
is also a nodal degree-of-freedom, it follows that the mass flux
qv ¼ qrJ

�1v is similarly continuous across element boundaries,
consistent with mass balance requirements (recall that qr is

constant). Had we chosen w ¼ J�1v as a nodal degree-of-freedom
in lieu of v, mass balance across element boundaries would also
be automatically satisfied. However, the kinematic constraint of
Eq. (2.6) would have reduced to @J=@t ¼ J2 div w; since this
expression does not contain grad J, the numerical scheme would

Fig. 10 Bifurcated carotid artery results at point P2: Mesh convergence analyses for WSS with (a) SIMVASCULAR, (b) FLUENT, (c)
FEBIO, and (d) comparison of WSS results using finite element model with finer mesh

Fig. 11 Experimental and CFD results for simulated stenosis,
plotting the Euler number against the Reynolds number: Exper-
imental measurements using water and water 1 glycerol mix-
tures are from [58]. CFD results from this study include FEBIO

analyses at 18 increasing values of Re (from 25 to 1100), and
FLUENT analyses at a subset of 15 values of Re.
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not produce the same stability as achieved in the above-mentioned
formulation. Therefore, using v and J appears to be the better
choice for numerical stability.

The introduction of dilatation as a nodal degree-of-freedom
implies that essential or boundary conditions must be applied in
relation to this variable. In some cases, the dilatation needed to be
prescribed on a corner edge as an essential boundary condition.
Had it not been prescribed, it would be naturally assumed that the
normal velocity is zero on that edge. However, normal velocity is
ambiguous on an edge (e.g., a corner) that separates two surfaces,
since the normal is not defined uniquely. By not specifying the dil-
atation, the burden would be placed on the numerical scheme to
resolve this ambiguity. Sometimes, this approach fails to produce
good numerical convergence, whereas prescribing the dilatation
succeeds, as shown in some of our illustrations. Therefore, users
of this velocity–dilatation formulation should keep in mind the
occasional necessity to employ this essential boundary condition,
rather than relying on the natural boundary condition on a corner
edge. This type of decision in the choice of boundary conditions is
not unusual in fluid analyses where the real fluid domain is trun-
cated for the purpose of creating a finite element domain with inlet
and outlet boundaries. The true boundary conditions at the inlet
and outlet are not known; they are approximated for the purpose
of the finite element analysis, as also demonstrated in the scheme
for stabilizing backflow conditions on a truncated downstream
boundary (Sec. 2.7) [51,52].

The fact that the fluid is modeled as compressible implies that
dilatational (pressure) waves travel at a finite speed in this mate-
rial. In principle, for any transient problem being analyzed, the
wave propagation may be examined explicitly by using time
increments small enough to capture its temporal evolution, as
illustrated in the 1D problem in Fig. 5. Conversely, for problems
whose salient time scale is much larger than the time required for
waves to propagate through the domain, time increments may be
chosen to capture those salient phenomena, such as vortex shed-
ding frequency (Fig. 6) or pulsatile velocity frequency (Fig. 9).
For such analyses, wave propagation has a negligible effect and
does not interfere with the investigation of those lower frequency
phenomena. Thus, modeling the fluid as a real compressible mate-
rial does not produce any complication in the analysis of problems
where the effects of its compressibility are negligible.

As a consequence of this velocity–dilatation formulation, our
finite element formulation for isothermal compressible flow
employs a straightforward implementation of Galerkin’s method,
which does not require the explicit satisfaction of the inf-sup con-
dition [32–34] or the use of stabilization methods such as SUPG,
Galerkin/least-squares, and pressure-stabilizing/Petrov–Galerkin
[35–39], or characteristic-based split [49,50]. Unlike methods that
employ stabilization schemes, such as SUPG, no special consider-
ation is required for linear or higher order element interpolations
(see lid-driven cavity flow solved with quadratic elements in Sec.
S1 of Supplementary Materials which is available under
“Supplemental Data” tab for this paper on the ASME Digital Col-
lection), nor is it necessary to carefully develop ad hoc formulas
for the stabilization parameter s that serves as a weight factor
between the Galerkin residual and least-squares terms [39,41,42].
We expect that the resulting simplicity of this formulation makes
it more amenable for future extensions, such as the incorporation
of chemical reactions as previously done in FEBIO’s multiphasic
domain [9], and FSI.

Based on the variety of problems examined in this study, we
observed that FEBIO produced significantly more accurate results
when mesh refinement was introduced near nonslip boundaries
(boundary layer meshing), in comparison with global refinement
of uniform meshes. It was also necessary to prescribe the dilata-
tion e along edges where a large gradient in velocity might occur,
as noted at corners of the lid-driven cavity flow (Fig. 1), or the
edges of inlet boundaries where velocity was prescribed, as in the
channel flow (Fig. 6) and the carotid bifurcation (Fig. 7). Addi-
tionally, FEBIO analyses occasionally benefited from ramping up

prescribed velocities or pressures from zero to the desired initial
value using short time increments, as done in the lid-driven cavity
flow, the steady-state analysis for flow past a backward-facing
step, the flow past a block in a narrow channel, and the idealized
model of arterial stenosis, rather than imposing a step jump in
those boundary conditions at the very first time-step, since Broy-
den updates might fail under these conditions.

The generalized a-method [44] was implemented successfully in
FEBIO as part of this study, demonstrating considerably less energy
dissipation than Euler’s method as shown in the one-dimensional
wave propagation analysis using inviscid flow (Fig. 5). In viscous
flows, the natural energy dissipation resulting from the fluid viscos-
ity may sometimes dominate over numerical damping, as suggested
in the bifurcated artery analysis where little difference was noted
between Euler integration and the generalized a-method; in other
cases of viscous flows, numerical damping may still play a domi-
nant role, as suggested in the flow past a block in a narrow channel
(Fig. 6), where steady flow was eventually achieved when using
Euler integration, whereas a periodic vortex shedding response was
produced with the generalized a-method.

The comparison of FEBIO to SIMVASCULAR and FLUENT in the anal-
ysis of the carotid bifurcation also provided useful insights regard-
ing the characteristics of our formulation. We noted that FLUENT,
which uses the finite volume method, exhibited less sensitivity to
mesh refinements than FEBIO and SIMVASCULAR. In particular, wall
shear stresses did not change as much with increasing mesh refine-
ment as with FEBIO and SIMVASCULAR (Fig. 10). Nevertheless, over-
all, the agreement between the three programs was remarkably
good for this carotid bifurcation, despite the fact that each of them
uses a significantly different formulation. The solution times for
SIMVASCULAR and FLUENT were very similar (Table 1), whereas
FEBIO exhibited shorter solution times for this problem. The simi-
larity between SIMVASCULAR and FLUENT is consistent with the fact
that they both use iterative linear solvers at each time-step. Their
solution times could be reduced by lowering the maximum num-
ber of iterations, at the expense of not meeting the convergence
tolerance over a larger number of time-steps. The significantly
faster performance of FEBIO in this series of carotid bifurcation
analyses can be explained by the use of Broyden’s method.
Although quasi-Newton methods have been used in CFD codes
[54], they have not been widely adopted. For fluid mechanics
problems, we perform one direct linear solve at the beginning of
the first time-step, followed by Broyden nonlinear iterations until
convergence. For all subsequent steps, the approximation to the
stiffness matrix inverse from the last (converged) Broyden itera-
tion of the previous step is used to initialize the new Broyden iter-
ations. It is rare for Broyden’s method to require more than five
nonlinear iterations. If the number of Broyden iterations exceeds a
user-defined threshold, another direct linear solve is executed.
Thus, only a handful of direct linear solves are needed for almost
all fluid mechanics problems. Using this approach, we have solved
problems with 3 million DOFs without difficulty. This is not a
hard limit—it simply represents the largest problem that we have
tried. Importantly, the comparison performed in this study was
intended primarily to verify the FEBIO solution against other stand-
ard fluid solvers available to the user community, not as a bench-
mark for speed of computation, which can vary significantly
based on the choices of time increments and convergence toleran-
ces, and differ based on the choice of direct versus iterative solv-
ers. Furthermore, for users focused on vascular flows, alternative
solvers such as SIMVASCULAR offer a far greater variety of options
relevant to the vascular system than the FEBIO implementation pre-
sented here, including reduced-order models of the circulation,
such as lumped parameter models and impedance boundary condi-
tions [1,52,53].

Nevertheless, as model size increases to the millions of DOFs,
direct linear solvers, even when used sparingly, become a signifi-
cant bottleneck due to memory and computation requirements. Fur-
thermore, a closer examination of the trends in solution times
(Table 1) shows that the relative performance boost of FEBIO
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decreased with increasing mesh sizes, consistent with faster growth
of the number of computations with the number of DOFs for direct
solvers. This observation was further supported by the analysis of a
larger model of an ascending and descending aorta, described in
Sec. S4 of the Supplementary Materials, which is available under
“Supplemental Data” tab for this paper on the ASME Digital Col-
lection, where the SIMVASCULAR run completed faster than FEBIO.

Although this observation provides a strong motivation to make
use of iterative solvers and to develop customized preconditioners
for use with our fluid mechanics formulation, iterative linear solv-
ers are generally unreliable for problems in computational solid
mechanics. Moderate levels of nearly incompressible behavior,
contact, shell elements, etc., all provide stiffness matrices that are
challenging to handle with even the most carefully constructed
preconditioners. Because of the variety of ways that the global
stiffness matrix may be rendered stiff by the physics of solid
mechanics problems, it is impossible to develop a “one size fits
all” approach to preconditioning. As we implement FSI capabil-
ities in FEBIO, we will work to develop an effective preconditioning
strategy to allow the use of iterative solvers with our fluid mechan-
ics formulation, but we will not rely on iterative solvers exclu-
sively. We plan to develop a nonlinear solution strategy that
combines the use of the Jacobian-free Newton–Krlyov method with
the Broyden quasi-Newton method. For problems that are large
enough to benefit from iterative linear methods, the nonlinear solu-
tion process will begin with Newton–Krylov methods and then
automatically switch to quasi-Newton methods when the iterative
linear solvers fail to converge. We are confident that this approach
will serve the vast majority of our current and future users.

In summary, a novel CFD solver has been implemented in the
open-source FEBIO software suite which is suitable for the analysis
of nearly incompressible flows of the type typically encountered
in biomechanics and biophysics. This implementation has been
verified and validated using a variety of benchmark and test prob-
lems and it appears to perform equally well as other, more stand-
ard, formulations. An important characteristic of this formulation
is its simplicity, requiring a straightforward application of the
Galerkin residual method. This simplicity makes it suitable for
future extension to fluid–structure interactions and the incorpora-
tion of reactive mechanisms in the fluid and structural domains, as
well as at their interfaces, for modeling mechanobiology, growth,
and remodeling.
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Appendix

Energy Balance

The energy balance for a continuum may be written in integral
form over a control volume V as

d

dt

ð
V

q eþ 1

2
v � v

� �
dV ¼ �

ð
S

q eþ 1

2
v � v

� �
v � nð Þ dS

þ
ð

S

t � v dSþ
ð

V

qb � v dV

�
ð

S

q � n dSþ
ð

V

qr dV (A1)

where S is the control surface bounding V; e is the specific inter-
nal energy, q is the heat flux across S, and r is the heat supply per
mass to the material in V resulting from other sources. Bringing
the time derivative inside the integral on the left-hand side, and
using the divergence theorem, this integral statement of the energy
balance may be written as

ð
V

q _e þ v � að Þ þ q eþ 1

2
v � v

� �
div v�

_J

J

� �" #
dV

¼
ð

V

r : D� div qþ qr þ v � div rþ qbð Þ½ � dV (A2)

This statement must be valid for arbitrary control volumes and arbi-
trary processes, from which we conventionally derive the differen-
tial form of the axioms of mass, momentum and energy balance.

For the specialized conditions of a viscous fluid at constant
temperature assumed in our treatment, the only state variables for
the functions of state e; r; and q are J and D (i.e., the temperature
is not a state variable since it is assumed constant). Under these
conditions, the entropy inequality shows that the specific entropy
g and the heat flux q must be zero, and the Cauchy stress r must
have the form of Eq. (2.8) where p is given by Eq. (2.9) as a func-
tion of J only, leaving the residual dissipation statement s : D � 0
as a constraint that must be satisfied by constitutive relations for s.
(For a Newtonian fluid, this constraint is satisfied when the viscos-
ities l and j are positive.) From these thermodynamic restrictions,
we conclude that e ¼ w, where w is the specific (Helmholtz) free
energy, with Wr ¼ qrw.

For the conditions adopted here (isothermal viscous fluid), the
axiom of energy balance reduces to q _w ¼ r : Dþ qr; since w is
only a function of J, this expression may be further simplified
using Eqs. (2.6)–(2.9) to produce s : Dþ qr ¼ 0. In other words,
isothermal conditions may be maintained only if heat dissipated
by the viscous stress is emitted in the form of a heat supply den-
sity qr ¼ �s : D (heat leaving the system). Now, the integral
form of the energy balance in Eq. (A2) simplifies to

ð
V

v � divrþq b�að Þð Þþq wþ1

2
v �v

� �
_J

J
�divv

� �" #
dV¼ 0

(A3)

A comparison of this statement with the statement of virtual work
in Eq. (2.13) establishes a clear correspondence between dv and v,
and between dJ and qðwþ 1=2v � vÞ, with the latter representing
the sum of the internal (free) and kinetic energy densities. We
now have a clearer understanding of the significance of virtual
energy density dJ in the context of this formulation.

Generalized a-Method

For the generalized a-method, we combine the degrees-of-
freedom into Yn ¼ fv; Jgn, where the subscript n denotes time tn;
similarly, we let _Yn ¼ f@v=@t; @J=@tgn. According to this method
[44], the virtual work is evaluated at dWð _Ynþam

;Ynþaf
Þ, where

tnþa ¼ tn þ aDt and Dt ¼ tnþ1 � tn. The parameters af and am are
evaluated from a single parameter q1 using

af ¼
1

1þ q1
; am ¼

1

2

3� q1
1þ q1

(A4)

where 0 	 q1 	 1. This parameter is the spectral radius for an
infinite time-step, which controls the amount of damping of high
frequencies; a value of zero produces the greatest amount of
damping, annihilating the highest frequency in one step, whereas
a value of one preserves the highest frequency.

The linearization of dW reported previously is effectively per-
formed along DYnþaf

so that the solution to dW ¼ 0 produces
Ynþaf

. The parameter n used in Eqs. (2.18) and (2.19) is given by
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n ¼ am

caf
; c ¼ 1

2
þ am � af (A5)

In this scheme, _Ynþam
is evaluated from

_Ynþam
¼ 1� am

c

� �
_Yn þ

n
Dt

Ynþaf
� Yn

� �
(A6)

Given the solution ð _Ynþam
;Ynþaf

Þ, the solution at tnþ1 is evaluated
from

Ynþ1 ¼ Yn þ
Ynþaf

� Yn

af

_Ynþ1 ¼ _Yn þ
_Ynþam

� _Yn

am

(A7)

Four different options are presented in Ref. [44] for initializing
Ynþ1 and _Ynþ1 at the beginning of time-step tnþ1; the first three of
these have been implemented in FEBIO. For steady flows, these
authors recommend disregarding q1 and setting af ¼ am ¼ c ¼ 1
to recover the backward Euler scheme.
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