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Programming with an insult or stimulus during critical developmental life stages shapes metabolic disease through divergent
mechanisms. Cardiovascular disease increasingly contributes to global morbidity and mortality, and the heart as an insulin-
sensitive organ may become insulin resistant, which manifests as micro- and/or macrovascular complications due to diabetic
complications. Cardiogenesis is a sequential process during which the heart develops into a mature organ and is regulated by
several cardiac-speci5c transcription factors. Disrupted cardiac insulin signalling contributes to cardiac insulin resistance. In-
trauterine under- or overnutrition alters o7spring cardiac structure and function, notably cardiac hypertrophy, systolic and
diastolic dysfunction, and hypertension that precede the onset of cardiovascular disease. Optimal intrauterine nutrition and
oxygen saturation are required for normal cardiac development in o7spring and the maintenance of their
cardiovascular physiology.

1. Introduction

Fetal programming and its impact on health and disease is
becoming an increasingly prominent area of investigation as
studies reveal its close link with o7spring health that is shaped
by the intrauterine environment of the mother and other key
factors. Cardiovascular disease (CVD) encompasses a myriad
of diseases that a7ect the heart and its associated blood vessels,
including coronary artery disease that comprises both angina
and myocardial infarction [1]. Type 1 diabetes is a polygenic
disease triggered by genetic and environmental factors [2]. In
type 1 diabetes, an attack on the immune system precedes
β-cell dysfunction and consequently β-cell death [3, 4],
resulting in low levels of insulin synthesis and release [1]. Type
2 diabetes is a chronic disease often associated with obesity
and sedentary lifestyles [5] and is attributed to insulin re-
sistance in organs resulting in a reduction in glucose uptake
[2]. β-cell dysfunction also contributes to type 1 diabetes
resulting in persistent hyperglycaemia that is exacerbated by

insulin resistance. Diabetic cardiomyopathy (DCM) is
attributed to altered cardiac morphology and associated
with myocardial damage that progresses and leads to heart
failure [6] with cell death, a major contributor to DCM [7].

2. Cardiac Development and Transcription
Factors

During cardiogenesis, that is, embryonic heart development,
the prenatal heart grows by hyperplasia, before cardiomyocytes
are terminally di7erentiated after birth, and then grows by
hypertrophy [8]. Cardiomyocytes constitute the myocardium
and are responsible for contractile heart functions, allowing
blood perfusion to multiple tissues and organs [9]. Following
cardiogenesis, cardiac growth of the fetus occurs due to pro-
liferation of cardiomyocytes that are mononucleate [10]. In
the 5nal trimester and early postnatal life, these car-
diomyocytes cease as one or both processes stop, namely,
karyokinesis (division of the nucleus) and cytokinesis
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(division of the cytoplasm) [10]. As a major organ in the
developing fetus, the heart is susceptible to cardiac anomalies,
which can result in fetal mortality [9] with ∼1% of newborns
susceptible to developing congenital heart disease [11]. -us,
during cardiogenesis and early postnatal life, there is an in-
creased risk of developing heart defects and associated cardio-
myopathies. Increased cardiac hyperplasia and hypertrophy
during fetal development result in an increase in the car-
diomyocyte number and size, respectively, thereby enlarging the
heart [12].

-e four signi5cant steps in murine cardiac develop-
ment are as follows: (i) the formation of the cardiac crescent
(at embryonic day (e) 7.5), (ii) linear heart tube formation
(e8.0), (iii) looping of the heart (e8.5–e9.5) and specialized
identity of chambers (e10–e12), and (iv) cardiac septation
(e12-birth) [11]. -e cardiac crescent is represented by a pop-
ulation of epithelial cells developed from cardiac progenitor
cells that express cardiac-speci5c transcription factors [11].
Cells that express cardiac markers merge at the centre of the
mammalian embryo [13]. -ereafter, during the early stages of
heart development, the linear heart tube forms, which later
contracts, enlarges, and initiates several contortions, followed
by looping of the heart that shifts the tube right of the embryo
and marks the 5rst clear indication of breaking left-right
chirality [13]. -ereafter, crucial morphogenetic changes fa-
cilitate the formation of the essential chambers, namely, two
atria and two ventricles; each chamber is separated by septa,
and the atria and ventricles are connected via valves [13].

Transcription refers to a critical event in gene expression
and is the intermediary point for the regulation of gene
expression [14]. Abnormalities such as altered insulin sig-
nalling [15], endoplasmic reticulum (ER) stress [16], mito-
chondrial dysfunction [17], and inHammation [18] have been
implicated in the pathogenesis of diabetes. -is may lead to
CVD thereby impairing the transcription of key metabolic
genes in combination with posttranslational modi5cation of
transcription factors that could result in either the activation
or suppression of essential target genes [14]. Transcription
factors can be categorized into general transcription factors
and gene-speci5c transcription factors; general transcription
factors are functional in creating the preinitiation complex
which, upon binding to DNA promoter regions, regulates
basal transcription [19], whereas the binding of gene-speci5c
transcription factors to genes is sequence-speci5c and
promotes diverse gene expression [20]. Cardiac transcrip-
tion factor activation is predominantly localized in the
myocardium where they regulate the expression of cardiac
genes that encode structural or regulatory proteins in car-
diomyocytes [21]. -e deletion of the key cardiac tran-
scription factor, Forkhead box protein 1 (FoxO1), leads to
cell death in embryogenesis due to incomplete vascular
development [22]. Forkhead box protein 3 (FoxO3) may
positively protect against diseases by preventing both the
proliferation and activation of the smooth muscle cells [23],
whereas Forkhead box protein 6 (FoxO6) shares some
functions with FoxO1 such as stimulating gluconeogenesis
that is normally suppressed by insulin signalling [24].

Table 1 summarizes, in chronological order, transcrip-
tion factors that are essential for cardiac development.

-e disruption in the expression of cardiac-speci5c tran-
scription factors during fetal development leads to delayed
and compromised cardiac development. BrieHy, Hand1 null
(at e7.5–9.5) and Tbx5 null (at e9.5–10.5) mice are char-
acterized by arrested cardiac development. -e deletion of
Mef2C (at e9.5) alters embryonic vascular development
thereby inducing vascular anomalies, with CHF1/Hey2 null
mice (at e13.5) displaying minor anatomical changes in
critical systemic arteries and disordered microvasculature.
GATA4 de5cient mice (at e10.5) display abnormal ventral
folding and inhibition of midline fusion of the primordial
heart, whereas FoxO3/FoxO4 null mice (at e10.5–11) have
de5cient vascular and cardiac growth. FoxO1 is a major
transcription factor in cardiac development. FoxO1 null
mice (at e9.5) have underdeveloped blood vessels, whereas
overexpression of the FoxO1 gene (at e10.5) results in re-
duced heart size, myocardium thickening (myocardium
thickening also results from transgene expression of FoxO1
at e18.5), and eventual heart failure. Like FoxO1, CHF1/Hey2 is
another recurring transcription factor during cardiac devel-
opment. CHF1/Hey2 null mice had thinning of the myocardial
wall (at e13.5 and e15.5) with minor alterations (at e15.5) and
disordered (at e18.5) microvascular formation. -ese transcrip-
tion factors are therefore critical for normal cardiac development
and function as compromised cardiac development trans-
lates into impaired cardiac function and high susceptibility
to CVD.

3. Overview of Programming of Cardiovascular
Disease

An insult or stimulus during critical growth and developmental
periods that disrupts or modi5es tissues at both structural
and functional levels de5nes fetal programming [32]. -e
Barker hypothesis suggests that undernutrition in the fetus,
caused by a poor maternal diet (e.g., low protein or
hypocaloric diets), which a7ects nutrient transport to the
fetus [33], creates stressors that exert pressure on the fetus
to survive, thus forcing the fetus to adapt, restricting its
growth and enabling the development of necessary tissues,
thereby accelerating maturation [34]. A myriad of envi-
ronmental stressors such as excess nutrients or hemody-
namic forces modify cardiac growth and confer vulnerability
on the heart for likely disease later in life [35]. -e two critical
periods for cardiac development that reHect programming
windows are (i) the early embryonic stage and (ii) the late fetal
stage when the heart is most vulnerable [35]. -e early em-
bryonic stage is highly sensitive to changes in the environment,
resulting in modi5cations in cardiac structure and function,
and many heart defects originate during this early stage [35].
Fetal life is a vulnerable stage for increased risk for CVD with
potential susceptibility to heart failure due to cardiomyocyte
insuIciency and inability, epigenetic alterations, and mor-
phological anomalies [35]. Animal models have been used to
study the expression patterns of many genes that contribute to
structural defects in the heart [36], although <10% of these
underlie congenital cardiac defects in humans [37, 38]. In
mammals, in the early embryonic stage when cardiac
looping is completed up until the third trimester of
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gestation, cardiac muscle mass is enhanced predominantly
by proliferation [39].

Insults or stimuli a7ect the health of the mother and
subsequently the fetus, and the mechanism by which gene
expression is altered at speci5c sites and tissues in re-
sponse to these stressors during critical developmental
stages is coined epigenetics [40]. Epigenetic mechanisms
induce long-term gene expression by alterations in the
transcriptional machinery’s ability to associate with the
chromatin’s milieu [40]. Furthermore, these mechanisms
do not change the genetic sequence but inHuence heri-
table di7erences or adjustments in the organism’s phe-
notype, and these changes may be transient [41] or
durable, that is, persisting long term [42]. -ere is
a distinction between epigenetics and epigenomics: epi-
genetics is a mechanism that alters gene expression [40],
whereas epigenomics is the study of functional elements
that regulate cellular gene expression [43]. Considering
the de5nitions of both epigenetics and epigenomics, one
can infer the link between environmental insults in the
intrauterine milieu and their ability to modify processes

at the gene level that can translate into disease phenotypes
in the o7spring.

4. Cardiac Insulin Signalling and Programming

Insulin signalling is an essential physiological process inHu-
enced by many internal and external factors. Multiple hor-
mones are implicated in the regulation of fetal growth and
developmental programming. Insulin, prolactin, insulin-like
growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2),
and thyroid-associated hormones are involved in anabolism,
whereas glucocorticoids are catabolic hormones [44]. -ese
hormones serve as nutritional or malnutrition markers and
function in adapting fetal development to overwhelming
conditions in utero, thereby increasing the possibility of
survival both in utero and postnatally [44]. -e precise
physiological outcome depends on the severity, duration,
timing, and the type of insult or stressor during devel-
opment [45, 46]. Normal fetal development can be dis-
rupted by the maternal diet and its associated quality [47].
-e excessive expression of IGF2 in mice results in

Table 1: Cardiac-speci5c transcription factors.

Transcription factor Embryonic day Dysfunction/impact/alterations Reference

(ehand/Hand1/dHAND/HAND) e7.5–9.5
Embryonic death in Hand1 null mice due to defects in
the extraembryonic mesoderm and the yolk sac,

followed by cardiac development arrest.
[11]

Mef2C e9.5

Targeted deletion of Mef2C alters embryonic
vasculature development, reduced cardiac

endothelial cytokine expression, and resulted in
drastic vascular anomalies and embryonic death.

[25, 26]

Tbx5 e9.5–10.5
Tbx5 null mice have unsuccessful looping of the heart
and LV hypoplasia, both traits of arrested cardiac
development, leading to embryonic death at e10.5.

[27]

GATA4 e10.5

Mice de5cient in GATA4 displayed abnormal ventral
folding, inhibition of midline fusion of the primordial
heart, and endoderm defects with a wide range of

lethal e7ects in embryos.

[28, 29]

FoxO3/FoxO4 e10.5–11 FoxO3−/−/FoxO4−/− embryos die due to de5cient
vascular and cardiac growth. [22]

CHF1/Hey2 e13.5

CHF1/Hey2 knock-out mice displayed thinning of
the myocardial wall with ectopic expression of several

genes by the ventricular myocardium that are
normally limited to the growing atria and trabeculae

on the C57BL/6 background, with only minor
anatomical changes in critical systemic arteries.

[30]

CHF1/Hey2 e15.5
Failure in CHF1/Hey2 knock-out mice to enlarge the
thin layer of the myocardium and minor alterations

in microvasculature formation.
[30]

FoxO1 e18.5
Transgenic expression of FoxO1 led to myocardium
thickening, elevated cardiomyocyte proliferation, and
reduced p21cip1, p27Kip1, and p57Kip2 expression.

[31]

CHF1/Hey2 e18.5 Erratic and disordered microvasculature in
knock-out mice. [30]

HAND, heart- and neural crest derivatives-expressed protein 1; e, embryonic day; Mef2c, myocyte-speci5c enhancer factor 2C; FoxO1−/−, Forkhead box
protein null; Tbx5, T-box transcription factor; LV, left ventricle; CHF/Hey2, cardiovascular helix-loop-helix factor 1/Hairy/enhancer-of-split related with
YRPWmotif protein 2; PDGFA, platelet-derived growth factor subunit A; PDGFRA, platelet-derived growth factor receptor α; Ang1, angiotensin 1; PDGFB,
platelet-derived growth factor subunit B; PDGFRB, platelet-derived growth factor receptor, beta polypeptide; VEGF, vascular endothelial growth factor;
Ang2, angiotensin 2.
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nonspeci5c organomegaly with abnormalities that include,
but are not restricted to, the heart and result in mortality at
birth [48].

In the hearts of lean, wild-type mice, glycolysis and
glucose oxidation were increased and free fatty acid oxi-
dation was decreased due to insulin action [49]. -e insulin
receptor (IR) knock-out experiments in mice con5rmed
insulin’s function in cardiomyocytes [50]. Furthermore,
a 28% reduction in heart size was observed in mouse models
with conditional IR knock-out, which was driven by the
creatinine kinase promoter of the muscle [50]. -is outcome
was due to an analogous decrease in the cardiomyocyte
volume [50]. -e conditional knock-out of IGF1 and insulin
in mice that were driven by the creatinine kinase promoter
of the muscle only survived for 3 weeks after birth due to
cardiomyopathy and subsequent heart failure [51]. -ere-
fore, IGF1 receptor signalling moderately compensates for
cardiac IR signalling during insulin resistance [52].

In a study on lactational programming and insulin
signalling, mice were overfed during lactation and displayed
increased insulin receptor-β (IR-β) content, reduced IR-β
phosphorylation, unaltered insulin receptor substrate 1
(IRS1) content but with decreased phosphorylation, de-
creased Akt1/protein kinase B (PKB) (Akt1) content, and
impaired insulin signalling as there was a decrease in Akt1
phosphorylation as well as a decrease in phosphoinositide
3-kinase-insulin receptor substrate 1 (PI3K-IRS1) interaction
[53]. In addition, there was a reduction of insulin sensitivity,
elevated cardiac protein tyrosine phosphatase nonreceptor
type 1 (Ptpn1-IRβ) association, decreased Akt1 phosphor-
ylation, and decreased IRS1-PI3K interaction in the overfed
mice [53]. Furthermore, in the murine heart, there was an
increase of Ptpn1 association in overfedmice that resulted in
the impairment of insulin receptor (IR) phosphorylation
in the heart [53]. -erefore, the signi5cance of Ptpn1 and its
role as a negative regulator of cardiac insulin signalling was
con5rmed [53]. -e development of obesity and insulin
resistance in adult mice was shown to occur concomitantly
with increased cardiac size and impaired cardiac insulin
signalling due to an increase in Ptpn1-IRβ, a decrease in
IRS1 phosphorylation, and reduced PKB-IRS1associated
activity [53].

5. Cardiac InsulinResistance andProgramming

Cardiometabolic risk encompasses a cluster of risk factors
that predispose individuals to type 2 diabetes and premature
CVD, associated with disrupted insulin signalling and
largely driven by insulin resistance [54]. A reduced response
to normal insulin concentrations in insulin-sensitive organs,
namely, the liver, muscle, adipose tissue, and the heart,
reHects insulin resistance [55]. Insulin resistance can be
demonstrated by postreceptor defects at various levels in the
insulin signalling pathway [56]. Compared to normal
pregnancy, maternal obesity is linked to increased levels of
lipid mobilization and ectopic fat in the pancreas, liver, and
placenta [57, 58]. Additionally, there is a relationship be-
tween increased insulin resistance and obesity during
pregnancy [58]. Despite insulin resistance being a great

predictor for CVD, it is rarely the sole contributor to the
disease [59, 60]. In disease states, such as diabetes and in
patients with insulin resistance, the metabolic, structural,
and ultimately functional alterations in the heart and vas-
culature culminate in DCM, chronic artery disease, ische-
mia, and eventually heart failure [61, 62]. -e impairment of
insulin-stimulated glucose uptake is the 5rst and steadiest
alteration that occurs in the hearts of animal models in the
evolution of insulin resistance [63], and this change occurs
prior to defects in insulin’s capacity to stimulate or elevate
Akt signalling, and is attributed to a reduction of glucose
transporter 4 (GLUT4) protein in combination with the
impairment of GLUT4 membrane translocation [64].

-e development of hyperinsulinemia and insulin re-
sistance in murine cardiac hypertrophy is due to pressure
overload boosts in myocardial insulin signalling to Akt
(in excess), which adds to left ventricular reconstruction at
an accelerated level and ultimately, a shift to heart failure
[65]. -e heart responds to insulin, and insulin resistance is
a prominent defect in individuals who su7er from diabetes,
obesity, and metabolic syndrome [66, 67].

A high-fat diet (HFD) induced myocardial insulin re-
sistance in C57BL/6 mice within ten days [68]. -ere was
also an association between insulin resistance and decreased
glucose uptake in the myocardium, reduced Akt activity, and
reduced GLUT4 levels that preceded and was independent of
systemic insulin resistance [68]. -e consumption of a ma-
ternal HFD compromises organ development and renders
the o7spring prone to metabolic diseases later in life in-
cluding CVD [69, 70].

In animal models, it was revealed that maternal obesity
adversely impacted the o7spring, evident by hyperphagia,
adiposity, dyslipidemia, hepatic steatosis, insulin resistance,
and hypertension [71–73]. In some rat models, a HFD al-
tered breast milk quality as it contained elevated concen-
trations of cholesterol, protein, triglyceride [74], and leptin
levels [75, 76], thus contributing to o7spring obesity. Female
o7spring displayed discrepancies in adiposity, which cor-
related to HFD exposure in utero and during lactation [77].
Similar to mouse models, rat fetuses maintained on a HFD
displayed increased susceptibility to developing metabolic
syndrome [78]. -erefore, a HFD contributes to various
metabolic syndrome phenotypes characterized by typical
metabolic and physiological sequelae induced by insulin
resistance. -us, insulin resistance promotes CVD. A ma-
ternal HFD and consequently maternal obesity induces
a diabetic phenotype in o7spring characterized by adverse
e7ects on fetal heart development and function, thereby
triggering o7spring susceptibility to CVD that likely man-
ifests later in life.

In myocardial insulin resistance, the rate of fatty acid
oxidation remains normal or may be increased, but the rate
of glucose oxidation is usually decreased whether insulin-
stimulated or noninsulin-stimulated [64]. Reactive oxygen
species (ROS) are free radicals and by-products of reduction-
oxidation reactions under physiological conditions in
eukaryotic cells [79]. An increase in the uptake of lipids and its
subsequent oxidation, for example, in insulin resistance, can
give rise to cellular lipid intermediate accumulation, excess
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mitochondrial or peroxisome ROS production, and cardiac
derangements, leading to dysfunction [80]. -is was dem-
onstrated by the overexpression of cardiac-speci5c peroxi-
some proliferator-activated receptor α (PPARα) that induced
increased cardiac lipid oxidation and deranged metabolism
and subsequently led to both structural and functional al-
terations detrimental to the heart [81, 82]. -e induction of
insulin resistance in C57BL/6 mice by maintenance on a HFD
also triggered reconstruction of the heart and systolic dys-
function [68]. -e heart’s ability to tolerate and withstand
ischemia and reperfusion can be constrained by myocardial
insulin resistance by reducing glucose uptake as well as the
synthesis of glycogen and glycolysis, all of which contribute to
adenosine triphosphate (ATP) delivery in the ischemic heart
for cellular metabolism [83].

Several rodent models mimicking type 2 diabetes and
metabolic syndrome display both hyperinsulinemia and in-
sulin resistance in various organs concomitant with cardiac
insulin resistance and myocardial contractile dysfunction
[49, 84]. In cardiac-speci5c insulin receptor knock-out
(CIRKO) mice, there was a relatively moderate reduction
and age-dependent contractile dysfunction [50, 85] that
correlated with reduced insulin-stimulated glucose uptake
and a reduction in both glucose and fatty acid oxidation as
aging and contractile dysfunction occurred [50]. In rodents
maintained on chronic HFDs and in insulin-resistant ge-
netic models, for example, ob/ob and db/db mice, insulin
had an impaired ability to intracellularly stimulate sig-
nalling kinases such as Akt or FoxO1, which in turn caused
greater dysfunction of the left ventricle [49]. Insulin re-
sistance alters cardiac adaptation to increasing energy
demands causing a shift in the substrate that is utilized as
an energy source, with fatty acids being the prominent
substrate [86]. In turn, the diabetic heart is subjected to
cellular stress, increased production of ROS, mitochondrial
dysfunction, and apoptosis with the ultimate outcome of
these changes shaped by insulin resistance that then
contributes to ensuing structural and functional myocar-
dial alterations, eventually resulting in cardiomyopathy
and heart failure [87].

-e renin angiotensin-aldosterone system (RAAS),
which regulates blood pressure and electrolyte and Huid
homeostasis, also plays a role in the pathophysiology of in-
sulin resistance [88]. Consequently, angiotensin 1 (ANG1) is
converted to angiotensin 2 (ANG2) through angiotensin
converting enzyme (ACE) [88]. ANG2 is the salient peptide of
RAAS and its activity has a direct correlation with the
pathophysiology of cardiometabolism [89]. Independent of
programming, overnutrition stimulates changes in meta-
bolism, thereby altering physiological processes. In the heart,
overnutrition concomitant with insulin resistance gives rise to
enhanced stimulation of RAAS [90], which consequently
supplements elevated activity of nicotinamide adenine di-
nucleotide phosphate (NADPH) oxidase and an increased
production of cytosolic ROS, decreased bioavailable nitric
oxide (NO), altered insulin signalling with respect to meta-
bolism, and a dysfunctional diastolic phase [90, 91]. Prolonged
overnutrition is a major contributor to insulin resistance in
the heart and activates RAAS, uncouples mitochondria, and

eventually decreases oxidative stress [92–94]. Obese in-
dividuals have reduced insulin sensitivity leading to hyper-
insulinemia and eventually dyslipidemia with nontreatment
of these conditions increasing obese individuals’ susceptibility
for developing a diabetic phenotype with an increased risk for
CVD [95].

FoxO transcription factors regulate cardiac insulin sig-
nalling [96, 97], with alterations in insulin signalling pre-
ceding cardiac insulin resistance. In FoxO1-de5cient mouse
models, embryonic lethality occurs with incomplete em-
bryogenesis, whereas mice lacking either FoxO3 or FoxO4
survive even after parturition [22].-e deletion of both IRS1
and insulin receptor substrate 2 (IRS2) (H-DKOmice: heart-
speci5c IRS1 and IRS2 double gene knock-out) in the brain
and liver causes hyperglycemia, but such de5ciencies in the
pancreas and heart cause organ failure [98]. -us, there is
a high probability that the development of diabetes can cause
heart failure due to IRS protein loss [99]. By deleting cardiac-
speci5c IRS1 and IRS2 genes, Akt levels and phosphorylation
of FoxO1 are diminished, resulting in organ failure and
ultimately death of 7-8-week-old male mice [98]. Heart
failure in models overexpressing cardiac FoxO1 mimics
heart failure in humans [31]. FoxO1 phosphorylation via
PI3K/Akt can be achieved by either insulin or IGF1 [100].
Insulin stimulation prevents gluconeogenesis [101], and Akt
represses the transcription of FoxO1 [96]. FoxO1 stimulates
and supplements Akt and kinase activity with an increase in
Akt by FoxO1, resulting in insulin insensitivity in car-
diomyocytes [102]. FoxO1 transcription is regulated by
acetylation, phosphorylation, and ubiquitylation [96, 103].
Following the phosphorylation and subsequent activation
of Akt by insulin, FoxO1 is phosphorylated and excluded
from the nucleus [104]. Furthermore, activated FoxO1
causes metabolic changes altering cell cycle survival [2]
through stimulating signalling cascades to prompt cell
death [104]. During fasting or low nutrient conditions
(e.g., undernutrition), insulin signalling is compromised,
leading to nuclear localization of FoxO1, resulting in the
expression of enzymes required for gluconeogenesis [104].
During nutrient abundance (e.g., overnutrition), and in
insulin-resistant or diabetic states, FoxO1 modulates the
oxidation of glucose via pyruvate dehydrogenase kinase 4
(PDK4) [104, 105].

6. Programming Stressors of CVD: Intrauterine
Undernutrition and Overnutrition

CVD is programmed bymultifactorial stressors that inHuence
downstream functions. Fetal programming impacts systemic
factors implicated in CVD risk but also has the potential to
directly a7ect the myocardium by mechanical stimulation
[106]. -ere is a likelihood that programming of the car-
diovascular system and cardiovascular function in utero is
compromised upon amismatch in growth during the prenatal
and postnatal life stages [107]. -ere are both maternal and
paternal inHuences that program their o7spring’s health, and
in the case of stressors on the heart, the expression of cardiac-
speci5c genes is likely altered reHecting impaired cardiac
insulin signalling that contributes to cardiac insulin resistance
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and the onset of CVD. Normal fetal development and
function can be disrupted by a maternal diet; in utero un-
dernutrition and overnutrition represent two common insults
for the programming of CVD.

Intrauterine growth restriction (IUGR) is de5ned as the
reduced growth potential of a fetus in utero due an adverse
in utero milieu often attributed to reduced substrate supply
from the placenta to the fetus [108]. IUGR impacts the
metabolic activities of cardiomyocytes and their associated
regulation [109, 110], survival [111–113], contractility [114],
and cardiomyocyte hypertrophy [111, 115, 116]. Intrauterine
undernutrition results in IUGR, leading to low birth weight;
IUGR reHects a vascular disorder [117]. Furthermore, in-
trauterine undernutrition enhances oxidative stress and is
associated with impaired endothelium-dependent vasodi-
lation [118]. Poor nutrition (e.g., a low-protein diet) results
in restricted growth support and, ultimately, a myocardium
with compromised capacity [119]. O7spring of nutrient-
limited intake rat dams (dams were fed a 50% ad libitum
diet, as established by the quantity of food consumed from
the 5rst day of gestation until birth by control rats) develop
hypertension concomitant with elevated levels of oxidative
stress in the mesenteric arterioles [118].

Chronic hypoxia (over days, weeks, or months) can be
induced during early or late gestation through placental
embolization [120, 121], placental restriction, and secondary
to nutrient restriction [122, 123]. -e early fetus is highly
sensitive to induced hypoxia, which also causes IUGR, al-
tered gene expression, and cardiac-speci5c de5cits that often
lead to fetal death [124]. Maternal hypoxemia (a proxy for
hypoxia) can induce fetal hypoxemia that causes IUGR and
thinning of the myocardium (due to reduced proliferation)
[124]. Male o7spring, born to rodent dams exposed to
minimal oxygen levels towards the end of gestation were
normal at rest but endured critical myocardial damage [126].
Furthermore, hypoxemia-induced bradycardia compro-
mises cardiac output and tissue perfusion, thereby exacer-
bating hypoxia, with chronic hypoxemia resulting in a thin
and disorganized ventricular myocardium, which further
compromises cardiac output [124]. -ese events may feed
a downward spiral ending in death due to congestive heart
failure [124]. Reduced maternal arterial partial pressure of
oxygen (pO2) or insuIcient oxygen delivery to tissues in the
developing fetus results in fetal tissue hypoxemia and
hypoxia, thereby triggering changes in fetal development
[127, 128]. Hypoxia in utero leads to low cardiac perfor-
mance and cardiomyopathies that are often present in
adulthood [114]. In rodent hearts subjected to prenatal
hypoxia, the response to induced ischemia and reperfusion
was compromised and characterized by cardiomyocyte
hypoplasia but concomitant with cardiomyocyte hypertro-
phy [126]. Prolonged hypoxemia for the 5nal third of ges-
tation [129] compromised fetal growth and induced smaller
hearts with cardiomyocyte hypoplasia [130].

Fetal IUGR, induced by selective ligation of uteroplacental
vessels, resulted in cardiomyocyte hypoplasia in both ventricles,
hypertrophic remodelling of cardiomyocytes with alterations in
microvascularization, left ventricle cardiomyocyte hypertro-
phy, and diminished capillary numbers and length [8].

-ese structural 5ndings were associated with fetal systolic
and diastolic dysfunction in both ventricles, and upon postnatal
challenges such as hypertension, they predispose o7spring to
CVD [8]. Intrauterine undernutrition enhances oxidative stress
and mediates cardiac damage with vascular dysfunction
characterized by impaired endothelium-dependent vasodila-
tion and hypertension [118].

In summary, intrauterine undernutrition (Figure 1(a)),
such as maintenance on a low-protein or hypocaloric diet in
utero, induces IUGR that manifests as low birth weights [131].
A limited supply of substrates restricts fetal growth and delays
cardiomyocyte binucleation [115, 119]. Induced intrauterine
hypoxia also induces IUGR and consequently low birth
weights [131]. Low birth weights are associated with CVD later
in life. IUGR results in structural cardiac modi5cations that
include thinning of the myocardium, myocardial and cardiac
damage, cardiac hypertrophy, cardiomyocyte hyperplasia,
altered microvasculature, and reduced capillary number
and length [8]. -ese structural modi5cations contribute to
functional cardiac alterations such as compromised myo-
cardial capacity, systolic and diastolic dysfunction, and
hypertension that often precede the onset of CVD [125].

-ere is a correlation between maternal obesity and
insulin resistance in their neonatal o7spring and the future
development of certain compromised cardiometabolic states
such as o7spring obesity, diabetes, and increased cardio-
vascular risk, demonstrating the detrimental mechanisms of
fetal programming [132]. Cardiac hypertrophy is an early
consequence of maternal diet-induced obesity that is as-
sociated with impaired systolic and diastolic function, im-
paired ventricular contractility, and reduced myocardial
compliance in young-adult o7spring of obese dams [133]. In
another study, a maternal HFD was demonstrated to further
impair diastolic and systolic function in o7spring of diabetic
pregnancies through lipid droplet accumulation, mito-
chondrial dysfunction, and oxidative stress [134]. Fetal rats
exposed to maternal HFDs (i.e., overnutrition) had in-
creased blood pressure, thereby compromising cardiovas-
cular health later in life [135].

In summary, intrauterine overnutrition (Figure 1(b)),
such as maintenance on a high-fat or hypercaloric diet
in utero, which contributes to maternal obesity, results
in fetal macrosomia and subsequently o7spring obesity that
increases the risk for CVD. Similar to intrauterine un-
dernutrition, intrauterine overnutrition induces cardiac
hypertrophy concomitant with systolic and diastolic dys-
function and hypertension that leads to the onset of CVD.
In both intrauterine undernutrition [118] and overnutrition
[135], an increase in oxidative stress is implicated in altered
cardiac structure and cardiac dysfunction.

Apart from suboptimal intrauterine nutrition, there are
several independent metabolic states and stressors that
contribute to CVD. Preeclampsia is an independent risk
factor for CVD. In addition, gestational diabetes pre-
disposes both the mother and o7spring to diabetes later in
life, which presents another risk factor for CVD. Metabolic
syndrome is a myriad of risk factors that present in in-
dividuals who are at an increased risk of developing diabetes
or CVD.Maternal smoking during pregnancy altered o7spring
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DNA methylation and mRNA expression, thereby a7ecting
protein expression [136]. -e immune response of these o7-
spring was therefore compromised as DNA methylation me-
diates inHammation and alters leukocyte function, thereby
increasing CVD risk [136]. Both maternal and paternal
alcohol consumption have adverse e7ects on the o7spring
heart. Maternal alcohol consumption confers to o7spring
a higher risk of ventricular septal [137] and atrial septal
[138] defects with alcoholic embryopathy, leading to minor
cardiac abnormalities, even without structural congenital
cardiac defects [139]. Murine studies have shown that o7-
spring from alcohol-treated fathers have a higher prevalence
of low birth weights [140], which would increase o7spring
susceptibility to CVD. Paternal alcohol consumptionmay also
inHuence epigenetic impact on the gene expression governing
individual organ development [141], and therefore may lead
to compromised heart development that could impair car-
diovascular function. Paternal alcohol consumption was
positively associated with ventricular septal defects in new-
born children [95].

7. Conclusion

Adverse programming events shape cardiac development,
maturation, and function that ultimately lead to CVD. -e
absence, underexpression, and/or overexpression of key
cardiac transcription factors and impaired cardiac insulin

signalling contribute to cardiac insulin resistance that often
precedes CVD. Further elucidation of the programming of
cardiac insulin resistance is required to ultimately prevent,
treat, and identify new and/or improved therapeutic targets.
Intrauterine nutrition that is balanced and suIcient,
concomitant with adequate oxygen supply and delivery to
the growing fetus, is critical for normal cardiac develop-
ment and cardiovascular physiology in o7spring, thereby
better equipping them to handle stressors that promote the
onset of CVD later in life.
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